34
7/29/2019 lecture8_ee720_rxeq http://slidepdf.com/reader/full/lecture8ee720rxeq 1/34 Sam Palermo  Analog & Mixed-Signal Center Texas A&M University ECEN720: High-Speed Links Circuits and Systems Spring 2013 Lecture 8: RX FIR, CTLE, & DFE Equalization

lecture8_ee720_rxeq

Embed Size (px)

Citation preview

Page 1: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 1/34

Sam Palermo

 Analog & Mixed-Signal Center

Texas A&M University

ECEN720: High-Speed Links

Circuits and SystemsSpring 2013

Lecture 8: RX FIR, CTLE, & DFE Equalization

Page 2: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 2/34

 Agenda

• RX FIR Equalization

• RX CTLE Equalization

• RX DFE Equalization

• RX equalization papers posted on thewebsite

2

Page 3: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 3/34

Link with Equalization

3

      S     e

     r      i     a      l      i     z     e     r

DTX[N:0]

TX Clk

Generation

(PLL)

TX FIR

Equalization

RX Clk

Recovery

(CDR/Fwd Clk)

Σ

RX CTLE + DFE

Equalization

      D     e     s

     e     r      i     a      l      i     z     e     r

DRX[N:0]

Channel

Page 4: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 4/34

TX FIR Equalization

4

• TX FIR filter pre-distorts transmitted pulse in order to invert channeldistortion at the cost of attenuated transmit signal (de-emphasis)

z-1

z-1

z-1

w-1

w0

w1

w2

TX

data

z-1 wn

Page 5: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 5/34

RX FIR Equalization

• Delay analog input signal andmultiply by equalizationcoefficients

• Pros

• With sufficient dynamic range, canamplify high frequency content(rather than attenuate lowfrequencies)

• Can cancel ISI in pre-cursor andbeyond filter span

• Filter tap coefficients can be

adaptively tuned without anyback-channel

• Cons

•  Amplifies noise/crosstalk 

• Implementation of analog delays

• Tap precision5

[Hall]

Page 6: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 6/34

RX Equalization Noise Enhancement

• Linear RX equalizers don’t discriminate betweensignal, noise, and cross-talk 

• While signal-to-distortion (ISI) ratio is improved, SNR remains unchanged

6

[Hall]

Page 7: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 7/34

 Analog RX FIR Equalization Example

7D. Hernandez-Garduno and J. Silva-Martinez, “A CMOS 1Gb/s 5-Tap Transversal Equalizer based on 3 rd-Order Delay Cells,"ISSCC, 2007.

• 5-tap equalizer with tap spacing of Tb /2

1Gb/s experimental results

3rd-order delay cell

Page 8: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 8/34

Digital RX FIR Equalization

• Digitize the input signal with high-speed low/mediumresolution ADC and perform equalization in digital domain

• Digital delays, multipliers, adders

• Limited to ADC resolution

• Power can be high due to very fast ADC and digital filters

8

[Hanumolu] 

Page 9: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 9/34

Digital RX FIR Equalization Example

9

[Harwood ISSCC 2007]• 12.5GS/s 4.5-bit Flash ADC in 65nm CMOS

• 2-tap FFE & 5-tap DFE

• XCVR power (inc. TX) = 330mW, Analog = 245mW, Digital = 85mW

Page 10: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 10/34

Link with Equalization

10

      S     e     r      i     a      l      i     z     e     r

DTX[N:0]

TX Clk

Generation

(PLL)

TX FIR

Equalization

RX Clk

Recovery

(CDR/Fwd Clk)

Σ

RX CTLE + DFE

Equalization

      D     e     s     e     r      i     a      l      i     z     e     r

DRX[N:0]

Channel

Page 11: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 11/34

RX Continuous-Time Linear Equalizer (CTLE)

• Passive R-C (or L) can implementhigh-pass transfer function tocompensate for channel loss

• Cancel both precursor and long-tailISI

• Can be purely passive or combinedwith an amplifier to provide gain

11

Din - Din +

Vo-Vo+

Passive CTLE  Active CTLE

[Hanumolu] 

Page 12: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 12/34

Passive CTLE

• Passive structures offer excellent linearity,but no gain at Nyquist frequency

12

( )( )

( )

21

1

2

21

21

1

21

2

21

21

2111

21

21

21

11

21

2

,

1,

1

1

1

CC

C

R

RR

CC

C

RR

R

CCRR

RRCR

sCCRR

RR sCRRR

RsH

z

p

z

+

+===

+=+=

++

==

++

+

+

+=

ω 

ω 

ω ω 

gainDC

gainHFPeaking

gainHF gainDC

  p

[Hanumolu] 

Page 13: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 13/34

 Active CTLE

• Input amplifier with RCdegeneration can providefrequency peaking with gainat Nyquist frequency

• Potentially limited by gain-bandwidth of amplifier

•  Amplifier must be designedfor input linear range

• Often TX eq. provides some

low frequency attenuation

• Sensitive to PVT variationsand can be hard to tune

• Generally limited to 1st-order

compensation 13

( )

21

,21

1,21,1

121

1

1

Sm

z

p

Dm

Sm

Dm

pDSS

Sm

SS

z

pDSS

Sm

SS

p

m

Rg

RgRg

Rg

CRCRRg

CR

CRs

CR

Rgs

CRs

C

gsH

+===

=+

=

=+==

 

 

 

 +

 

  

  ++

+

=

ω 

ω 

ω ω ω 

gainDC

gainpeakIdealPeakingIdeal

gainpeakIdeal gainDC

  p2p1

[Gondi JSSC 2007] 

Page 14: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 14/34

 Active CTLE Example

14

Din- Din+

Vo-Vo+

Page 15: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 15/34

 Active CTLE Tuning

• Tune degeneration resistor and capacitor to adjust zerofrequency and 1st pole which sets peaking and DC gain

15

CS

R S

SS

Sm

SS

zCR

Rg

CR

21,

1 +== p1 ω ω 

• Increasing CS moves zero and

1st pole to a lower frequencyw/o impacting (ideal) peaking

• Increasing R S moves zero to

lower frequency and increasespeaking (lowers DC gain)

• Minimal impact on 1st pole

Page 16: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 16/34

Link with Equalization

16

      S     e     r      i     a      l      i     z     e     r

DTX[N:0]

TX Clk

Generation

(PLL)

TX FIR

Equalization

RX Clk

Recovery

(CDR/Fwd Clk)

Σ

RX CTLE + DFE

Equalization

      D     e     s     e     r      i     a      l      i     z     e     r

DRX[N:0]

Channel

Page 17: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 17/34

RX Decision Feedback Equalization (DFE)

• DFE is a non-linear equalizer

• Slicer makes a symbol

decision, i.e.quantizes input

• ISI is then directly

subtracted from theincoming signal via afeedback FIR filter

17

( ) nknnknkkk dwdwdwyz−−−

−− −−−=

~

1

~

11

~

1

Page 18: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 18/34

RX Decision Feedback Equalization (DFE)

• Pros

• Can boost high frequencycontent without noise andcrosstalk amplification

• Filter tap coefficients can beadaptively tuned without any

back-channel

• Cons

• Cannot cancel pre-cursor ISI

• Chance for error propagation• Low in practical links (BER=10-12)

• Critical feedback timing path

• Timing of ISI subtractioncomplicates CDR phasedetection

18

( ) nknnknkkk dwdwdwyz−−−

−− −−−=

~

1

~

11

~

1

[Payne]

Page 19: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 19/34

DFE Example

19

• If only DFE equalization, DFE tapcoefficients should equal theunequalized channel pulse responsevalues [a1 a2 … an]

• With other equalization, DFE tap

coefficients should equal the pre-DFEpulse response values

a1

a2

[w1 w2]=[a1 a2]

Page 20: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 20/34

Direct Feedback DFE Example (TI)

• 6.25Gb/s 4-tap DFE• ½ rate architecture

•  Adaptive tap algorithm

• Closes timing on 1sttap in ½ UI for

convergence of bothadaptive equalizationtap values and CDR 

20

      T      A      P      1

Latch Latch Latch

      T      A      P      2

      T      A      P      4

      T      A      P      3

Latch Latch Latch

A 2 

VDD

RXEQ

RXIN

CLK0/180

CLK90/270

DFECLK 

   t  o

   d  e  m  u  x

   t  o   d  e  m  u  x

 A1

• TAP1: 5 bits• TAP2: 4 bits +sign• TAP3,4: 3 bits +sign

Feedback tap mux

R. Payne et al, “A 6.25-Gb/s Binary Transceiver in 0.13-um CMOS for Serial Data Transmission Across High LossLegacy Backplane Channels,” JSSC , vol. 40, no. 12, Dec. 2005, pp. 2646-2657

Page 21: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 21/34

Direct Feedback DFE Critical Path

• Must resolve data and feedback in 1 bit period

• TI design actually does this in ½UI for CDR 21

RXIN

TIME <1UI

A 2 

A 1 

CLK90

RXEQ D0

tPROPA2

t PROPMUX

tCLK QSA

RXEQ

CLK90

1UI

UIttt PROPAPROPMUXQSACLK  12 ≤++→

[Payne]

Page 22: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 22/34

DFE Loop Unrolling

• Instead of feeding back andsubtracting ISI in 1UI

• Unroll loop and pre-compute 2possibilities (1-tap DFE) withadjustable slicer threshold

• With increasing tap number,

comparator number grows as 2#taps22

yk 

dk |dk-1=-1

dk |dk-1=1

dk-1 

( )

( )

−=+

=−=

1sgn

1sgn

1

~

1

1

~

1~

kk

kkk

dwy

dwyd

 if"" 

if"" 

[Stojanovic]

dk |dk-1=-1

dk |dk-1=1

α=w1

Page 23: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 23/34

DFE Resistive-Load Summer

• Summer performance is critical for DFE operation

• Summer must settle within a certain level of accuracy(>95%) for ISI cancellation

• Trade-off between summer output swing and settling time

• Can result in large bias currents for input and taps 23

RCIR == τ   ,SwingSummer

[Park ]

Page 24: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 24/34

DFE Integrating Summer

• Integrating current onto load capacitances eliminates RC settling time

• Since ∆T/C > R, bias current can be reduced for a given output swing

Typically a 3x bias current reduction 24

[Park ISSCC 2007]

Page 25: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 25/34

Digital RX FIR & DFE Equalization Example

25

[Harwood ISSCC 2007]• 12.5GS/s 4.5-bit Flash ADC in 65nm CMOS

• 2-tap FFE & 5-tap DFE

• XCVR power (inc. TX) = 330mW, Analog = 245mW, Digital = 85mW

Page 26: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 26/34

DFE with Feedback FIR Filter

26

[Liu ISSCC 2009]

• DFE with 2-tap FIR filter in feedback willonly cancel ISI of the first two post-cursors

Page 27: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 27/34

 “Smooth” Channel

27

[Liu ISSCC 2009]

•  A DFE with FIR feedback requires many taps to cancel ISI

• Smooth channel long-tail ISI can be approximated asexponentially decaying

• Examples include on-chip wires and silicon carrier wires

τ  

t

eH−

2

Page 28: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 28/34

DFE with IIR Feedback 

28

[Liu ISSCC 2009]

• Large 1st post-cursor H1 is canceled with normal FIR 

feedback tap• Smooth long tail ISI from 2nd post-cursor and beyond is

canceled with low-pass IIR feedback filter

• Note: channel needs to be smooth (not many reflections) in

order for this approach to work well

Page 29: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 29/34

DFE with IIR Feedback RX Architecture

29

[Liu ISSCC 2009]

Page 30: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 30/34

• Integrating summer with regeneration PMOS devices to

realize partial slicer operation

Merged Summer & Partial Slicer

30

[Liu ISSCC 2009]

Page 31: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 31/34

• Low-pass response (time constant) implemented by R D and CD

•  Amplitude controlled by R D and ID

• 2 UI delay implemented through mux to begin cancellation at 2nd post-cursor

Merged Mux & IIR Filter

31

[Liu ISSCC 2009]

Page 32: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 32/34

 Advanced Modulation

• In order to remove ISI, we attempt toequalize or flatten the channel responseout to the Nyquist frequency

• For less frequency-dependent loss, movethe Nyquist frequency to a lower value viamore advance modulation

4-PAM (or higher)•Duo-binary

• Refer to lecture 4 for more details

32

Page 33: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 33/34

Multi-tone Signaling

• Instead equalizing out to baseband Nyquist frequency

• Divide the channel into bands with less frequency-dependent loss

• Should result in less equalization complexity for each sub-band

• Requires up/down-conversion

• Discrete Multi-tone used in DSL modems with very challengingchannels

• Lower data rates allow for high performance DSP

• High-speed links don’t have this option (yet)

33

[Beyene AdvPack 2008]

10Gb/s duo-binary 2 Quarature10Gb/s duo-binary

30Gb/s total!

Page 34: lecture8_ee720_rxeq

7/29/2019 lecture8_ee720_rxeq

http://slidepdf.com/reader/full/lecture8ee720rxeq 34/34

Next Time

• Link Noise and BER Analysis