25
High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurri cane Bonnie (1998). Part II: Water Budget. J. Atmos. Sci., 63, 43-64. 演演演 : 演演演

High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

Embed Size (px)

Citation preview

Page 1: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget

Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget. J. Atmos. Sci., 63, 43-64.

演講人 :陳登舜

Page 2: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

Outline Introduction Simulation and analysis description a.Simulation description b.Simulated structure and validation Budget formulation Budget results a.Water vapor budget b.Condesed water budget c.Volume–integrated budget d.The artificial water source Conclusions

Page 3: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

Introduction The water vapor budget a.the condensation in the eyewall occurs hot convective hot t

owers b.outside of the eyewall the condensation occurs in weaker u

pdrafts, indicative of a larger role of stratiform precipitation processes.

Horizontal advection tended to transport drier air into the core in the boundary layer and moist air from the eye to the eyewall within the low-level outflow above the boundary layer (Zhang et al. 2002).

In this study, we compute budgets of both water vapor and total condensed water (cloud condensate, and precipitation) from a high-resolution simulation of Hurricane Bonnie (1998).

Page 4: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

Simulation and analysis description a. Simulation descriptionCoarse-resolution:Started at 1200 UTC 22/08/1998 (36 hrs) 36 km: 91× 97

12 km: 160×160

High-resolution:Started at 1800 UTC 22/08/1998 (30 hrs) 6 km: 225×225 2 km: 226×226

Vertical: 27 levels

Page 5: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

1800 UTC 22 Aug. TRMM

1050 UTC 24 Aug. TRMM

1200 UTC 23 Aug MM5

Page 6: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

Radar Reflectivity CFAD

1800 UTC 22 Aug.TRMM

1200 UTC 23 Aug.MM5

contoured frequency by altitude diagrams (CFADs)

Page 7: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

40 m 2.7km

6.8km

12km

Vr’ (contour)

Vr’ (contour)

W (contour)

W (contour)

1-h Time Average(24-25 h)

Page 8: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

dBZ (shading)W (contour)

Qc+Qi (shading)W (contour)

dBZ (shading)Vr’ (contour)

1-h Time Average(24-25 h)

Page 9: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

dBZ + w

(qcl+qci) + w

dBZ + Vr

1-h Time Average(24-25 h)

Page 10: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

tangential velocity radial velocity

vertical velocity qv

qcl + qci qrain, qsnow, qgr

56ms-1

Page 11: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

Budget Formulation

qv is mixing ratio of water vapor;qc is the mixing ratio of cloud liquid water and ice;qp is the mixing ratio of rain, snow and graupel;V’ is the storm-relative horizontal air motion;w is the vertical air motion;VT is the hydrometeor motion;+ is source; - is sink;C is the condensation and deposition;E is the evaporation and sublimation;B is the contribution from the planetary boundary layer;D is the turbulent diffusion term;Z is the artificial source term associated with setting negative mixing ratios to zero.

Page 12: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

the temporal and azimuthal mean:

the time-averaged and vertically integrated amount:

the time-averaged, volumetrically integrated amount:

(kg·m-3·h-1 )

(kg·m-2·h-1 )

(kg·h-1 )

Budget Formulation(con’t)

the azimuthally averaged horizontal advective flux is simply that associated with radial transport

Page 13: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

Budget Formulation(con’t)Zx is artificial source terms associated with setting negative mixing ratios (caused by errors associated with the finite differencing of the advective terms) to zero, that is, mass is added to eliminate negative mixing ratios.

Page 14: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

Budget results

condensation horizontal flux divergence,

evaporation vertical flux divergence,

Cond + Evap HF + VF divergence

divergence term boundary layer source term

1-h Average(24-25 h)

a. Water vapor budget

Melting layer

Page 15: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

updraft condensation occurring in updraft

much of the eyewall condensation is associated with hot towers.

The smaller contribution of stronger updrafts is indicative of the larger role of stratiform precipitation processes outside of the eyewall.

eyewall region (30-70 km) outer region (70-200 km)

Page 16: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

b. Condensed water budget

cloud sink horizontal flux divergence

net source vertical flux divergence

boundary layer source added water mass to offset negative mixing ratios

condensation (total source of cloud)

cloud budget

Page 17: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

rain

graupel

snow

sinkSourcecloud budget

Page 18: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

net microphysical source horizontal flux divergence

precipitation fallout andvertical flux divergence

added water mass to offsetnegative mixing ratios

precipitation budget

cloud sink

Page 19: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

Horizontal distributioncondensation evaporation

precipitation falloutqv

Page 20: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

Horizontal distributiontotal rain source warm rain source

cold rain source graupel source

Rain source

+

graupel sink

Graupel sink

Page 21: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

c.Volume–integrated budget

Page 22: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

d. The artificial water source

cloud liquid water

cloud ice

rain

snow

graupel

Cloud content Precipitation content

Page 23: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

raincloud water

graupel

Page 24: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

Conclusion A detailed water budget is performed using a high-resoluti

on simulation of Hurricane Bonnie (1998). The simulation generally reproduces the track, intensity, and structure of the storm, but overpredicts the precipitation as inferred from comparison of model and TRMM radar reflectivities.

The water vapor budget confirms that the ocean source of vapor in the eyewall region is very small relative to the condensation and inward transport of vapor, with the ocean vapor source in the eyewall (0.7) being approximately 4% of the inward vapor transport into the eyewall (16.8) region.

In the eyewall, most of the condensation occurs within convective towers while in the outer regions condensation results from a mix of convective and stratiform precipitation processes, with the stratiform component tending to dominate.

Page 25: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998)

Conclusion Precipitation processes acting outside of the eyewa

ll region are not very dependent on the condensate mass produced within and transported outward from the eyewall.

Although the artificial water mass source is very small at any given grid point, its cumulative impact over large areas and over time is more substantial, contributing an amount of water that is equivalent to 15%–20% of the total surface precipitation.