43
Delivery ratio-maximized wakeup scheduling for ultra-low duty- cycled WSNs under real-time constraints Fei Yang, Isabelle Augé-Blum National Institute of Applied Sciences of Lyon in the Telecommunications department ( 法法法法法法法法法法法法 ) Computer Networks 2011 898410120 法法法 2011/03/28

Fei Yang, Isabelle Augé-Blum

Embed Size (px)

DESCRIPTION

Delivery ratio-maximized wakeup scheduling for ultra-low duty-cycled WSNs under real-time constraints. Fei Yang, Isabelle Augé-Blum National Institute of Applied Sciences of Lyon in the Telecommunications department ( 法國里昂國立應用科學學院 ). Computer Networks 2011. 898410120 陳正昌 2011/03/28. - PowerPoint PPT Presentation

Citation preview

Page 1: Fei  Yang,  Isabelle Augé-Blum

Delivery ratio-maximized wakeup scheduling for ultra-low duty-cycled WSNs

under real-time constraints

Fei Yang, Isabelle Augé-BlumNational Institute of Applied Sciences of Lyon in the Telecommunications department

( 法國里昂國立應用科學學院 )

Computer Networks 2011

898410120 陳正昌 2011/03/28

Page 2: Fei  Yang,  Isabelle Augé-Blum

Page: 2WMNL

Performance Evaluation

Outline

Introduction and Goals

Wakeup Scheduling Algorithm

Conclusions

Page 3: Fei  Yang,  Isabelle Augé-Blum

Page: 3WMNL

Performance Evaluation

Outline

Introduction and Goals

Wakeup Scheduling Algorithm

Conclusions

Page 4: Fei  Yang,  Isabelle Augé-Blum

Page: 4WMNL

Introduction

• WSNs have been widely used in many applications.

• The data flows of WSN applications can be mainly classified into four types

– Event-driven

– Query-driven

– Continuous

– Hybrid

Page 5: Fei  Yang,  Isabelle Augé-Blum

Page: 5WMNL

Introduction

• The characteristics of event-driven WSN applications are

– Not have data most of the time

– Have to report to the sink with real-time constraints

• Nodes spend most of the time on idle listening.

Page 6: Fei  Yang,  Isabelle Augé-Blum

Page: 6WMNL

Introduction

• Typical power consumptions for an IEEE 802.15.4 radio (CC2420).

– Transmit : 52.2 mW

– Receive : 56.4 mW

– Listen : 56.4 mW

– Sleep : 3 W

• Sensor nodes are battery-powered

– Energy saving is an important issue in WSNs.

Page 7: Fei  Yang,  Isabelle Augé-Blum

Page: 7WMNL

Introduction

• Duty-cycled approach can prolongs the sensor lifetime.

…Time

Scheduling period

Page 8: Fei  Yang,  Isabelle Augé-Blum

Page: 8WMNL

Introduction

• Duty-cycle will negatively affect other performances

– End-to-end delay

– Connectivity

• Although some existing scheduling algorithms can reduce the end-to-end delay

– Didn’t takes routing into account

– Didn’t have a bounded delay

– Didn’t takes unreliable links into account

Page 9: Fei  Yang,  Isabelle Augé-Blum

Page: 9WMNL

Goals

• Proposes a novel forwarding scheme for ultra-low duty-cycle WSNs.

– Improve the energy efficiency

– Decrease end-to-end delay

– Increase delivery ratio

– Guarantee bounded delay on the messages

– Distributed scheduling

Page 10: Fei  Yang,  Isabelle Augé-Blum

Page: 10WMNL

Performance Evaluation

Outline

Introduction and Goals

Wakeup Scheduling Algorithm

Conclusions

Page 11: Fei  Yang,  Isabelle Augé-Blum

Page: 11WMNL

…Time

Network Assumptions

• All nodes are locally synchronized with their neighbors.

• Only one node sends the alarm when the event happens.

• One duty-cycle period is divided into many slots and have same duration.

• Each node wakes up for only one slot during one period.

• The node can wake up for more than one slot when it has packets to send.

B B BA A A

Page 12: Fei  Yang,  Isabelle Augé-Blum

Page: 12WMNL

Basic Idea

Sink

Time

31 slots

Slots1~5

Slots6~10

Slots11~15

Slots16~20

Slots21~25

Slots26~30

Slot 31

0.9

0.8

0.7

0.6

0.5

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Expected Delivery Ratio

Page 13: Fei  Yang,  Isabelle Augé-Blum

Page: 13WMNL

Wakeup Scheduling Algorithm

Expected Delivery Ratio (EDR)

1

01

1k

jnn

r

kni jkk

PPEDRFEDR

Hop Count (HC)

otherwise

&&1 if

11 jjj nn

ni

ni

nni

LQHCHC

HC

HCHC

Page 14: Fei  Yang,  Isabelle Augé-Blum

Page: 14WMNL

∞∞

Wakeup Scheduling Algorithm

Hop Count (HC)

otherwise

&&1 if

11 jjj nn

ni

ni

nni

LQHCHC

HC

HCHC

D

A

B

Sink

Cα=0.5

0.9

0.8

0.3

0.8

0.8 0.6

1

0

1

3

2 ∞∞

Page 15: Fei  Yang,  Isabelle Augé-Blum

Page: 15WMNL

Wakeup Scheduling Algorithm

Expected Delivery Ratio (EDR)

1

01

1k

jnn

r

kni jkk

PPEDRFEDR

D

A

B

SinkC

0.7

0.4

0.6

0.6

0.7

0.8

100

95

94

93

π(FD)={B, C, A}

EDR(π(FD))=

0.6*0.4

+(1-0.6)*0.7*0.6

+(1-0.6)*(1-0.7)*0.8*0.7

=0.4752

Page 16: Fei  Yang,  Isabelle Augé-Blum

Page: 16WMNL

Wakeup Scheduling Algorithm

Expected Delivery Ratio (EDR)

1

01

1k

jnn

r

kni jkk

PPEDRFEDR

D

A

B

SinkC

0.7

0.4

0.6

0.6

0.7

0.8

100

93

94

95

π(FD)={A, C, B}

EDR(π(FD))=

0.8*0.7

+(1-0.8)*0.7*0.6

+(1-0.8)*(1-0.7)*0.6*0.4

=0.6584 > 0.4752

Page 17: Fei  Yang,  Isabelle Augé-Blum

Page: 17WMNL

Wakeup Scheduling Algorithm

Expected Delivery Ratio (EDR)

1

01

1k

jnn

r

kni jkk

PPEDRFEDR

Hop Count (HC)

otherwise

&&1 if

11 jjj nn

ni

ni

nni

LQHCHC

HC

HCHC

Wakeup Slot (WS) Selection

iii EDRSRHCSRTWS 1

Selectable Range (SR)

upboundHC

TSR …

Time

T

Page 18: Fei  Yang,  Isabelle Augé-Blum

Page: 18WMNL

Wakeup Scheduling Algorithm

Expected Delivery Ratio (EDR)

1

01

1k

jnn

r

kni jkk

PPEDRFEDR

Hop Count (HC)

otherwise

&&1 if

11 jjj nn

ni

ni

nni

LQHCHC

HC

HCHC

Wakeup Slot (WS) Selection

i

upboundi

upboundi EDR

HC

THC

HC

TTWS 1

0~1

1 , i

upboundi

upboundi HC

HC

TTHC

HC

TTWS

Page 19: Fei  Yang,  Isabelle Augé-Blum

Page: 19WMNL

Wakeup Scheduling AlgorithmWakeup Slot (WS) Selection

i

upboundi

upboundi EDR

HC

THC

HC

TTWS 1

Sink

HC=1HC=2HC=3HC=4HC=5HC=6

HCupbound=6

54 slots

…Time0 8 9 17 18 26 27 35 36 44 45 53

Page 20: Fei  Yang,  Isabelle Augé-Blum

Page: 20WMNL

Wakeup Scheduling AlgorithmWakeup Slot (WS) Selection

i

upboundi

upboundi EDR

HC

THC

HC

TTWS 1

SinkB

C

A

HC=5HC=6

HCupbound=6

54 slots

…Time0 8 9 17 18 26 27 35 36 44 45 53

EDRC=0.6

EDRB=0.4

EDRA=0.8 102.099 AWS

146.099 BWS

124.099 CWS

Slot T

(HC=0, EDR=1)

Page 21: Fei  Yang,  Isabelle Augé-Blum

Page: 21WMNL

Wakeup Scheduling Algorithm

Distributed Wakeup Scheduling

Sink broadcasts a packet that includes its

   EDR(1), WS(T) and HC(0)

Every node except the sink runs the following algorithm

if receives a packet from one of the neighbors

  Calculates the new HC

  Calculates the new EDR

  if the change of EDR is higher than a threshold

    or the HC is changed

   Calculates the new WS

   Broadcasts the new values

  endif

endif

Expected Delivery Ratio (EDR)

1

01

1k

jnn

r

kni jkk

PPEDRFEDR

Hop Count (HC)

otherwise

&&1 if

11 jjj nn

ni

ni

nni

LQHCHC

HC

HCHC

Wakeup Slot (WS) Selection

i

upboundi

upboundi EDR

HC

THC

HC

TTWS 1

Page 22: Fei  Yang,  Isabelle Augé-Blum

Page: 22WMNL

Wakeup Scheduling Algorithm

Sink

Time

54 slots

Slots45~53

(HCi, EDRi, WSi)

(0, 1, 54)

(1, 0.95, ∞)

(1, 0.9, ∞)

Page 23: Fei  Yang,  Isabelle Augé-Blum

Page: 23WMNL

(1, 0.95, 47)

(1, 0.9, 50)

Wakeup Scheduling Algorithm

Sink

Time

54 slots

Slots36~44

Slots45~53

(HCi, EDRi, WSi)

(0, 1, 54)

(2, 0.92, ∞)

(2, 0.9, ∞)

(2, 0.88, ∞)

(2, 0.86, ∞)

(2, 0.92, 38)

(2, 0.9, 39)

(2, 0.88, 40)

(2, 0.86, 41)

Page 24: Fei  Yang,  Isabelle Augé-Blum

Page: 24WMNL

(1, 0.95, 47)

(1, 0.9, 50)

Wakeup Scheduling Algorithm

Sink

Time

54 slots

Slots27~35

Slots36~44

Slots45~53

(HCi, EDRi, WSi)

(0, 1, 54)

(2, 0.92, 38)

(2, 0.9, 39)

(2, 0.88, 40)

(2, 0.86, 41)

(3, 0.89, ∞)

(3, 0.88, ∞)

(3, 0.85, ∞)

(3, 0.83, ∞)

(3, 0.8, ∞)

(3, 0.89, 28)

(3, 0.88, 29)

(3, 0.85, 31)

(3, 0.83, 32)

(3, 0.8, 33)

Page 25: Fei  Yang,  Isabelle Augé-Blum

Page: 25WMNL

(3, 0.89, 28)

(3, 0.88, 29)

(3, 0.85, 31)

(3, 0.83, 32)

(3, 0.8, 33)

(1, 0.95, 47)

(1, 0.9, 50)

Wakeup Scheduling Algorithm

Sink

Time

54 slots

Slots0~8

Slots9~17

Slots18~26

Slots27~35

Slots36~44

Slots45~53

(HCi, EDRi, WSi)

(0, 1, 54)

(2, 0.92, 38)

(2, 0.9, 39)

(2, 0.88, 40)

(2, 0.86, 41)

(4, 0.85, 19)

(4, 0.83, 20)

(4, 0.82, 21)

(4, 0.78, 23)

(4, 0.76, 24)

(5, 0.80, 11)

(5, 0.78, 12)

(5, 0.76, 13)

(5, 0.75, 14)

(5, 0.73, 16)

(6, 0.75, 2)

(6, 0.73, 3)

(6, 0.70, 5)

(6, 0.68, 6)

(6, 0.6, 7)

Page 26: Fei  Yang,  Isabelle Augé-Blum

Page: 26WMNL

(3, 0.89, 28)

(3, 0.88, 29)

(3, 0.85, 31)

(3, 0.83, 32)

(3, 0.8, 33)

(1, 0.95, 47)

(1, 0.9, 50)

Wakeup Scheduling Algorithm

Sink

Time

54 slots

Slots0~8

Slots9~17

Slots18~26

Slots27~35

Slots36~44

Slots45~53

(HCi, EDRi, WSi)

(0, 1, 54)

(2, 0.92, 38)

(2, 0.9, 39)

(2, 0.88, 40)

(2, 0.86, 41)

(4, 0.85, 19)

(4, 0.83, 20)

(4, 0.82, 21)

(4, 0.78, 23)

(4, 0.76, 24)

(5, 0.80, 11)

(5, 0.78, 12)

(5, 0.76, 13)

(5, 0.75, 14)

(5, 0.73, 16)

(6, 0.75, 2)

(6, 0.73, 3)

(6, 0.70, 5)

(6, 0.68, 6)

(6, 0.6, 7)

12 20 29 39 47

54

Page 27: Fei  Yang,  Isabelle Augé-Blum

Page: 27WMNL

Performance Evaluation

Outline

Introduction and Goals

Wakeup Scheduling Algorithm

Conclusions

Page 28: Fei  Yang,  Isabelle Augé-Blum

Page: 28WMNL

Performance Evaluation

Simulation Parameters

Simulator WSNet

Deploy Nodes 250 nodes

Network Size 150m * 150m

Slots 750, 1000, 2000, 3000 slots

Hop Count Bound 10 hops

Run Time 100

Modulation FSK

Data Rate 19.2 kbps

Page 29: Fei  Yang,  Isabelle Augé-Blum

Page: 29WMNL

Performance Evaluation

Performance metrics

Delivery Ratio

End-to-End Delay

Energy Consumption

Impact factor

Density and Link Quality

Duty Cycle

Sink Position

Page 30: Fei  Yang,  Isabelle Augé-Blum

Page: 30WMNL

Performance Evaluation

Experiments

Experiment 1 Each node only considers the neighboring nodes with the lower HC

Experiment 2Every node considers the neighboring nodes with not only the lower HC but also the

same HC

Sink

HC=1HC=2HC=3HC=4HC=5HC=6

Page 31: Fei  Yang,  Isabelle Augé-Blum

Page: 31WMNL

Performance Evaluation

Comparison

WSEDR

Random

i

upboundi

upboundi EDR

HC

THC

HC

TTWS 1

random

HC

THC

HC

TTWS

upboundi

upboundi

Page 32: Fei  Yang,  Isabelle Augé-Blum

Page: 32WMNL

Performance Evaluation

Delivery Ratio (Duty-Cycle : 0.1%, Sink Location : (75,75))

Experiment 1 Experiment 2

Page 33: Fei  Yang,  Isabelle Augé-Blum

Page: 33WMNL

Delivery Ratio (α : 0.3, Sink Location : (75,75))

Experiment 1 Experiment 2

Performance Evaluation

Page 34: Fei  Yang,  Isabelle Augé-Blum

Page: 34WMNL

Delivery Ratio (Density : 29 neighbors, α : 0.3, Duty-Cycle : 0.1%)

Experiment 1 Experiment 2

Performance Evaluation

Page 35: Fei  Yang,  Isabelle Augé-Blum

Page: 35WMNL

End-to-End Delay (Duty-Cycle : 0.1%, Sink Location : (75,75))

Experiment 1 Experiment 2

Performance Evaluation

Page 36: Fei  Yang,  Isabelle Augé-Blum

Page: 36WMNL

End-to-End Delay (α : 0.3, Sink Location : (75,75))

Experiment 1 Experiment 2

Performance Evaluation

Page 37: Fei  Yang,  Isabelle Augé-Blum

Page: 37WMNL

End-to-End Delay (Density : 29 neighbors, α : 0.3, Duty-Cycle : 0.1%)

Experiment 1 Experiment 2

Performance Evaluation

Page 38: Fei  Yang,  Isabelle Augé-Blum

Page: 38WMNL

Energy Consumption (Duty-Cycle : 0.1%, Sink Location : (75,75))

Experiment 1 Experiment 2

Performance Evaluation

Page 39: Fei  Yang,  Isabelle Augé-Blum

Page: 39WMNL

Energy Consumption (α : 0.3, Sink Location : (75,75))

Experiment 1 Experiment 2

Performance Evaluation

Page 40: Fei  Yang,  Isabelle Augé-Blum

Page: 40WMNL

Energy Consumption (Density : 29 neighbors, α : 0.3, Duty-Cycle : 0.1%)

Experiment 1 Experiment 2

Performance Evaluation

Page 41: Fei  Yang,  Isabelle Augé-Blum

Page: 41WMNL

Performance Evaluation

Outline

Introduction and Goals

Wakeup Scheduling Algorithm

Conclusions

Page 42: Fei  Yang,  Isabelle Augé-Blum

Page: 42WMNL

Conclusion

• Proposes a novel forwarding scheme for ultra-low duty-cycle WSNs.

– Improve the energy efficiency

– Decrease end-to-end delay

– Maximizes the delivery ratio

– Distributed scheduling

– Highly suitable for ultra-low duty-cycle real-time event-driven WSN

Page 43: Fei  Yang,  Isabelle Augé-Blum

Page: 43WMNL

Thanks~~~Thanks~~~Thanks~~~