FM-K01-12

Embed Size (px)

Citation preview

  • 7/28/2019 FM-K01-12

    1/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 0

    Chapter 1

    1. Introduction

    1. Area of application2. Classification

    3. Examples

    4. Reciprocating engines in comparisonwith turbomachinery

  • 7/28/2019 FM-K01-12

    2/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 1

    Area of application

    Turbomachines are devices in which energy is transferred between a continuously flowing fluid

    and a rotor. The first part of the word turbomachine is of Latin origin and implies that which spinsaround, as does the rotating blade row, the rotor, when it converts the energy of the fluid or themechanical energy of the shaft. The working fluid flowing through the turbomachinery can be of liquidor of gaseous type or even be a multiphase flow suchas insteamturbines.

    Water turbines in power plants

    Compressors or turbines in turbochargers orgas turbines

    Machinery for chemical processes

    Steam turbines in power plants

    Wind turbines

    Circulation pumps for heating systems indomestic homes

  • 7/28/2019 FM-K01-12

    3/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 2

    Flow of energy in turbomachinery

  • 7/28/2019 FM-K01-12

    4/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 3

    Classification of turbomachinery (1)

    Source:Bohl,S

    trmungsmaschinen1

  • 7/28/2019 FM-K01-12

    5/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 4

    Compressibility offluid

    Compressible (thermal turbomachine) Incompressible (hydraulic turbomachine)

    Direction of energytransfer

    Rotor >> Fluid,driven TM

    Fluid >> Rotor,driving TM

    Rotor >> Fluid,driven TM

    Fluid >> Rotor,driving TM

    Examples Compressor Steam turbine Pump Water turbine

    Casing

    Without With casing Without With casing

    Propeller Axial-flowcompressor

    Diagonalcompressor

    Centrifugalcompressor

    Windturbine

    Axial-flowturbine

    Diagonalturbine

    Radialturbine

    Workingflow

    Axial Axial Diagonal Radial Axial Axial Diagonal Radial

    In direction of the flow (arrow):pressure increase, decrease of specific volume,

    decreasing cross-section

    In direction of the flow (arrow):pressure decrease, increase of specific volume,

    enlarging cross-section

    Classification of turbomachinery (2)

  • 7/28/2019 FM-K01-12

    6/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 5

    Classification of turbomachinery (3)

    Characteristic Classification Example Criterion

    Singlestage

    Multistage

    Singlesuction

    Doublesuction

    Numberof

    stages

    Numberof

    suction

    channels

    Positive/negativeworkneededis

    notaccomplishedbyonestage

    Moreflowthanasinglesuction

    constructioncansupplyisneeded

  • 7/28/2019 FM-K01-12

    7/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 6

    Examples of centrifugal pump design (incompressible fluid)

  • 7/28/2019 FM-K01-12

    8/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 7

    Construction Differentiation Criterion

    Casing design Single-walled Double-walledRelief of the inner casing improves its circularity andtherefore the tip clearance is not affected as much.

    Casing splittingAxially split

    casing

    Radially split

    casing

    Radiallysplit casings have a better circularity andshould be preferred when dealing with highpressures.

    Number of shafts One shaftMultiple number

    of shaftsImproves stage design matching

    Shaft position Horizontal Vertical Vertical is preferred in big hydraulic turbomachines.

    Reversibility of flowdirection

    Not reversible ReversibleE.g. reversibility in pumped-storage hydroelectricpower plants

    Further classification possibilities

  • 7/28/2019 FM-K01-12

    9/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 8

    Single-stage compressor (DEMAG)

  • 7/28/2019 FM-K01-12

    10/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 9

    Axial-flow compressor with radial output stage

  • 7/28/2019 FM-K01-12

    11/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 10

    Turbocharger 3K-Warner

  • 7/28/2019 FM-K01-12

    12/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 11

    KSB Omega Double-suction radial flow pump

  • 7/28/2019 FM-K01-12

    13/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 12

    Impulse turbine (Pelton wheel)

    Pelton wheel:

    Head range: 100 2000 mPower output: 0,08 400MW

    Source:W.

    Bohl,S

    trmungsmaschinenI

    Source:Fa.Lingenhle

    Wheel of a Pelton turbine Six-jet Pelton turbine

  • 7/28/2019 FM-K01-12

    14/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 13

    Francis turbine:Head range: 10 900 mPower output: 0,03 - 500MWRadial inlet flowVariable guidevaneAxial outlet flow

    Inlet

    Adjustment cylinder

    Turbine shaft

    Turbine guide bearing

    Guide vane adjusting mechanism

    Runner

    Outlet

    Inlet scroll

    Pressure control valve

  • 7/28/2019 FM-K01-12

    15/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 14

    Axial and radial cross section of a Francis turbine

    Turbine shaft

    Guide vanes Runner

    Guide vane adjusting

    mechanism

    Inlet scroll

    Inlet

    Spiral casing

    Fluid

  • 7/28/2019 FM-K01-12

    16/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 15

    Kaplan turbine (1)

    Kaplan turbines:

    Head range: 5 80 m(hydropower plants)

    Power output: ca. 0,1 150 MW

  • 7/28/2019 FM-K01-12

    17/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 16

    Kaplan turbine (2)

    Source:W.

    Bohl,S

    trmungsmaschinenI

  • 7/28/2019 FM-K01-12

    18/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 17

    Industrial gas turbine: Siemens V94

    Performance Data (V94.3A):Power Output: 265 MWEfficiency: 38,5 %

  • 7/28/2019 FM-K01-12

    19/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 18

    Comparison: Reciprocating engine Turbomachinery (1)

    Reciprocating engines and turbomachinery compete in many areas of use:

    For a given set of operating requirements there is usually one type of compressor/pump or turbinebest suited for the operation.

    When dealing with high flow rates, low pressure ratios and a high demand for energyturbomachinery is preferred,

    whereas when dealing with low flow rates, high pressure ratios and a low demand for energyreciprocating machines are usually opted for.

    Reciprocating engine Turbomachinery

    Movement of fluid Interrupted Continous process

    Compression of gas high low

    Engine Intermittent internalcombustion engine

    Gas turbine, steamturbinewind-/water turbines

    Load transmission Hydraulic pistons Hydraulic coupling

  • 7/28/2019 FM-K01-12

    20/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 19

    Comparison: Reciprocating engine Turbomachinery (2)

    Reciprocating

    engine

    Turbomachinery

    Principle of operation

    Max. speed ~ 20.000 rpm ~ 100.000 rpm

    Pressure ratio high low

    Flow rate low high

    Type of Flow intermittent continuous

    Maintenance costs high low

    AW FF

    AbFA

    Flow principle

    ApF

    Displacementdevice principle

  • 7/28/2019 FM-K01-12

    21/21

    Technische Universitt Mnchen

    Prof. Dr.-Ing. H.-P. Kau Module Fluid Machinery 1 - 20

    Comparison: Reciprocating engine Turbomachinery (3)

    A big advantage of a gas turbine is its weight and the little space it requires:

    MTU 16V 595 TE70L MTU TF50

    Power output (kW) 3925 3805Rotational speed (rev/min) 1750 1070

    Length (m) 3,98 1,395

    Width (m) 1,66 0,89

    Height (m) 2,87 1,04

    Volume (m3) 18,96 1,29

    Weight (kg) 13000 710

    Although having the same power output as the reciprocating engine the gas turbine only

    requires 7% of the space and weighs 5,5% as much.