21
LES Modeling for IC Engines Chris Rutland Engine Research Center University of Wisconsin - Madison

LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

Embed Size (px)

Citation preview

Page 1: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

LES Modeling for IC Engines

Chris Rutland Engine Research Center

University of Wisconsin - Madison

Page 2: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

LES Introduction • Large Eddy Simulation

– Next generation of turbulence modeling

• Concept:

– RANS uses ensemble averaging – LES uses local spatial averaging

(filtering) – Achieved by different sub-models

• Intent

– Retain more flow structure on grid – Better predictive capability – Capture more details by simulating

more flow structures

LES RANS

DEER 2012: Rutland-LES 2

Page 3: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

Better Predictive Capability

• Ignition chemiluminescence compared with temperature predictions

RANS LES Experiment

CA =

-12

o a

TDC

Temp (K)

(Experimental images courtesy Singh et al., 2006) 3

LES Advantages Increased design sensitivity

Capture more flow instabilities Better response to geometric details Address wider range and more subtle design conditions

Study new phenomenon Cycle-to-cycle variability

DEER 2012: Rutland-LES

Page 4: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

Practicalities of LES in Engines • LES is:

– NOT: Just an LES turbulence model – NOT: Turn-key for IC engine applications

• Need reasonable computational times

– Limits grid density – Requires accurate sub-models

• Complex physics

– Sub-grid models for

Turbulence Combustion Scalars Sprays Walls, injectors, etc.

DEER 2012: Rutland-LES 4

LES versions required

Page 5: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

LES Sub-Models for Engines • Tier 1 models: Available for use

– Turbulence * – Combustion – Scalars – Sprays: far field effects

• Tier 2 models: Need work

– Emissions – Wall effects and wall heat transfer – Sprays, sprays, sprays

• Nozzle effects, breakup, atomization

5

• 0 – equation • 1 – equation

• Viscosity • Non-viscosity

DEER 2012: Rutland-LES

Page 6: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

LES Modeling Technologies • Scale similarity

– Use big ‘whorls’ to help model small ‘whorls’

• Dynamic procedure – Obtain sub-model coefficients from solution

• Approximate de-convolution

– Reverse filter: estimate small scales

DEER 2012: Rutland-LES

Page 7: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

Examples

• Combustion modeling

• Spray modeling

• Wall heat transfer modeling

DEER 2012: Rutland-LES 7

Page 8: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

Mixing-Controlled Detailed Chemistry (MCDC) Model

• Modifies chemistry solution with mixing time scale • Based on ‘Kong-Reitz’ model formulation [Kong et al, 2002]:

• Damkohler number:

• Mixing time scale:

DCS = Direct Chemistry Solver (Chemkin or equivalent) DCS reaction rate for species i:

Dynamic scale similarity model: χsgs

DEER 2012: Rutland-LES 8

1mixing sgsτ χ≈

Page 9: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

Subgrid χ Model Validation • Engine comparisons

– PLIF experiments of Peterson and Ghandhi

125-cycle experimental 10-cycle LES simulations

Fuel – N 2 N 2 Fuel – N 2 N 2

Ensemble PDF of resolved and subgrid scalar dissipation

DEER 2012: Rutland-LES 9 Tin = 323 K, 240 bTDC. Sample domain: 19.5 x 15.2 mm.

Page 10: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

MCDC Combustion Model Validation

-30 -20 -10 0 10 20 300

2

4

6

8

10 Experiment DCS Model

Pres

sure

[MPa

]

Crank [°aTDC]

0

100

200

300

400

500

600

700 Experiment DCS Model

HRR

[J/D

eg](a)

DEER 2012: Rutland-LES 10

Sandia Cummins N-14 optical engine

Engine speed [RPM] 1200 IMEP [bar] 4.4 Injection pressure [bar] 1200

Intake temperature [oC] 111

SOI [o ATDC] -7

Page 11: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

MCDC Combustion Model Validation

-40 -30 -20 -10 0 10 20 30 40

2

3

4

5

6

7

8

9 Experiment DCS Model

Pres

sure

[MPa

]

Crank [°aTDC]

0

100

200

300

400

500

600

700

HRR

[J/D

eg]

Experiment DCS Model

(b)

DEER 2012: Rutland-LES 11

Engine speed [RPM] 1200 IMEP [bar] 4.6 Injection pressure [bar] 1600

Intake temperature [oC] 90

SOI [o ATDC] -22,+15

Sandia Cummins N-14 optical engine

Page 12: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

Spray Modeling

Symbols: Experiments Solid: LES Dashed: RANS

Vapor penetration

Liquid penetration

Exp

LES

RANS

LES

RANS • Injection pressure: 135 MPa • Nozzle diameter: 246 μ • Ambient density : 30.2 kg/m3 • Ambient temperature: 1000 K

DEER 2012: Rutland-LES 12

• Key component for LES spray modeling: spray source term in sub-grid kinetic energy equation: used approximate de-convolution

• Liquid and vapor penetration: LES and RANS show similar global results

Page 13: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

High Flame Lift-off Case • Coherent structures: yellow • Cool flame: blue (CH20) • High temperature reactions: red (OH)

Cool flame (CH2O) evolves with the CS Long cool flame period

DEER 2012: Rutland-LES 13

Fuel Injection 1163 bar

Fuel, temperature C14H30 , 408 K

Ambient pressure 22.7 bar, 1100 K

Ambient density [kg/m3] 7.17

Page 14: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

Low Flame Lift-off Case • Coherent structures: yellow • Cool flame: blue (CH20) • High temperature reactions: red (OH)

Cool flame is inside high temperature

reaction zone Cool flame has a steady penetration

(~1 ms ASOI) High temperature reaction zone evolves

with the CS

DEER 2012: Rutland-LES 14

Fuel Injection 1163 bar

Fuel, temperature C14H30 , 408 K

Ambient pressure 64 bar, 1200 K

Ambient density [kg/m3] 18.58

Page 15: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

Engine Case: LTC Early Injection

Blue: Cool flame (CH20) Red: High temperature reaction zones (OH) Grey: Droplets Black: Velocity vectors on CS

DEER 2012: Rutland-LES 15

Page 16: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

Engine Case: Short Ignition Delay

Blue: Cool flame (CH20) Red: High temperature reaction zones (OH) Grey: Droplets Black: Velocity vectors on CS

DEER 2012: Rutland-LES 16

Page 17: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

RANS-LW

0 5 10 15 20 25 30 35 40 45 500

1

2

3

4

5

6

7

LES-WW

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 500

1

2

3

4

5

6

7

Friction Factor

Nusselt Number

Wall Modeling: Channel Flow

DEER 2012: Rutland-LES 17

Wall Heat Flux

Page 18: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

LES-LW LES-WW

EXP RANS-LW

Engine Wall Heat Transfer

18 DEER 2012: Rutland-LES

TC: 6

TC: 8

Page 19: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

Summary • LES can increase accuracy and sensitivity • LES for engine modeling is here now

– Requires accurate sub-models – Requires very knowledgeable users

• Current efforts on improvements – Sprays: nozzle interior, near nozzle – Appropriate use: multiple cycles, new analysis

techniques, validation • Additional information:

DEER 2012: Rutland-LES 19

“Large Eddy Simulations for Internal Combustion Engines – A Review,” Rutland, International Journal of Engine Research, 2011, Vol. 12 (5), pp 421-451 DOI: 10.1177/1468087411407248.

Page 20: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

Acknowledgements

Chalearmpol Plengsaard Noah Van Dam

Yuxin Zhang Siddhartha Banerjee Nidheesh Bharadwaj

Bing Hu Rahul Jhavar

Sergei Chumakov Eric Pomraning

Department of Energy (DE-EE0000202)

General Motors R&D, CRL Caterpillar

NSF, AFOSR, ONR

http://www.erc.wisc.edu/

DEER 2012: Rutland-LES 20

Page 21: LES Modeling for IC Engines - Department of Energy · LES Modeling for IC Engines Chris Rutland Engine Research Center . University of Wisconsin - Madison

Thank You

DEER 2012: Rutland-LES