Li Thuyet Ham Suy Rong & Khong Gian Sobolev - Dang Anh Tuan

Embed Size (px)

DESCRIPTION

Giai Tich Loi - Huynh the Phung

Citation preview

  • L thuyt Hm suy rng v Khng gian Sobolev

    ng Anh Tun

    H Ni, ngy 20- 11- 2005

  • Chng 1

    Cc khng gian hm c bn v khng

    gian hm suy rng

    1.1 Mt s kin thc b sung

    1.1.1 Mt s k hiu

    N = {1, 2, . . . } l tp cc s t nhin, Z+ = {0, 1, 2, . . . } l tp cc s nguyn khngm, R l tp cc s thc, C l tp cc s phc. n v o

    1 = i.Vi mi s t nhin n N, tp Zn+ = { = (1, . . . , n)

    j Z+, j = 1, . . . , n}, tpRn = {x = (x1, x2, . . . , xn)

    xj R, j = 1, 2, . . . } l khng gian thc n chiu vi chunEuclid

    x = ( nj=1

    x2j) 12 .

    Nu khng c g c bit, k hiu l tp m trong Rn.Vi mi k Z+ k hiu cc tp nh sau:

    Ck() = {u : Cu kh vi lin tc n cp k}, C() = C0() = {u : lin tc C},Ck0 () = {u : C

    u Ck(), suppu l tp compact}, C0() = C00(),C() = k=1Ck(), C0 () = k=1Ck0 (),

    trong , suppu = cl{x u(x) 6= 0}.Vi mi s thc 1 p

  • 2trong , ess supx |u(x)| = inf{M > 0m{x |u(x)| > M} = 0}.Vi 1 p , k hiu

    Lploc() = {u : Lebesgue

    Cu Lp(), vi mi tp con o c }

    Lpcompact() = {u : Lebesgue

    Cu Lp(), : u(x) = 0 h.k.n. trong \ },trong , ngha l bao ng cl() l tp compact trong .Vi mi hm u C(), = (1, 2, . . . , n) Zn+ k hiu

    Du = D11 D22 . . . D

    nn u,D

    jj =

    j

    xjj

    , j = 1, 2, . . . .

    Khi , vi u, v C(), = (1, 2, . . . , n) Zn+ c cng thc Leibnitz

    D(uv) =

    (

    )DuDv,

    trong ,

    (

    )=n

    j=1

    (jj

    ),(jj

    )=

    j !

    j !(jj)! ,l tng ly trn tp cc a ch s Zn+m , ngha l 0 j j, j = 1, 2, . . . , n.

    1.1.2 Phn hoch n v

    nh ngha 1.1. Cho l mt tp trong Rn.Mt h m c cc cp {(j, j)}j=1, trong j l tp m trong Rn, j l hm thuc lp cc hm kh vi v hn trn Rn, c gi lmt phn hoch n v ca tp nu cc tnh cht sau c tho mn:

    (i) {j}=1 l mt ph m ca , ( j=1j,j l tp m),(ii) 0 j(x) 1,x , j = 1, 2, . . . ,(iii) j C0 (Rn), suppj j, j = 1, 2, . . . ,(iv)

    j=1 j(x) = 1,x .Ta cn gi {j}j=1 l phn hoch n v ng vi ph m {j}j=1 ca tp .nh l 1.1. Cho K l mt tp compact trong Rn, h hu hn {Uj}Nj=1 l mt ph m caK. Khi , tn ti mt h hu hn cc hm kh vi v hn {j}Nj=1 xc nh mt phn hochn v ng vi ph m {Uj}Nj=1 ca tp K. chng minh nh l ta cn mt s kt qu sau.

    T y tr i, k hiu hm : Rn R l hm c xc nh nh sau

    (x) :=

    {Ce

    1||x||21 , nu||x|| < 1,

    0, nu ||x|| 1,trong , C l hng s sao cho

    Rn (x)dx = 1.

    rng, hm c cc tnh cht sau

  • 3(i) C0 (Rn), supp = B1(0) = {x Rn||x|| 1}, (x) 0,x Rn,(ii)

    Rn (x)dx = 1, l hm ch ph thuc vo ||x||(radial function).Vi mi > 0, t (x) =

    n(x). Hm cng c cc tnh cht ca hm :

    (i) C0 (Rn), supp = B(0) = {x Rn||x|| 1}, (x) 0,x Rn,(ii)

    Rn (x)dx = 1, l hm ch ph thuc vo ||x||(radial function).Vi mi hm f L1loc(Rn), t

    f(x) = (f )(x) =Rnf(y)(x y)dy.

    Vic t ny l c ngha vRnf(y)(x y)dy =

    Rnf(x y)(y)dy =

    B(0)

    f(x y)(y)dy.

    Mnh 1.2. Cho f L1loc(Rn). Khi , ta c cc kt lun sau.(i) f C(Rn).(ii) Nu supp f = K Rn th f C0 (Rn), supp f K = {x Rn

    d(x,K) }.(iii) Nu f C(Rn) th lim

    0+supxK

    |f(x) f(x)| 0,K Rn.

    (iv) Nu f Lp(Rn)(1 p hay ||xy|| > ,y K.M supp B(0)nn (x y) = 0,y K. Do , f(x) = 0 khi x 6 K hay supp f K.(iii) D thy

    f(x) f(x) =Rn

    (f(x y) f(x))(y)dy =

    B1(0)

    (f(x y) f(x))(y)dynn |f(x) f(x)| sup

    yB(0)|f(x y) f(x)|m f C(Rn) c f lin tc u trn tng tp compact K Rndo lim

    0+supxK

    |f(x) f(x)| 0,K Rn.

  • 4Mnh 1.3. Cho K Rn. Khi , vi mi > 0, c mt hm C0 (Rn) tho mn

    (i) 0 (x) 1,x Rn,

    (ii) supp K,

    (iii) (x) = 1,x K 2.

    Chng minh. Ly hm c trng ca tp K 34

    (x) :=

    {1, nu x K 3

    4,

    0, nu x 6 K 34.

    C L1(Rn) L1loc(Rn), supp = K 34, nn theo Mnh 1.2 c

    (i) 4 C0 (Rn),

    (ii) supp( 4) K,

    (iii)0 ( 4)(x),x Rn.

    rng,

    ( 4)(x) =

    B 4(0)

    (x y) 4(y)dy

    nn

    (i) ( 4)(x)

    B 4(0) 4(y)dy = 1,

    (ii) Nu x K 2th (x y) K 3

    4,y B

    4, do (

    4)(x) =

    B 4(0) 4(y)dy = 1.

    Chng minh. Chng minh nh l 1.1. T gi thit K l tp compact, {Uj}Nj=1 l mt phm ca K c

    W1 := K\(Nj=2Uj) U1nn tn ti 1 > 0 sao cho

    W1 W1 +B1(0) U1.Theo Mnh 1.3 c mt hm nhn gi tr trong khong (0, 1) l 1 C0 (Rn) sao cho

    V1 := W1 +B 12(0) supp1 W1 +B1 U1.

    Li c, W1 := K\(Nj=2Uj) V1 m V1 l tp m nn

    W2 := K\(V1 (Nj=3Uj)) U2.

  • 5Do , tn ti 2 > 0 sao cho

    W2 W2 +B2(0) U2.Theo Mnh 1.3, c mt hm nhn gi tr trong khong (0, 1) l 2 C0 (Rn) sao cho

    V2 := W2 +B 22(0) supp2 W2 +B2 U2.C nh th ta xy dng c dy cc hm {j}Nj=1 tho mn(i) j C0 (Rn),(ii) Vj := Wj +B j

    2(0) suppj Wj +Bj Uj,

    (iii)

    Nj=1 j(x) > 0,x Nj=1Vj( K),(iv)

    Nj=1 j(x) < N + 1,x Rn.C K Nj=1Vj nn tn ti mt s > 0 sao cho

    K K +B(0) Nj=1Vj.Theo Mnh 1.3 c mt hm khng m tho mn

    (i) C0 (Rn),(ii) K K +B

    2(0) supp K +B Nj=1Vj,(iii)0 (x) 1,x Rn, (x) = 1,x K +B(0).t

    j(x) :=j(x)

    (x)(N

    k=1 k(x))+ (1 (x))

    (N + 1Nk=1 k(x))c

    (i) 0 j(x) 1,x K, j = 1, 2, . . . ,(ii) j C0 (Rn), suppj Uj, j = 1, 2, . . . ,(iii)

    j=1 j(x) = 1,x K.

    Ch . xy dng cc hm j t j ta c th dng mt trong hai cch sau:

    (i) th nht

    j(x) :=

    {(x)j(x)Nk=1 k(x)

    , nu x supp,0, nu x 6 supp,(ii) th hai

    1(x) = 1(x), 2(x) = (1 1(x))2(x), . . . , N(x) = N(x)N1j=1

    (1 j(x)).

  • 61.2 Khng gian hm c bn D(), khng gian hm suy

    rng D()

    1.2.1 Khng gian hm c bn D()

    nh ngha 1.2. Khng gian D() l khng gian gm cc hm C0 () vi khi nimhi t sau: dy {j}j=1 cc hm trong C0 () c gi l hi t n hm C0 () nu(i) c mt tp compact K m suppj K, j = 1, 2, . . . ,(ii) lim

    jsupx

    |Dj(x)D(x)| = 0, Zn+.

    Khi , ta vit l = D limj

    j.

    Ch . 1.Nu = D limj

    j th supp K.2. Khi nim hi t trn D() l ph hp vi cu trc tuyn tnh trn D(), ngha l, nu

    , C, k, k, , D(), k = 1, 2, . . . , c

    nu D limk

    k = ,D limk

    k = th D limk

    (k + k) = + .

    3. Hn th, ta cn c th chng minh nu C(), v = D limj

    j th =

    D limj

    j. Tht vy, do nu k(x) = 0 th (x)k(x) = 0 nn supp(k) suppk,v theo cng thc Leibnitz c vi mi Zn+

    D(k)(x) =

    (

    )D(x)Dk(x)

    m = D limj

    j ngha l

    (i) c mt tp compact K m suppk K, k = 1, 2, . . . ,(ii) lim

    ksupx

    |Dk(x)D(x)| = 0, Zn+,

    do ,

    (i)supp(Dk) K, k = 1, 2, . . . , Zn+ nn

    supp(k) K, supp(D(k)) K, k = 1, 2, . . . ,

    (ii) supx

    |D(k)(x) D()(x)| C(

    supxK

    |D(x)|)supx

    |Dk(x) D(x)|

    nn

    limk

    supx

    |D(k)(x)D()(x)| = 0, Zn+.

  • 7Vi mi Zn+, php ton o hm D l nh x tuyn tnh lin tc trong D(), ngha l(i) D D(), suppD supp,(ii) nu , C, , D() th D(+ ) = D+ D,(iii) nu D lim

    kk = 0 th D lim

    kDk = 0.

    Nh vy, ton t vi phn tuyn tnh P =||m

    a(x)D, a C() l ton t vi phntuyn tnh lin tc trn D() m suppPu suppu, u D(). Peetre, J. chng minhc rng nu ton t tuyn tnh P trn C0 () tho mn tnh cht suppPu suppu, u C0 () th P l ton t vi phn.4. Dy {j}j=1 c gi l mt dy Cauchy trong D() nu(i) c mt tp compact K Rn m suppj K, j = 1, 2, . . . ,(ii) lim

    jk

    supxK

    |Dj(x)Dk(x)| = 0, Zn+.

    5. Cho k D(), k = 1, 2, . . . , chui hnh thc

    k=1 k c gi l hi t trong D()

    nu dy cc tng ring {kj=1 j}k=1 hi t trong D().Mnh 1.4. Khng gian D() l .

    Chng minh. Ly dy {j}j=1 l mt dy Cauchy trong D() th(i) c mt tp compact K m suppDj K, j = 1, 2, . . . ,,(ii) lim

    jk

    supxK

    |Dj(x)Dk(x)| = 0, Zn+

    nn vi mi dy {Dj}j=1 l dy Cauchy trong khng gian C(K) vi chun sup, mkhng gian C(K) vi chun sup l khng gian , do c mt hm C() sao cho(i) supp K,(ii) lim

    jsupxK

    |Dj(x) (x)| = 0.

    Ta s chng minh = D0. Khi , 0 C0 () v(i) suppD0 K,(ii) lim

    jsupx

    |Dj(x)D0(x)| = limj

    supxK

    |Dj(x)D0(x)| = 0.

    hay 0 = D limj

    j.

    chng minh iu ny ta ch cn chng minh khi = (1, 0, . . . , 0). Cc trng hp

    = (0, . . . , 0,

    j1 , 0, . . . , 0) ta chng minh tng t. Sau , bng qui np ta chng minh

    cho cc trng hp cn li.

    iu ny l hin nhin v D1j hi t u n (1,0,...,0)trong K, v j hi t u n

    0

    trong K.

  • 81.2.2 Khng gian hm suy rng D()

    nh ngha 1.3. Ta ni rng f l mt hm suy rng trong nu f l mt phim hm tuyn

    tnh lin tc trn D().

    Hm suy rng f D() tc ng ln mi D() c vit l f, . Hai hm suyrng f, g D() c gi l bng nhau nu

    f, = g, , D().Tp tt c cc hm suy rng trong lp thnh khng gian D().

    Ch . Trn D() c th xy dng mt cu trc khng gian vect trn C, ngha l ta cth nh ngha cc php ton tuyn tnh nh sau

    (i) php cng: vi f, g D() tng f + g c xc nh nh sauf + g : 7 f + g, = f, + g, , D(),khi , f + g D(), ngha l, f + g l phim hm tuyn tnh lin tc trn D(),(ii) php nhn vi s phc: vi C, f D() tch f c xc nh nh sau

    f : 7 f, = f, , D(),khi , f D(), ngha l, f l phim hm tuyn tnh lin tc trn D().Hn th, ta cn c th nh ngha php nhn vi mt hm trong C().Vi C(), f D() tch f D() c xc nh nh sau

    f : 7 f, = f, , D(),khi , f D().Tht vy, do f D() nn d thy f : D() C l nh x tuyn tnh. chng minh f lin tc ta ly dy {k}k=1 mD lim

    kk = 0 ta chng minh lim

    kf, k =

    limk

    f, k = 0. iu ny l hin nhin v f lin tc v D limk

    k = 0.

    V d 1. Vi mi f L1loc() c coi l mt hm suy rng bng cch sau

    f : 7 f, =

    f(x)(x)dx, D().

    Nh vy, c th coi L1loc() l tp con ca D(). Hm suy rng f L1loc() c gi lhm suy rng chnh quy.

    Vi f, g L1loc(), th s bng nhau theo ngha hm suy rng v theo ngha thng thngl nh nhau, ngha l

    f, g L1loc(),

    f(x)(x)dx =

    g(x)(x)dx, D() th f = g, h.k.n trong .

    V d 2. Hm Dirac:

    : 7 , = (0), D().

  • 91.2.3 o hm suy rng

    Trong trng hp mt bin, p dng cng thc tch phn tng phn cho f C1(R), C0 (R) c +

    f (x)(x)dx = f(x)(x)|+

    +

    f(x)(x)dx = (1) +

    f(x)(x)dx.

    Nh vy, ta c th nh ngha o hm ca mt hm nh mt hm suy rng. Ngoi ra, bng

    cch nh ngha nh vy ta c th nh ngha o hm cho hm f L1loc(R).

    nh ngha 1.4. Cho f D(), = (1, . . . , n) Zn+. o hm suy rng cp cahm suy rng f trong , k hiu l Df, l nh x t D() vo C c xc nh bi

    Df : 7 (1)||f,D, D().

    Ch . Vi mi Zn+, f D(), o hm suy rng cp ca hm suy rng f trong l mt hm suy rng, ni cch khc, o hm suy rng Df l phim hm tuyn tnh lin

    tc t D() vo C, v

    vi mi , C, , D() c

    Df, + = (1)||f,D(+ ) = (1)||(f,D+ f,D)= Df, + Df,

    vi k D(), k = 1, 2, . . . ,D limk

    k = 0 th D limk

    Dk = 0, Zn+ nn

    limk

    Df, k = limk

    f,Dk = 0.

    Vi mi , Zn+, f D(Rn) c o hm suy rng cp , , + l Df,Df,D+fv

    D+f = D(Df) = D(Df).

    Do , D = D11 D22 . . . D

    nn , vi D

    jj = D

    (0,...,0,

    j1 ,0,...,0) . . . D(0,...,0,

    j1 ,0,...,0)

    j ln

    , v th t

    c th thay i.

    V d 3. Nu f L1loc() c o hm cp theo ngha thng thng Df L1loc() tho hm theo ngha suy rng ca hm suy rng f cng l Df.

    V d 4. Hm Heaviside

    (t) :=

    {1, nu t > 0,

    0, nu t 0.c o hm suy rng D(t) = (t).

  • 10

    V d 5. Cho f D(), C() c

    D(f) =

    (

    )DDf, trong

    (

    )=

    nj=1

    (jj

    ),

    (jj

    )=

    j!

    j!(j j)! .

    V d 6. t E(x) = (2pi)1 ln ||x||, nu x R2\{0}, cn vi n 3 t

    E(x) = 1(n 2)cn ||x||

    2n, x Rn\{0},

    vi cn l din tch mt cu n v trong trong gian Rn.Khi , E = trong D(Rn), = D21 + . . . D2n.Tht vy, trc ht ta chng minh E L1loc(Rn). D dng thy E kh vi v hn ti miim x 6= 0, v vi x 6= 0 c

    DjE(x) =1

    cnxj||x||n, D2jE(x) =

    1

    cn(||x||2 nx2j)||x||n ch c2 = 2pi

    E(x) = D21E(x) + . . . D2nE(x) = 0.

    Nh vy chng minh E L1loc(Rn) ta ch cn chng minh E kh tch trong hnh cu nv B1(0). Bng cch chuyn sang h to cu ta c

    B1(0)

    E(x)dx =

    { 2pi0

    10

    1c2ln(r)rdrd nu n = 2,

    ||x||=1 10 1(n2)cn r2nrn1drdS nu n 3,hay

    B1(0)

    E(x)dx =

    { 10ln(r)rdr = r

    2 ln r2

    10 1

    0r2dr = 1

    4nu n = 2,

    10

    1(n2)rdr =

    12(n2) nu n 3.Vi C0 (Rn) c mt s R > 0 supp BR(0), khi , theo cng thc Gausscho hnh { ||x|| R} vi hai bin { = ||x||}, {||x|| = R}

    DjE, = E,Dj = lim0+

    ||x||R

    E(x)Dj(x)dx

    = lim0+

    ||x||R

    1

    cnxj||x||n(x)dx+ lim

    0+

    =||x||

    E(x)(x)xj||x||dS

    lim0+

    ||x||=R

    E(x)(x)xj||x||dS

    m (x) = 0, ||x|| R, v trn bin { = ||x||} th |E(x)(x) xj||x|| | l v cng b O(ln(1 ))nu n = 2 v O(2n) nu n 3 nn

    =||x||E(x)(x)xj||x||dS l v cng b O( ln(

    1)) nu

    n = 2 v O() nu n 3 khi 0+ nn

    DjE, = lim0+

    ||x||R

    1

    cnxj||x||n(x)dx.

  • 11

    nn o hm suy rng DjE c th vit di dng mt hm kh tch a phng

    DjE(x) =1

    cnxj||x||n.

    Li c

    D2jE, = DjE,Dj = lim0+

    ||x||R

    DjE(x)Dj(x)dx

    = lim0+

    ||x||R

    1

    cn(||x||2 nx2j)||x||n(x)dx

    lim0+

    ||x||=R

    DjE(x)(x)xj||x||dS

    + lim0+

    ||x||=

    (x)x2j

    cn||x||n+1dS

    m (x) = 0, ||x|| R nn

    E, = lim0+

    1

    cnn1

    ||x||=

    (x)dS = (0) = , ,

    hay E = .

    V d 7. Trong Rn+1, k hiu (x, t) Rn R v

    E(x, t) = (4pit)n2 e

    ||x||24t , t > 0, , E(x, t) = 0, t 0.

    Khi , E C(Rn+1\{0}) L1loc(Rn+1), v

    (Dt x)u = .

    V d 8. Trong R2, k hiu (x, t) R R v

    E1(x, t) =1

    2(t |x|).

    Khi , (D2t D2x)E1(x, t) = .Trong R3, k hiu (x, t) R2 R v

    E2(x, t) =(t ||x||)

    2pit2 ||x||2 , t 6= ||x|| , E(x, t) = 0, t = ||x||.

    Khi , (D2t x)E2(x, t) = .Trong R4, k hiu (x, t) R3 R v

    E3(x, t) =1

    2pi(t)(t2 ||x||2).

    Khi , (D2t x)E3(x, t) = .

  • 12

    Trong trng hp = R, vi f, F D(R), ta ni F l nguyn hm suy rng ca hmsuy rng f nu o hm suy rng ca F l f, ngha l DF = f.

    Mnh 1.5. Mi hm suy rng f D(R) u c nguyn hm suy rng.Chng minh. Vi mi C0 (R) t

    (x) = (x) (x) +

    (t)dt

    (x) =

    x

    (t)dt.

    C (x) C0 (R) nn vi mi hm suy rng f D(R),ta c th tF, = f,.Khi , F D(R) v

    DF, = F, = f, (x) x

    (y)

    +

    (t)dtdy = f, .

    Nu hm suy rng F c o hm suy rng DF = 0 th

    F, = F, +( +

    (t)dt

    )F,

    = DF,+( +

    (t)dt

    )F,

    =( +

    (t)dt

    )F, .

    Do , nu hm suy rng F c nguyn hm suy rng DF = 0 th F tng ng vi hm

    hng F F, trong lp hm kh tch a phng L1loc(R).Khi , vi mi hm suy rng f D(R), lun c mt h cc nguyn hm suy rng mhai nguyn hm trong h sai khc nhau mt hm suy rng c th biu din di dng hm

    kh tch a phng hng.

    1.2.4 Cp ca hm suy rng

    nh ngha 1.5. Cho K , f D(). Ta ni hm suy rng f c cp hu hn trn Knu c mt s nguyn khng m k v mt s dng C sao cho

    |f, | C||k

    supxK

    |D(x)|, C0 (), supp K. (1.1)

    S nguyn khng m k nh nht trong cc s nguyn khng m m ta c bt ng thc (1.1)

    c gi l cp ca hm suy rng f trn tp K.

    Nu khng c mt s nguyn khng m k no c (1.1) vi s dng C no , th ta ni

    rng, hm suy rng f c cp v hn trn tp K.

    n gin, ta ni rng, hm suy rng f D() c cp k nu n c cp k trn .

  • 13

    V d 9. Mi hm suy rng f L1() u c cp 0.V d 10. Trn Rn, hm Dirac (x) D(Rn) c cp 0. Vi Zn+, o hm suy rng cp ca hm Dirac D c cp ||. Tht vy, chn C0 (Rn) sao cho (0) = 1, supp B1(0). t (x) = x

    (x) c

    D, = (1)||,D = (1)||D(x(x))(0) = (1)||!.

    Li c do nu ||x|| th (x) = 0 nn

    supxRn

    |D(x)| C|| 0 khi 0, < ,

    do vi s nguyn khng m k < ||, vi bt k s c > 0 ta u tm c s > 0

    |D, | = ! > c||k

    supxRn

    |D(x)|,

    cn vi k = || th

    |D, | = |D(0)| C||k

    supxRn

    |D(x)|, C0 (Rn).

    V d 11. Trn R, hm suy rng c xc nh nh sau

    f, =+j=0

    (j)(j)

    c cp v hn.

    Tht vy, chn C0 (R) m (x) = 1, x [12 , 12 ], supp (1, 1). t j(x) =(x j)j(xj

    j), j chn sau. C D

    kj(k) = 0, k 6= j, v Djj(j) = j! nn f, j = j!.Nhng, do nu |x j| j th j(x) = 0 nn

    supxR

    |Dkj(x)| cjkj , k < j,

    ta chn j > 0 sao cho

    |f, j| = j! > jj1k=1

    supxR

    |Dkj(x)|.

    Do , vi mi k > 0, c > 0 chn j = max{k + 1, c+ 1} c

    |f, j| = j! > jj1l=1

    supxR

    |Dlj(x)| > ckl=1

    supxR

    |Dkj(x)|

    hay cp ca f l v hn.

  • 14

    nh l 1.6. Mi phim hm tuyn tnh f trn D() l mt hm suy rng khi v ch khi,

    trn mi tp compact K , c mt s nguyn khng m k v mt s dng C sao cho

    |f, | C||k

    supx

    |D(x)| = CCk(), C0 (), supp K.

    Chng minh. chng minh iu kin ta ch cn chng minh tnh lin tc ca f ti gc,

    ngha l nu c mt dy {j}j=1 trong C0 () m D limj

    j = 0 th limj

    f, j = 0.iu ny l d thy t gi thit.

    chng minh iu kin cn ta dng phn chng, ngha l gi s c mt tp compact

    K vi mi k Z+ ta u c

    supC0 ()

    suppK, 6=0

    |f, |Ck()

    = +

    do , tn ti k C0 (), supp K, kCk() > 0 sao cho |f, k| > kkCk().Chn k(x) =

    1

    k12 kCk()

    k(x) c

    k C0 (), suppk K, D lim

    kk = 0, |f, k| k 12 ,

    nn f 6 D(), tri vi gi thit.Nh vy, iu gi s sai hay ta c iu phi chng minh.

    1.2.5 S hi t trong khng gian hm suy rng D()

    nh ngha 1.6. Cho fk, f D(), k = 1, 2, . . . . Ta ni rng, dy {fk}k=1 hi t n ftrong D() khi k tin ra v cng nu

    limk

    fk, = f, , D().

    Khi , ta vit D limk

    fk = f.

    V d 12. D limk

    1k= .

    Tht vy, vi mi C0 (Rn) c

    | 1k, (0)|

    Rn 1k(y)|(y) (0)|dy =

    B 1k(0)

    1k(y)|(y) (0)|dy

    supyB 1

    k(0)

    |(y) (0)|

    nn limk

    | 1k, (0)| = 0 hay ta c iu phi chng minh.

  • 15

    V d 13. S hi t trong D() trng vi s hi t yu v trong L1loc(), ngha l nufk, f L1loc(),D lim

    kfk = f, th

    limk

    fk(x)(x)dx =

    f(x)(x)dx, C0 ().

    Ch . 1. Khi nim hi t c nh ngha trn l ph hp vi cu trc tuyn tnh trn

    D(), ngha l vi , C, fk, gk, f, g D(), k = 1, 2, . . . v

    D limk

    fk = f,D limk

    gk = g

    th

    D limk

    (fk + gk) = f + g.

    2. Cho a(.) C() php ton nhn vi a(.) bin f D() thnh af D() l nh xtuyn tnh lin tc, ngha l

    (i) a(f + g) = af + ag,, C, f, g D(),

    (ii) Nu fk, f D(), k = 1, 2, . . . v D limk

    fk = f th D limk

    afk = af.

    3. Vi mi Zn+, php ton o hm suy rng D cng l nh x tuyn tnh lin tctrong D(), ngha l

    (i) D(f + g) = Df + Dg,, C, f, g D(),

    (ii) Nu fk, f D(), k = 1, 2, . . . v D limk

    fk = f th D limk

    Dfk = Df.

    4. Cho fk D(), k = 1, 2, . . . , chui hnh thc

    k=1 fk c gi l hi t trong D()nu dy tng ring {kj=1 fj}k=1 hi t trong D(). Khi , chuik=1Dfk cng hit trong D() v

    D( k=1

    fk

    )=

    k=1

    Dfk.

    5. Dy {fk}k=1 c gi l dy Cauchy trongD() nu vi mi D() dy {fk, }k=1l dy Cauchy trong C.

    nh l 1.7. D() l khng gian .

    chng minh nh l ta cn n B sau.

    B 1.8. Cho dy {k}k=1 trong D() m D limk

    k = 0, v {fk}k=1 l dy Cauchytrong D(). Khi , lim

    kfk, k = 0.

  • 16

    Chng minh. Ta chng minh bng phn chng, gi s fk, k 6 0 khi k , ngha lc mt s c > 0 v mt dy con, n gin k hiu, ta c th gi s

    |fk, k| > c, k = 1, 2, . . . .

    Bng cch ly ra mt dy con ca dy con trn, n gin k hiu, ta c th c

    |Dk(x)| 14k,x , || k, k = 1, 2, . . . .

    t k = 2kk c

    (i) k C0 (), suppk suppk,

    (ii) D limk

    k = 0, limk

    fk, k = +.

    Ta i xy dng dy {f k, k}k=1 bng cch quy np nh sau.Do lim

    lfl, l = + nn c mt s t nhin l1 sao cho |fl1 , l1| > 1.t f 1 = fl1 ,

    1 = l1 .

    Do D liml

    l = 0 nn c mt s t nhin k1 > l1 sao cho |f 1, l| < 1,l k1. M dy{fl, 1}l=1 l dy Cauchy nn b chn, cn lim

    lfl, l = + nn c mt s t nhin

    l2 > k1 sao cho |fl, l| > |fl, 1|+ 1,l l2.t f 2 = fl2 ,

    2 = l2 . C

    (i)|f 1, 2| < 12 ,

    (ii)|f 2, 2| > |f 2, 1|+ 1.

    Gi s ta c f 1, . . . , fk1,

    1, . . . , k1(k > 2, f

    j = flj , l1 < l2 < < lk1) m

    (i)|f j, k1| < 12k1j , j = 1, . . . , k 2,

    (ii)|f k1, k1| >k2

    j=1 |f k1, j|+ k 1.

    Do D liml

    l = 0 nn c mt s t nhin k2 > lk1 sao cho

    |f j, l| k2 sao cho

    |fl, l| >k2j=1

    |fl, j|+ k,l lk.

    t f k = flk , k = lk . C

  • 17

    (i)|f j, k| < 12kj , j = 1, . . . , k 1,

    (ii)|f k, k| >k1

    j=1 |f k, j|+ k.

    C dy {k}k=1 = {lk}k=1 l dy con ca dy {k}k=1 m k = 2kk nn

    (i) c mt tp compact K sao cho suppk K, k = 1, 2, . . . ,

    (ii)vi mi Zn+,m2,m1 Z+,m2 > m1 > || cm2

    k=m1

    supx

    |Dk(x)| =m2

    k=m1

    supx

    |Dlk(x)| 0 v mt dy con, n gink hiu ta c th gi s |f, k| = lim

    l|fl, k| > c, k = 1, 2, . . . . Do , vi mi k cmt s lk sao cho |flk , k| > c.t f k = flk c

    (i) {f k}k=1 l dy Cauchy trong D(),

  • 18

    (ii) D limk

    k = 0,

    (iii) |f k, k| > c, k = 1, 2, . . . ,m theo B 1.8 c lim

    k|f k, k| = 0 nn xy ra iu mu thun. Do iu gi s saihay f lin tc.

    1.2.6 a phng ho

    Cho 1,2 l cc tp m trong Rn v 1 2. Vi mi hm C0 (1) c th coil hm trn 2 bng cch sau

    2(x) =

    {(x) , nu x 1,

    0 , nu x 2\1,th C0 (2).Khi , vi mi f D(2) ta coi l mt hm suy rng trn 1 bng cch sau

    f |1 , = f, 2, D(1).Nu f, g D(2), f 6= g th cha chc f |1 6= g|1 hay nu f |1 = g|1 th cha chcf = g. Nu C0 (2), supp 1 th c th coi C0 (1) v f, = f |1 , .nh ngha 1.7. Cho l tp m trong Rn, im x , cc hm suy rng f, g D().Ta ni rng f = g ti x nu c mt ln cn m ca x

    f | = g|.Ch . 1. Cho f, g D(). Khi , f 6= g ti mt im x nu vi mi ln cn m ca x u c mt hm D(), supp sao cho

    f, 6= g, hay c mt dy hnh cu Brk(x) m rk 0 khi k v mt dy hm k C0 ()m suppk Brk(x) sao cho

    f, k 6= g, k.2. Cho f, g D(). Nu f = g trong D() th f = g ti mi im x .nh l sau cho ta thy iu ngc li cng ng.

    nh l 1.9. Cho f, g D(). Nu vi mi x u c f = g ti x th f = g trongD().

    Chng minh. Vi mi D() c K = supp l tp compact trong . T gi thit, vimi x K c mt ln cn m x ca x m f |x = g|x .C K xKx m K compact nn c mt s hu hn im x1, . . . , xm K m K mj=1xj . Theo nh l 1.1 (nh l phn hoch n v) c mt h hu hn cc hm {j}mj=1trong D() sao cho

  • 19

    (i) 0 j(x) 1,x K, j = 1, 2, . . . ,(ii) suppj xj , j = 1, 2, . . . ,(iii)

    mj=1 j(x) = 1,x K.

    Khi , c

    f, = f, (mj=1

    j)

    =mj=1

    f |j , j( v j D(xj))

    =mj=1

    g|j , j

    = g, ,

    nn ta c f = g trong D().

  • 20

    1.3 Khng gian hm c bn E(), khng gian hm suy rng

    vi gi compact E()

    1.3.1 Khng gian hm c bn E()

    nh ngha 1.8. Khng gian E() l khng gian gm cc hm C() vi khi nimhi t sau:

    dy {k}k=1 trong C() c gi l hi t n hm C() trong E() nulimk

    supxK

    |Dk(x)D(x)| = 0, Zn+, K .

    Khi , ta vit E limk

    k = .

    Ch . 1. Ta c th tch thnh = k=1k vi km k

    compact k+1 (chng hnk = {x | ||x|| < k & d(x, ) > 1k}). Do , mt dy {k}k=1 trong C() cgi l hi t n hm C() trong E() nu mt trong cc trng hp sau xy ra

    limk

    supxj

    |Dj(x)D(x)| = 0, Zn+, j = 1, 2, . . . ,

    limk

    k Cj(j) = 0, j = 1, 2, . . . ,

    trong k Cj(j) =||j

    supxj

    |Dk(x)D(x)|.Khi , mt dy {k}k=1 trong C() c gi l dy Cauchy trong E() nu mt trongcc trng hp sau xy ra

    limkl

    supxj

    |Dk(x)Dl(x)| = 0, Zn+, j = 1, 2, . . . ,

    limkl

    k lCj(j) = 0, j = 1, 2, . . . .

    2. Khi nim hi t trong E() l ph hp vi cu trc tuyn tnh ca n, ngha l vi

    , C, k, , k, E(), k = 1, 2, . . . ,nu E lim

    kk = ,E lim

    kk = th lim

    k(k + k) = + .

    3. Nu a(.) C() th php nhn vi a(.) bin E() thnh a E() l nh xtuyn tnh lin tc.

    Vi mi Zn+, php ton o hm D l nh x tuyn tnh lin tc trong E().4. Tp C0 () l tr mt trong E(). Tht vy, do k l tp compact trong nn theoMnh 1.3 c mt hm k C0 () m k(x) = 1, x k. Khi , vi mi E()c (k) C0 () v E lim

    kk = .

    5. Nu k, C0 (), k = 1, 2, . . . , v D limk

    k = th E limk

    k = . Do , ta c

    php nhng lin tc D() E().

  • 21

    V d 14. Trn R, t hm

    (x) =

    {e

    1|x|21nu |x| < 1,

    0 nu |x| 1,

    v (k)(x) = (x k), th , (k) C0 (R) v

    E limk

    (k) = 0, limk

    supx[k,k]

    |(k)(x)| = e 43 > 0,

    khng c gii hn D limk

    (k).

    V d 15. Trn R, vi k N, do [ 13k, 23k] l tp compact nn theo Mnh 1.3 c mt hm

    k C0 (R) m k(x) = 1, x [ 13k , 23k ], suppk [0, 1k ]. t k(x) = (x 12k )kk(x) c

    |Djk(x)| = |jl=0

    (j

    l

    )k!

    (k l)!(x1

    2k)klDklk(x)|

    jl=0

    (j

    l

    )k!

    (k l)!(1

    2k)kl|Dklk(x)|,

    m limk

    (jl

    )k!

    (kl)!(12k)kl = 0, j, l = 1, 2, . . . , nn E lim

    kk = 0,

    li c

    |Dkk(x)| = |kl=0

    (k

    l

    )k!

    (k l)!(x1

    2k)klDklk(x)|,

    nn khi x = 12kc |Dkk( 12k )| = |k( 12k )| = 1.

    Mnh 1.10. Khng gian E() l .

    Chng minh. Ly {k}k=1 l dy Cauchy trong E(). C

    limkl

    supxj

    |Dk(x)Dl(x)| = 0, Zn+, j = 1, 2, . . . .

    Do , trn tng j dy {k}k=1 hi t u n mt hm (j).Khi , vi mi x c mt s t nhin j sao cho x j, ta t (x) = (j)(x).D dng chng minh C() v

    limk

    supxj

    |Dk(x)D(x)| = 0, Zn+, j = 1, 2, . . . ,

    hay E limk

    k = .

  • 22

    1.3.2 Khng gian hm suy rng E()

    nh ngha 1.9 (Gi ca hm suy rng). Cho f D(). Gi ca hm suy rng f cxc nh nh sau

    supp f = {x f 6= 0 ti x}.Hm suy rng f c gi l c gi compact nu gi supp f l tp compact. Tp hp tt c

    cc hm suy rng c gi compact c k hiu l E().

    Ch . 1. S 0 trong nh ngha l hm suy rng khng c xc nh nh sau:

    0, = 0, D().

    2. Hm suy rng f 6= 0 ti x ngha l vi mi ln cn m ca x u c mt hm C0 () m f, 6= 0. Do , ta cn c th nh ngha gi ca hm suy rng nh sau.t W l hp tt c cc tp m trong sao cho f, = 0, C0 (). Khi , gica hm suy rng f s l supp f = \W. R rng, supp f l tp ng trong .3. Cho f E(), C0 () v supp f supp = th f, = 0.4. Cho f D(), C() th supp(f) supp supp f. Nu f, g E() thsupp(f + g) (supp f supp g) v Df E(), suppDf supp f, Zn+.5. Khng gian E() l khng gian ng i vi cc php ton tuyn tnh, php nhn vimt hm C(), php ly o hm suy rng.6. Vi mt hm f : C o c th khi nim gi theo ngha thng thng l khngc ngha. thy c iu ny ta xt v d sau, vi = (0, 1) cn hm f : (0, 1) Cc xc nh nh sau

    f(x) :=

    {1, nu x hu t,

    0, nu x v t,

    c f = 0 h.k.n trn (0, 1) v supp f = (0, 1) 6= = supp 0.Vi mt hm lin tc f C() th gi thng thng v gi ca hm suy rng tng ngvi f l bng nhau.

    V d 16. supp = {0}.V d 17. supp = [0,+).V d 18. Tng

    cD

    , trong ch c mt s hu hn m c 6= 0 c gi {0}. Mthm suy rng f E(), 0 m c supp f = {0} th f c dng nh trn.Tht vy, do f E() nn f c gi compact nn theo nh l 1.6 f c cp hu hn, nghal c mt s t nhin m, mt s c > 0 sao cho

    |f, | c||m

    supx

    |D(x)|, C0 ().

    Vi mi C0 () c gi supp = K l tp compact trong nn theo Mnh 1.3 cmt hm h C0 () m h(x) = 1,x K. Khi , c

  • 23

    (x) = h(x)( ||m

    11!...n!

    D(0)x) C0 (),

    = C0 (), |D(x)| = O(||x||m+1||) khi ||x|| nh, (|| m),nn f, = f, + f, =

    ||mcD

    (0) + f, , c = 11!...n!f, h(x)x.t (x) =

    B2(0)

    (x y)dy c vi > 0 nh C0 (), supp {0} = , (x) = 1 khi ||x|| , nn f, = f, .Li c

    |f, | c||m

    supx

    |D((x))|,

    D()(x) =||||

    (

    )D(x)D(x),

    |D(x)| =B2(0)

    (x y)dy = ()||B2(0)

    D(x y)dy c||,

    nn vi mi > 0 nh |f, | c

    |||||O(m+1||)|

    || do , khi 0 th |f, | =|f, | 0 hay |f, | = 0.Nh vy

    f, =||m

    cD(0) =

    ||m

    cD, .

    nh l 1.11 (nh ngha khc ca khng gian hm suy rng c gi compact). (i) Cho

    hm suy rng vi gi compact f E(). Khi , ta c th thc trin f ln thnhphim hm tuyn tnh lin tc trn E().

    (ii) Gi s f l mt phim hm tuyn tnh b chn trn E(). Khi , ta c th thu hp f

    thnh hm suy rng c gi compact.

    (iii) Cc tng ng trn cho ta mt song nh gia khng gian hm suy rng vi gi compact

    E() v khng gian cc phim hm tuyn tnh lin tc trn E().

    Nhn xt. T nh l 1.11, mi hm suy rng c gi compact c th c xem nh mt

    phim hm tuyn tnh lin tc trn E(), khng gian cc hm suy rng c gi compact

    E() c th coi l khng gian cc phim hm tuyn tnh lin tc trn E().T nh l 1.6 mi hm suy rng c gi compact f E() u c cp hu hn trn .Hn na, c mt tp compact K , mt s nguyn khng m m v mt s dng C saocho

    |f, | C||m

    supxK

    |D(x)|, C(), (1.2)

    Mt phim hm tuyn tnh f : E() C tho mn bt ng thc (1.2) c f : E() Cl lin tc.

  • 24

    Chng minh. (i) Gi s f E() c supp f = K l tp compact trong . Theo Mnh 1.3, c mt hm C0 () m (x) = 1 vi x nm trong ln cn no ca K.t f l phim hm t E() vo C c xc nh nh sau

    f , = f, , E().

    D thy

    (a) f khng ph thuc vo vic chn hm , ngha l nu c 1, 2 C0 () m

    1(x) = 1 khi x nm trong ln cn K1 ca K, 2(x) = 1 khi x nm trong ln cn K2 ca K,

    th supp(1 2) K = nn f, 1 = f, 2, E(),

    (b) f E(), ngha l

    nu , C, , E() th f , + = f , + f , , nu E lim

    kk = 0 th lim

    kf , k = 0,

    (c) fD()

    = f, ngha l vi mi D() c K1 = (K supp) nn theo Mnh 1.3 c mt hm C0 () m (x) = 1 vi x nm trong ln cn no ca K1,do (x)(x) = (x), x nn f , = f, = f, .

    Gi s f, g E() m f = g th f = f D()

    = gD()

    = g, hay nh x f 7 f l n nht E() vo khng gian cc phim hm tuyn tnh lin tc trn E().(ii) Ly g l phim hm tuyn tnh lin tc trn E(), t f = g|D(). Do php D() E() l lin tc nn f D(). Ta ch cn phi chng minh supp f l tp compact.Ta chng minh bng phn chng, ngha l gi s supp f khng compact, m c th vit

    thnh = k=1k vi km k

    compact k+1 nn supp f 6 k, k = 1, 2, . . . , hay vimi k c xk \k m f 6= 0 ti xk. Khi , vi mi k c mt ln cn m k (\k),mt hm k C0 (k) sao cho f, k = 1.Vi mi tp compact K u c mt s t nhin k0 sao cho K k,k k0. Msupp k (\k) nn k(x) = 0, x K, k k0. Do , E lim

    kk = 0.

    Nh vy, c

    (a)E limk

    k = 0,

    (b)g, k = f, k = 1,

    nn g khng lin tc trn E().

    iu ny tri vi gi thit hay iu gi s sai ngha l supp f compact.

    (iii) Di y, ta s chng minh nh x f 7 f l ton nh t E() vo khng gian ccphim hm tuyn tnh lin tc trn E(), c th l ta chng minh nh x g 7 g|D() l nh

  • 25

    x ngc ca n.

    Ly g l phim hm tuyn tnh lin tc trn E(), t f = g|D(). Theo (i), (ii) c f E(), f l phim hm tuyn tnh lin tc trn E() v f |D() = g|D().Do C0 () l tp tr mt trong E() v f , g l cc phim hm tuyn tnh lin tc trn E()nn f = g, ngha l vi mi g l phim hm tuyn tnh lin tc trn E() u c mt hm

    f = g|D() E() sao cho f = g.Nh vy, ta c mt song nh t khng gian hm suy rng vi gi compact E() n khnggian cc phim hm tuyn tnh lin tc trn E().

    1.3.3 S hi t trong khng gian hm suy rng E()

    nh ngha 1.10. Cho fk, f E(), k = 1, 2, . . . . Ta ni rng dy {fk}k=1 hi t n ftrong E() nu

    (i) c mt tp compact K m supp fk K, k = 1, 2, . . . ,

    (ii)dy {fk}k=1 hi t n f trong D() ngha l D limk

    fk = f.

    Khi , ta vit E limk

    fk = f.

    V d 19. E limk

    1k= .

    V d 20. Cho dy {k}k=1 trong C0 () m suppk+1 suppk,k=1 suppk = {0}v

    |k(x)|dx C,

    k(x)dx = 1 th E

    limk

    k = .

    Ch . 1. Khi nim hi t trn E() l ph hp vi cu trc tuyn tnh. Cc php tonnhn vi mt hm trong C() v o hm suy rng D, vi mi Zn+, l nh x tuyntnh lin tc trong E().2. Dy {fk}k=1 trong E() c gi l dy Cauchy trong E() nu

    (i) c mt tp compact K m supp fk K, k = 1, 2, . . . ,

    (ii)dy {fk}k=1 l dy Cauchy trong D().

    3. Nu E limk

    fk = f th D limk

    fk = f. Do , php nhng E() D() l lin tc.Ngoi ra, lim

    kfk, = f, , E().

    nh l 1.12. Khng gian E() l .

    Chng minh. Ly {fk}k=1 l dy Cauchy trong E(). Khi , c

    (i) c mt tp compact K m supp fk K, k = 1, 2, . . . ,

    (ii)dy {fk}k=1 l dy Cauchy trong D().

  • 26

    M D() l khng gian nn tn ti f D() D limk

    fk = f. Ta ch cn phi

    chng minh supp f l tp compact trong .

    Gi s, supp f 6 K, ngha l c mt im x \K m f 6= 0 ti x hay c mt ln cnm x (\K), mt hm C0 (x) m f, = 1.Li c, do x K = hay supp supp fk = nn fk, = 0.Nn lim

    kfk, = 0 6= 1 = f, , hay D lim

    kfk 6= f.iu ny dn n iu mu thun, hay supp f K.

    nh l 1.13 (nh ngha khc v khi nim hi t trn E()). Cho fk E(), k =1, 2, . . . . Khi , {fk}k=1 l dy Cauchy trong E() khi v ch khi {fk, }k=1 l dyCauchy trong C, vi mi E().

    chng minh nh l 1.13 ta cn n B sau.

    B 1.14. Cho fk : E() C, k = 1, 2, . . . , l cc phim hm tuyn tnh lin tc saocho dy {fk, }k=1 l dy Cauchy trong C, vi mi E(); dy {k}k=1 trong E()m E lim

    kk = 0. Khi , lim

    kfk, k = 0.

    Chng minh. Ta chng minh bng phn chng. Gi s, fk, k 6= 0 khi k ngha l cmt s c > 0 v mt dy con, n gin k hiu ta c th gi s |fk, k| > c, k = 1, 2, . . . .Do E lim

    kk = 0 nn c mt dy con, n gin k hiu ta c th gi s

    supxl

    |Dk(x)| < 14k,max{||, l} k, k = 1, 2, . . . .

    t k = 2kk c E lim

    kk = 0 v lim

    k|fk, k| = +. Ta i xy dng dy {f k, k}k=1bng cch quy np nh sau.

    Do liml

    fl, l = + nn c mt s t nhin l1 sao cho |fl1 , l1| > 1.t f 1 = fl1 ,

    1 = l1 .

    Do E liml

    l = 0 nn c mt s t nhin k1 > l1 sao cho |f 1, l| < 1,l k1. M dy{fl, 1}l=1 l dy Cauchy nn b chn, cn lim

    lfl, l = + nn c mt s t nhin

    l2 > k1 sao cho |fl, l| > |fl, 1|+ 1,l l2.t f 2 = fl2 ,

    2 = l2 . C

    (i)|f 1, 2 < 12 ,

    (ii)|f 2, 2| > |f 2, 1|+ 1.

    Gi s ta c f 1, . . . , fk1,

    1, . . . , k1(k > 2, f

    j = flj , l1 < l2 < < lk1) m

    (i)|f j, k1| < 12k1j , j = 1, . . . , k 2,

    (ii)|f k1, k1| >k2

    j=1 |f k1, j|+ k 1.

  • 27

    Do E liml

    l = 0 nn c mt s t nhin k2 > lk1 sao cho

    |f j, l| k2 sao cho

    |fl, l| >k2j=1

    |fl, j|+ k,l lk.

    t f k = flk , k = lk . C

    (i)|f j, k| < 12kj , j = 1, . . . , k 1,(ii)|f k, k| >

    k1j=1 |f k, j|+ k.

    C dy {k}k=1 = {lk}k=1 l dy con ca dy {k}k=1 m k = 2kk nn vi mi Zn+, l,m1,m2 Z+,m2 > m1 > max{||, l} c

    m2k=m1

    supxl

    |Dk(x)| =m2

    k=m1

    supxl

    |Dlk(x)|

    l1 v x2 6 2 sao cho fl2 6= 0 tix2 ngha l c mt ln cn m b chn 2 2 = ca x2 v mt hm 2 C0 () mfl2 , 2 = 1. t g2 = fl2 .C th, ta s xy dng c dy {gk, k}k=1 c tnh cht sau

    dy {gk}k=1 l dy con ca dy {fk}k=1 nn dy {gk, k}k=1 l dy Cauchy trongC vi mi E(),

    vi mi k c k(x) = 0, x k nn E limk

    k = 0,

    nn theo B 1.14 c limk

    fk, k = 0. Nhng fk, k = 1 nn ta c iu mu thun.Do iu gi s sai hay K l tp compact.

  • 29

    1.4 Khng gian cc hm gim nhanh S(Rn) v khng giancc hm tng chm S(Rn)

    1.4.1 Khng gian cc hm gim nhanh (Schwartz) S(Rn)

    nh ngha 1.11. Khng gian S(Rn) l tp hp

    S(Rn) = { C(Rn)|xD(x)| < c,,x Rn,, Zn+}vi khi nim hi t c nh ngha nh sau

    dy {k}k=1 trong S(Rn) c gi l hi t n S(Rn) trong S(Rn) nulimk

    supxRn

    |xDk(x) xD(x)| = 0,, Zn+.

    Khi , ta vit S limk

    k = .

    Ch . 1. Hm C(Rn) l hm gim nhanh, ngha l vi mi , Z+ c|xD(x)| C,,x Rn khi v ch khi(a) vi mi m Z+, Zn+ c (1 + x2)m|D(x)| Cm,,x Rn

    (b) hay vi mi m Z+ c (1 + x2)m

    ||m |D(x)| Cm,x Rn.Vi k, S(Rn), k = 1, 2, . . . , c S lim

    kk = khi v ch khi vi mi s t nhin m

    c

    limk

    supxRn

    (1 + x2)m|Dk(x)D(x)| = 0, Zn+,hay

    limk

    supxRn

    (1 + x2)m||m

    |Dk(x)D(x)| = 0.

    Mt dy {k}k=1 trong S(Rn) c gi l dy Cauchy trong S(Rn) nu mt trong cctrng hp sau xy ra

    limkl

    supxRn

    (1 + x2)m|Dk(x)Dl(x)| = 0, Zn+,

    limkl

    supxRn

    (1 + x2)m ||m

    |Dk(x)Dl(x)| = 0.

    Ch rng, nu dy {k}k=1 trong S(Rn)m limm

    supxRn

    (1+x2)m||m |Dm(x)| = 0th S lim

    kk = 0, nhng iu ngc li khng ng.

    Chng hn, trn R hm ex2 S(R) v

    ex2

    = 1 + 0 + (x2) + 0 + 12!(x2)2 + ...

    = 1 +D1(ex

    2)(0)

    1!x+

    D2(ex2)(0)

    2!x2 +

    D3(ex2)(0)

    3!x3 +

    D4(ex2)(0)

    4!x4 + ...

  • 30

    nn supxR

    (1 + |x|2)2m 12m|D2m(ex2)| (2m1)!

    m!v S lim

    m1mex

    2= 0.

    2. Khi nim hi t trong S(Rn) l ph hp vi cu trc tuyn tnh trn ngha l vi mi, C, k, k, , S(Rn), k = 1, 2, . . .

    nu S limk

    k = , S limk

    k = th S limk

    (k + k) = + .

    3. Nu a(.) C(Rn) sao cho vi mi Zn+ c mt s thc m = m(), v mt sdng c = c() c |Da(x)| < c(1 + x)m, th nh x bin mi thnh a l nh xtuyn tnh lin tc t S(Rn) vo S(Rn).Vi mi Zn+, php ton o hm D l nh x tuyn tnh lin tc t S(Rn) vo S(Rn).4. Tp C0 (Rn) tr mt trong khng gian S(Rn). Tht vy, vi mi s t nhin k hnh cung B1(0) l tp compact trong Rn nn theo Mnh 1.3 c mt hm C0 (Rn) m(x) = 1, x B1(0) v suppk B2(0). t k(x) = ( 1kx), k = k c

    Dk(x) = D(k)(x) = k(x)D

    (x) +1

    k

    1||

    1

    k||1D(

    1

    kx)D(x).

    nn S limk

    k = .

    5. Cho k, D(Rn), k = 1, 2, . . . , v D limk

    k = th S limk

    k = . Do , ta c

    php nhng lin tc D(Rn) S(Rn).Cho k, S(Rn), k = 1, 2, . . . , v S lim

    kk = th E lim

    kk = . Do , ta c php

    nhng lin tc S(Rn) E(Rn).

    V d 21. Trn R, hm : R R c xc nh nh sau

    (x) =

    {e

    1|x|21nu |x| < 1,

    0 nu |x| 1,

    v ((k))(x) =(xk)

    (1+|x|2)k , th , ((k)) C0 (R) v S lim

    k((k)) = 0,

    khng c gii hn D limk

    ((k)).

    nh l 1.15. S(Rn) l khng gian y ,

    Chng minh. Ly {k}k=1 l mt dy Cauchy trong S(Rn) c

    limkl

    supxRn

    |Dk(x)Dl(x)| = 0,

    nn dy {Dk}k=1 hi t u trn tng compact trong Rn n mt hm ().D dng chng minh = (0) C(Rn) v D(0) = ().Ta cn phi chng minh

  • 31

    (i) vi mi m Z+, Zn+ c (1 + ||x||2)m|D(x)| Cm,,x Rn,(ii) vi mi m Z+, Zn+ c lim

    ksupRn(1 + ||x||2)m|Dk(x)D(x)| = 0.

    Vi mi > 0,m Z+, Zn+, c mt s t nhin k0 sao cho vi mi k k0, l k0 tac

    supxRn

    (1 + ||x||2)m|Dk(x)Dl(x)| < 4.

    Do k0 S(Rn) nn (1 + ||x||2)m+1|Dk0(x)| Cm, nn vi R0 >

    2Cm,sao cho

    (1 + ||x||2)m|Dk0(x)| R0.Khi

    (1 + ||x||2)m|Dk(x)| < (1 + ||x||2)m|Dk0(x)|+ (1 + ||x||2)m|Dk(x)Dk0(x)| R0.

    Li c do limk

    sup||x||R0

    |Dk(x) D(x)| = 0 nn c mt s k1 > k0 sao cho vi mik k1 c

    sup||x||R0

    |Dk(x)D(x)| < (1 +R20)

    m

    do

    sup||x||R0

    (1 + ||x||2)m|Dk(x)D(x)| < .

    Vi ||x|| > R0, do limk

    |Dk(x)D(x)| = 0 nn c mt s k(x) > k0 sao cho

    (1 + ||x||2)m|Dk(x)(x)D(x)| < 2

    do vi mi k k0 c(1 + ||x||2)m|Dk(x)D(x)| 0,m Z+, Zn+ u c v c mt s t nhin k0 vi mi k k0

    supxRn

    (1 + ||x||2)m|Dk(x)D(x)| <

    hay S(Rn) v S limk

    k = .

  • 32

    1.4.2 Khng gian cc hm suy rng tng chm S(Rn)

    nh ngha 1.12. Cho hm suy rng f D(Rn). Hm suy rng f c gi l hm suyrng tng chm nu c mt s t nhin m v mt s dng c sao cho

    |f, | c supxRn

    (1 + ||x||2)m||m

    |D(x)|, D(Rn).

    Khng gian cc hm suy rng tng chm S(Rn) l tp tt c cc hm suy rng tng chm.

    Ch . 1. Khng gian cc hm suy rng tng chm S(Rn) l ng i vi cc php tontuyn tnh, php nhn vi mt hm a(.) C(Rn) m vi mi Zn+ u c mt s thcm v mt s dng c sup

    xRn|Da(x)| c(1+ ||x||2)m, v php ly o hm suy rng D.

    V d 22. Cho f L1loc(Rn) sao choRn

    |f(x)|(1 + ||x||)N dx < +,

    vi N > 0 no th n tng ng vi hm suy rng tng chm.

    Nh vy, vi 1 p , f Lp(Rn) th f cng tng ng vi hm suy rng tng chm v

    vi p = 1 chn N = 0, cn vi p = chn N = n+ 1,

    vi 1 < p

  • 33

    Nhn xt. T nh l 1.16 ta c th coi hm suy rng tng chm l phim hm tuyn

    tnh lin tc trn S(Rn), khng gian cc hm suy rng tng chm S(Rn) l khng gian ccphim hm tuyn tnh lin tc trn S(Rn).

    Chng minh. (i) Gi s f S(Rn), ngha l f D(Rn) v c mt s t nhin m v sdng C sao cho

    |f, | c supxRn

    (1 + ||x||2)m||m

    |D(x)|, C0 (Rn).

    Do tp C0 (Rn) tr mt trong S(Rn) nn vi mi S(Rn) u c mt dy {k}k=1 trongC0 (Rn) sao cho = S lim

    kk. Khi

    limkl

    supxRn

    ||m

    (1 + ||x||2)m|Dk(x)Dl(x)| = 0

    do {f, k}k=1 l dy Cauchy trong C hay c mt s phc, k hiu f, sao chof, = lim

    kfk, k.Trc tin, ta chng minh s f, khng ph thuc vo vic chn dy {k}k=1, ngha lnu c hai dy {k}k=1, {k}k=1 trong C0 (Rn) m = S lim

    kk = S lim

    kk th

    limk

    supxRn

    ||m

    (1 + ||x||2)m|Dk(x)Dk(x)| = 0

    do limk

    f, k k = 0 hay limk

    f, k = limk

    f, k.Nh vy vi mi S(Rn) c mt tng ng, k hiu f , vi mt s phc f, . D thytng ng f l nh x tuyn tnh t S(Rn) vo C v vi mi S(Rn) c

    |f, | C supxRn

    (1 + ||x||2)m||m

    |D(x)|,

    hay f lin tc.

    Nh vy, vi mi f S(Rn) u c thc trin lin tc ln S(Rn).(ii) Gi s f : S(Rn) R l phim hm tuyn tnh lin tc. Ta s chng minh rng hnch ca f trn D(Rn) l hm suy rng tng chm bng phn chng ngha l vi mi s tnhin m u c hm m D(Rn)\{0} m

    |f, m| > m supxRn

    (1 + ||x||2)m||m

    |Dm(x)|,

    t m(x) =1

    m supyRn

    (1+||y||2)m ||m

    |Dm(y)|m(x) c

    m C0 (Rn),S limm

    m = 0,

    f, m m,

    nn f khng lin tc ti 0. Tri vi gi thit. Do , ta c iu phi chng minh.

  • 34

    1.4.3 S hi t trong khng gian cc hm suy rng tng chm S(Rn)

    nh ngha 1.13. Cho fk, f S(Rn), k = 1, 2, . . . . Dy {fk}k=1 c gi l hi t trongS(Rn) n f, vit S lim

    kfk = f, nu

    (i) c mt s t nhin m v mt s dng C sao cho

    |fk, | C supxRn

    (1 + ||x||2)m||m

    |D(x)|, C0 (Rn), k = 1, 2, . . . ,

    (ii) dy {fk}k=1 l hi t trong D(Rn) n f.Ch . 1. Khi nim hi t trong S(Rn) l ph hp vi cu trc tuyn tnh trn , nghal vi , C, fk, f, gk, S(Rn), k = 1, 2, . . . , c

    nu S limk

    fk = f, S limk

    gk = g th S limk

    (fk + gk) = f + g.

    Mt dy {fk}k=1 c gi l dy Cauchy trong S(Rn) nu(i) c mt s t nhin m v mt s dng C sao cho

    |fk, | C supxRn

    (1 + ||x||2)m||m

    |D(x)|, C0 (Rn), k = 1, 2, . . . ,

    (ii) dy {fk}k=1 l Cauchy trong D(Rn).2. Nu a(.) C(Rn) sao cho vi mi Zn+ c mt s thc m = m(), v mt sdng c = c() c |Da(x)| < c(1 + x)m, th nh x bin mi f thnh af l nh xtuyn tnh lin tc t S(Rn) vo S(Rn).Vi mi Zn+, php ton o hm D l nh x tuyn tnh lin tc t S(Rn) vo S(Rn).3. C cc php nhng lin tc E(Rn) S(Rn) D(Rn).V d 25. Cho (x) = (2pi)

    n2 e

    ||x||22 . t (x) =

    n(x), > 0, th , S(Rn)

    S(Rn), vRn (x)dx =

    Rn (x)dx = 1,

    lim0+

    ||x||>R

    (x)dx = lim0+

    ||x||> R

    (x)dx = 0

    nn S lim0+

    = .

    nh l 1.17. S(Rn) l khng gian y .

    Chng minh. Ly {fk}k=1 l dy Cauchy trong S(Rn) ngha l(i) c mt s t nhin m v mt s dng C sao cho

    |fk, | C supxRn

    (1 + ||x||2)m||m

    |D(x)|, C0 (Rn), k = 1, 2, . . . ,

  • 35

    (ii) dy {fk}k=1 l Cauchy trong D(Rn).

    DoD(Rn) l khng gian y nn c mt hm suy rng f D(Rn) sao choD limk

    fk =

    f. Ta ch cn phi chng minh f S(Rn) hay c mt s t nhin m v mt s dng Csao cho

    |f, | C supxRn

    (1 + ||x||2)m||m

    |D(x)|, C0 (Rn).

    Tht vy, do vi mi C0 (Rn) c limk

    fk, = f, v

    |fk, | C supxRn

    (1 + ||x||2)m||m

    |D(x)|, C0 (Rn), k = 1, 2, . . . ,

    nn

    |f, | C supxRn

    (1 + ||x||2)m||m

    |D(x)|, C0 (Rn).

    nh l 1.18 (nh ngha khc v s hi t trong S(Rn)). Cho fk S(Rn). Khi , dy{fk}k=1 l dy Cauchy trong S(Rn) khi v ch khi vi mi S(Rn) dy {fk, }k=1 ldy Cauchy trong C.

    chng minh nh l ta cn n B sau.

    B 1.19. Cho fk : S(Rn) C, k = 1, 2, . . . , l cc phim hm tuyn tnh lin tc saocho dy {fk, }k=1 l dy Cauchy trong C vi mi S(); dy {k}k=1 trong S(Rn)sao cho S lim

    kk = 0. Khi , lim

    kfk, k = 0.

    Chng minh. Ta chng minh bng phn chng. Gi s dy {fk, k}k=1 khng hi t ti0 khi k , ngha l c mt s dng c v mt dy con, n gin k hiu ta gi s

    |fk, | > c, k = 1, 2, . . . .

    Do S limk

    k = 0 nn c mt dy con, n gin k hiu ta c th gi s

    supxRn

    (1 + ||x||2)m|Dk(x)| 14k,max{m, ||} k, k = 1, 2, . . . .

    t k(x) = 2kk(x) c

    S limk

    k = 0,

    limk

    |fk, k| = +.

  • 36

    Ta i xy dng dy {f k, k}k=1 bng cch quy np nh sau.Do lim

    lfl, l = + nn c mt s t nhin l1 sao cho |fl1 , l1| > 1.t f 1 = fl1 ,

    1 = l1 .

    Do S liml

    l = 0 nn c mt s t nhin k1 > l1 sao cho |f 1, l| < 1,l k1. M dy{fl, 1}l=1 l dy Cauchy nn b chn, cn lim

    lfl, l = + nn c mt s t nhin

    l2 > k1 sao cho |fl, l| > |fl, 1|+ 1,l l2.t f 2 = fl2 ,

    2 = l2 . C

    (i)|f 1, 2 < 12 ,(ii)|f 2, 2| > |f 2, 1|+ 1.

    Gi s ta c f 1, . . . , fk1,

    1, . . . , k1(k > 2, f

    j = flj , l1 < l2 < < lk1) m

    (i)|f j, k1| < 12k1j , j = 1, . . . , k 2,(ii)|f k1, k1| >

    k2j=1 |f k1, j|+ k 1.

    Do S liml

    l = 0 nn c mt s t nhin k2 > lk1 sao cho

    |f j, l| k2 sao cho

    |fl, l| >k2j=1

    |fl, j|+ k,l lk.

    t f k = flk , k = lk . C

    (i)|f j, k| < 12kj , j = 1, . . . , k 1,(ii)|f k, k| >

    k1j=1 |f k, j|+ k.

    C dy {k}k=1 = {lk}k=1 l dy con ca dy {k}k=1 m k = 2kk nn vi mi Zn+,m,m1,m2 Z+,m2 > m1 > max{m, ||} c

    m2k=m1

    supxRn

    (1 + ||x||2)m|Dk(x)| =m2

    k=m1

    supxRn

    (1 + ||x||2)m|Dlk(x)|

    0. Do tp C0 (Rn) tr mt trong S(Rn) nn vi mi S(Rn) c mt hm C0 (Rn) sao cho

    supxRn

    (1 + ||x||2)m||m

    |D(x)D(x)| 2C

    .

    Do dy {fk}k=1 l Cauchy trongD(Rn) nn c mt s t nhin k0 sao cho vi mi k, l k0c

    |fk fl, | 2.

    Do vi mi > 0 u c mt s t nhin k0 k, l k0|fk fl, | |fk fl, |+ |fk fl, |

    C supxRn

    (1 + ||x||2)m||m

    |D(x)D(x)|+ 2

  • 38

    hay vi mi S(Rn) dy {fk, }k=1 l dy Cauchy trong C.Ta chng minh iu kin . Gi s vi mi S(Rn) dy {fk, }k=1 l dy Cauchytrong C. Do C0 (Rn) S(Rn) nn dy {fk}k=1 l dy Cauchy trong D(Rn).Ta ch cn phi chng minh c mt s t nhin m v mt s dng C sao cho

    |fk, | C supxRn

    (1 + ||x||2)m||m

    |D(x)|, C0 (Rn), k = 1, 2, . . . .

    Ta chng minh bng phn chng, ngha l vi mi s t nhin m u c mt hm m C0 (Rn)

    |fm, m| > m supxRn

    (1 + ||x||2)m||m

    |Dm(x)|, C0 (Rn).

    t m(x) =1

    m supyRn

    (1+||y||2)m ||m

    |Dm(y)|m(x) c

    m C0 (Rn),S limm

    m = 0,

    fm, m m,

    m theo B 1.19 th limk

    fm, m = 0. Nh vy xy ra iu mu thun. Do ta ciu phi chng minh.

  • Chng 2

    Tch chp v Php bin i Fourier

    2.1 Tch chp

    2.1.1 Tch chp gia cc hm trong L1loc(Rn)

    Nu f, g C0 (Rn) ta nh ngha

    f g(x) =Rnf(x y)g(y)dy =

    Rnf(y)g(x y)dy (2.1)

    xc nh vi mi x Rn. T nh l Fubini cRn|f g(x)|dx =

    Rn|Rnf(x y)g(y)dy|dx

    Rn|g(y)|

    (Rn|f(x y)|dx

    )dy

    ||f ||L1(Rn)||g||L1(Rn), (2.2)

    nn f g L1(Rn) v

    ||f g||L1(Rn) ||f ||L1(Rn)||g||L1(Rn).

    M C0 (Rn) tr mt trong L1(Rn) nn ta c th nh ngha

    f g(x) = L1 limk

    k k(x)

    vi f, g L1(Rn), f = L1 limk

    k, g = L1 limk

    k, k, k C0 (Rn), k = 1, 2, . . . .Ta gi f g l tch chp ca hm f theo hm g. R rng, trong trng hp ny, tch chpca hm f theo hm g v tch chp ca hm g theo hm f l nh nhau.

    Vi f L1(Rn), g Lp(Rn)(1 p ) bng cch tng t trn vi bt ng thc YoungRn

    Rnf(x y)g(y)dy

    pdx ||f ||pL1(Rn)||g||pLp(Rn)c f g Lp(Rn). Ta cng cha th ni f g L1(Rn), nu 1 < p. V vi 1 < p ta lunchn c s k (n

    p, n). Khi , hm f = B1(0) L1(Rn), g(x) = (||x||+1)k Lp(Rn)

    37

  • 38

    v f g(x) > C(||x||+ 2)k 6 L1(Rn).Vi f L1loc(Rn), g L1compact(Rn) tch chp f g ca hm f theo hm g, v tch chpg f ca hm g theo hm f , theo cng thc (2.1) l xc nh vi hu ht x Rn. Hn na,f g = g f L1loc(Rn) v supp(f g) (supp f + supp g) (v (f g)(x) 6= 0 y Rn : f(y) 6= 0, g(x y) 6= 0). Tuy nhin, ta cha th ni f g L1(Rn), chng hn lyf = B1(0), g = 1.

    Vi f Lp(Rn), g Lq(Rn)(1 < p

  • 39

    m nu t

    h1,x(y) =1

    h1

    ((x1 + h1 y1, x2 y2, . . . , xn yn) (x y)

    )D(1,0,...,0)(x y)=

    1

    h1

    h10

    t0

    D(2,0,...,0)(x1 y1 + , x2 y2, . . . , xn yn)ddt

    h1,x(y) =1

    h1

    ((x1 + h1 y1, x2 y2, . . . , xn yn) (x y)

    )D(1,0,...,0)(x y)=

    1

    h1

    h10

    t0

    D(2,0,...,0)(x1 y1 + , x2 y2, . . . , xn yn)ddt

    th h1,x, h1,x hi t v 0 trong E(Rn), (D(Rn), S(Rn)) khi h1 tin v 0, tu theo , C(Rn)(C0 (Rn), S(Rn)), nn

    D(1,0,...,0)( )(x) = limh10

    1

    h1

    (( )(x1 + h1, x2, . . . , xn) ( )(x)

    )=((D(1,0,...,0)) )(x)

    =( (D(1,0,...,0)))(x).Vi , C0 (Rn) th C0 (Rn). Vi , S(Rn) nn vi mi m Z+, c(1 + ||y||2)m L1(Rn), v s cm > 0 sup

    xRn(1 + ||x||2)m|D(x)| < cm, do

    supxRn

    (1 + ||x||2)m|D( )(x)| Rn

    supxRn

    (1 + ||x||2)m|D(x y)||(y)|dy

    supxRn

    (1 + ||x y||2)m|D(x y)|Rn(1 + ||y||2)m|(y)|dy. (2.3)

    Tnh tuyn tnh ca cc nh x l d thy.

    Ta chng minh tnh lin tc ca cc nh x nh sau.

    (i) Nu C(Rn), k C0 (Rn), k = 1, 2, . . . ,D limk

    k = 0 th

    c mt tp compact K Rn suppDk K, k = 1, 2, . . . , |D( k)(x)| = |

    K(xy)Dk(y)dy| sup

    yK|Dk(y)|

    K|(xy)|dy,

    trn mi tp compact K Rn, c

    supxK

    K

    |(x y)|dy KK

    |(z)|dz < +

    nn limk

    supxK

    |D( k)(x)| = 0,

    nu C0 (Rn), c supxRn

    K|(x y)|dy

    supp|(y)|dy < +, nn

    limk

    supxRn

    |D( k)(x)| = 0,

  • 40

    (ii) Nu C0 (Rn), k C(Rn), k = 1, 2, . . . ,E limk

    k = 0 th

    |D( k)(x)| = |supp

    (y)Dk(x y)dy|

    supysupp

    |Dk(x y)|supp

    |(y)|dy,

    m trn mi tp compact K Rn csupxK

    supysupp

    |Dk(x y)| supz(Ksupp)

    |Dk(z)|

    nn

    limk

    supxK

    |D( k)(x)| = 0.

    (iii) Nu , k S(Rn), k = 1, 2, . . . , S limk

    k = 0 th p dng (2.3).

    Mnh 2.2. (i)Nu D(Rn) th D lim0+

    = .(ii)Nu E(Rn) th E lim

    0+ = .(iii)Nu S(Rn) th S lim

    0+ = .

    Chng minh. Ch rng supp( ) (supp+ B(0)) v theo Mnh 2.1 c D( ) = (D

    ) nn vi chng minh (i), (ii) ta ch cn phi chng minh hi tu n trn tng tp compact K khi gim dn v 0, cn (iii) ta chng minh vi mi s

    t nhin k c (1 + ||x||2)k( )(x) hi t u n (1 + ||x||2)k(x) trn Rn.C

    Rn((x y) (x))(y)dy =

    B(0)

    ((x y) (x))(y)dy,

    m C(Rn) nn vi 0 < < 1, y B(0) theo nh l Lagrange c|(x y) (x)| sup

    zB(0)||(x z)||, vi l o nh ca ,

    nn supxK

    |( )(x)(x)| supyK

    ||(y)||, hay ta c iu phi chng minh cho (i), (ii).Nu S(Rn) th

    supxRnzB1(0)

    (1 + ||x||2)k||(x z)||

    C1 supxRnzB1(0)

    (1 + ||z||2)k(1 + ||x z||2)knj=1

    |Dj(x z)|

    C2 supyRn

    (1 + ||y||2)knj=1

    |Dj(y)| < +

    nn ta c iu phi chng minh cho (iii).

  • 41

    Nhn xt. Nu thay bi cc hm k trong C0 (Rn) m

    Rnk(x)dx = 1,

    Rn|k(x)|dx C, suppk+1 suppk,k=1 suppk = {0}

    th ta cng c cc kt lun nh Mnh 2.2.

    t (x) = (2pi)n2 e

    ||x||22 , (x) =

    n(x). Khi , nu thay bng ta cng c kt

    lun (iii) ca Mnh 2.2, vRn(x)dx =

    Rn(x)dx = 1, lim

    0+

    ||x||R

    (x)dx = lim0+

    ||x|| R

    (x)dx = 0.

    2.1.2 Tch chp gia hm suy rng v hm c bn

    nh ngha 2.1. Cho f D(Rn), C0 (Rn) hay f E(Rn), C(Rn) hocf S(Rn), S(Rn). Tch chp, k hiu f , ca hm suy rng f theo hm l hmc xc nh nh sau

    f : x 7 (f )(x) = f, x, x(y) = (x y).

    Ch . Vi mi x Rn hm x C0 (Rn) hay (C(Rn), S(Rn)) tu theo C0 (Rn)hay (C(Rn), S(Rn)) nn nh x trong nh ngha hon ton xc nh. nh x ny c mts tnh cht sau.

    Mnh 2.3. Cho f D(Rn), C0 (Rn) hay f E(Rn), C(Rn) hoc f S(Rn), S(Rn). Khi , ta c cc kt lun sau.

    (i) f C(Rn), D(f)(x) = ((Df))(x) = (f(D))(x),x Rn, Zn+.(ii) supp(f ) (supp f + supp).

    (iii) Nu f D(Rn), k D(Rn), k = 1, 2, . . . ,D limk

    k = 0 th E limk

    f k = 0.Nu f E(Rn), k E(Rn), k = 1, 2, . . . ,E lim

    kk = 0 th E lim

    kf k = 0.Nu f E(Rn), k D(Rn), k = 1, 2, . . . ,D lim

    kk = 0 th D lim

    kf k = 0.Nu f S(Rn), k S(Rn), k = 1, 2, . . . , S lim

    kk = 0 th E lim

    kf k = 0.Nu f E(Rn), k S(Rn), k = 1, 2, . . . , S lim

    kk = 0 th S lim

    kf k = 0.

    (iv) Nu fk D(Rn), D(Rn), k = 1, 2, . . . ,D limk

    fk = 0 th E limk

    fk = 0.Nu fk E(Rn), E(Rn), k = 1, 2, . . . ,E lim

    kfk = 0 th E lim

    kfk = 0.Nu fk E(Rn), D(Rn), k = 1, 2, . . . ,E lim

    kfk = 0 th D lim

    kfk = 0.Nu fk S(Rn), S(Rn), k = 1, 2, . . . , S lim

    kfk = 0 th E lim

    kfk = 0.Nu fk E(Rn), S(Rn), k = 1, 2, . . . ,E lim

    kfk = 0 th S lim

    kfk = 0.

  • 42

    Ch . Vi f S(Rn), C0 (Rn) th cha th ni rng f S(Rn). Chng hn,f(x) 1 l hm b chn tng ng vi mt hm suy rng tng chm, C0 (Rn),(f )(x) =

    Rn (x y)dy = 1 l hm kh vi v hn, nhng khng gim nhanh.Nhn xt. 1. Nu g D(Rn), D(Rn) th

    nh x 7 g l nh x tuyn tnh lin tc t D(Rn) vo E(Rn),

    nh x f 7 f l nh x tuyn tnh lin tc t D(Rn) vo E(Rn).

    2. Nu g E(Rn), E(Rn) th

    nh x 7 g l nh x tuyn tnh lin tc t E(Rn) vo E(Rn),

    nh x f 7 f l nh x tuyn tnh lin tc t E(Rn) vo E(Rn).

    3. Nu g E(Rn), D(Rn) th

    nh x 7 g l nh x tuyn tnh lin tc t D(Rn) vo D(Rn),

    nh x f 7 f l nh x tuyn tnh lin tc t E(Rn) vo D(Rn).

    4. Nu g S(Rn), S(Rn) th

    nh x 7 g l nh x tuyn tnh lin tc t S(Rn) vo E(Rn),

    nh x f 7 f l nh x tuyn tnh lin tc t S(Rn) vo E(Rn).

    5. Nu g E(Rn), S(Rn) th

    nh x 7 g l nh x tuyn tnh lin tc t S(Rn) vo S(Rn),

    nh x f 7 f l nh x tuyn tnh lin tc t E(Rn) vo S(Rn).

    Chng minh. (i)Do

    C(Rn), f E(Rn) th D C(Rn), Df E(Rn),

    C0 (Rn), f D(Rn) th D C0 (Rn), Df D(Rn),

    S(Rn), f S(Rn) th D S(Rn), Df S(Rn),

    nn chng minh (i) ta ch cn chng minh tch chp f c o hm ring theo binth nht v

    D(1,0,...,0)(f )(x) = ((D(1,0,...,0)f) )(x) = (f (D(1,0,...,0)))(x),x Rn.

  • 43

    Vi x Rn, h1 R c

    (f )(x1 + h1, x2, . . . , xn) (f )(x)= fy, (x1 + h1 y1, x2 y2, . . . , xn yn) (x y)= fy, (x1 + h1 y1, x2 y2, . . . , xn yn) (x y) h1D(1,0,...,0)x (x y)+ fy, h1D(1,0,...,0)x (x y),

    m nu t

    h1,x(y) =1

    h1

    ((x1 + h1 y1, x2 y2, . . . , xn yn) (x y)

    )D(1,0,...,0)x (x y),th h1,x hi t v 0 trongD(Rn) hay (E(Rn), S(Rn)), tu theo D(Rn) hay (E(Rn), S(Rn))khi h1 tin v 0, nn

    (D(1,0,...,0)f )(x) = limh10

    (f )(x1 + h1, x2, . . . , xn) (f )(x)h1

    = limh10

    fy, h1+ fy, D(1,0,...,0)x (x y)= fy, D(1,0,...,0)x (x y) = D(1,0,...,0)y fy, (x y)= (f D(1,0,...,0))(x) = (D(1,0,...,0)f )(x).

    (ii) Ly x Rn. Gi s (f )(x) 6= 0 m (f )(x) = f, , x(y) = (x y)nn suppx supp f 6= hay tn ti y supp f (x y) supp, do x (supp f+supp).M tng ca hai tp ng l ng nn supp(f ) (supp f+supp).(iii) T (i) v (ii) nu C(Rn), f E(Rn) hay C0 (Rn), f D(Rn) hoc S(Rn), f S(Rn) th f C(Rn), v C0 (Rn), f E(Rn) th f C0 (Rn).Nu S(Rn), f E(Rn), do D(f ) = (Df) , Zn+, c f S(Rn)ta ch cn phi chng minh vi m Z+ c hng s cm > 0 khng ph thuc x sao cho

    (1 + ||x||2)m|(f )(x)| cm.

    Tht vy v f E(Rn), nn c mt s dng R0, mt hm C0 (Rn) m (x) = 1, x supp f, supp BR0(0). Khi , c mt s t nhin l0, mt s dng c (cc s ny khngph thuc x) sao cho

    (1 + ||x||2)m|(f )(x)| = (1 + ||x||2)m|f, | c1 sup

    yBR0 (0)(1 + ||x||2)m

    ||l0

    |D(y)| ( D(Rn), (y) = (y)(x y))

    c2 supyBR0 (0)

    ||l0

    ((1 + ||y||2)m|D(y)|(1 + ||x y||2)m|D(x y)|)

    c3||l0

    (1 + ||x||2)m|D(x)|. (2.4)

    Phn cn li c chng minh nh sau.

  • 44

    1. Nu f D(Rn), k D(Rn), k = 1, 2, . . . ,D limk

    k = 0 th vi mi x Rn

    c mt tp compact K Rn suppk K, k = 1, 2, . . . , lim

    ksupyRn

    ||l

    |Dk(x y)| = 0, l = 1, 2, . . . ,

    vi tp compact K Rn bt k, f c cp hu hn trn tp compact (K K),ngha l c mt s t nhin l0 v s dng c

    |(f k)(x)| = |f, k,x| c||l0

    supyRn

    |Dk(x y)|, k = 1, 2, . . . ,

    trong , k,x(y) = k(x y), suppk,x = x suppk (K K), x K .2. Nu f E(Rn), k E(Rn), k = 1, 2, . . . ,E lim

    kk = 0 th vi mi x Rn

    limk

    supyBR(0)

    ||l

    |Dk(x)| = 0, l = 1, 2, . . . , R > 0,

    do supp f = K l tp compact nn c mt s R0 > 0, v mt hm C0 (Rn)m (y) = 1, y K, supp BR0(0). Khi f, = f, , E(Rn),

    f c cp hu hn trn Rn, ngha l c mt s t nhin l0 v s dng c vimi s t nhin k c

    |(f k)(x)| = |f, k| c||l0

    supyBR0 (0)

    |Dk(y)|, k = 1, 2, . . . ,

    trong , k(y) = (y)k(x y), m trn mi tp compact K Rn, c

    supxK

    supyBR0 (0)

    |Dk(y)| (

    supyBR0 (0)

    |

    D(y)|) supxKR0

    |Dk(x)|

    3. Nu f S(Rn), k S(Rn), k = 1, 2, . . . , S limk

    k = 0 th vi mi x Rn

    limk

    supyRn

    (1 + ||y||2)l ||l

    |Dk(y)| = 0, l = 1, 2, . . . ,

    c mt s t nhin l0 v mt s dng c vi mi k, l = 1, 2, . . . ,

    |(f k)(x)| = |f, k,x| c supyRn

    ||l0

    (1 + ||y||2)l0|Dk(x y)|

    trong , k,x(y) = k(x y), m

    supyRn

    ||l0

    (1 + ||y||2)l0 |Dk(x y)|

    (1 + ||x||2)l0 supyRn

    ||l0

    (1 + ||x y||2)l0|Dk(x y)|.

  • 45

    4. Nu f E(Rn), k C0 (Rn), k = 1, 2, . . . ,D limk

    k = 0 th c mt tp compact

    K Rn supp(f k) K, k = 1, 2, . . . .

    5. Nu f E(Rn), k S(Rn), k = 1, 2, . . . , S limk

    k = 0

    limk

    supyRn

    (1 + ||y||2)l ||l

    |Dk(y)| = 0, l = 1, 2, . . . ,

    c mt s dng R0, mt hm C0 (Rn) m (x) = 1, x supp f, supp BR0(0). Khi , c mt s t nhin l0, mt s dng c (cc s ny khng ph

    thuc x) c bt ng thc (2.4)

    (1 + ||x||2)m|(f k)(x)| c(

    supyBR0 (0)

    ||l0

    |D(y)|) sup

    zRn

    ||l0

    (1 + ||z||2)m|Dk(z)|.

    (iv)

    1. Nu fk D(Rn), D(Rn), k = 1, 2, . . . ,D limk

    fk = 0 th

    limk

    |fk (x)| = limk

    |fk, | = 0, (y) = (x y),x Rn, gi s c mt tp compact K Rn m dy {fk }k=1 khng hi t un 0 trn , ngha l c mt s dng , mt dy con, n gin ta gi s

    {fk }k=1 v mt dy cc im {xk}k=1 trong tp compact K sao cho

    |fk (xk)| = |fk, k| > 2, k(y) = (xk y),

    m dy {xk}k=1 nm trong tp compact K nn n c dy con, n gin tagi s dy {xk}k=1 hi t n x0 trong K, khi d thy

    D limk

    k = 0, 0(y) = (x0 y)

    nn theo B 1.8 c limk

    fk, k 0 = 0 do , vi k ln |fk, 0| > ,iu ny tri vi gi thit D lim

    kfk = 0,

    nh vy, iu gi s sau hay trn mi tp compact K Rn m dy {fk }k=1hi t u n 0,

    D(fk )(x) = (fk D)(x).

    2. Nu fk E(Rn), E(Rn), k = 1, 2, . . . ,E limk

    fk = 0 th

    limk

    |fk (x)| = limk

    |fk, | = 0, (y) = (x y),x Rn,

  • 46

    gi s c mt tp compact K Rn m dy {fk }k=1 khng hi t un 0 trn , ngha l c mt s dng , mt dy con, n gin ta gi s

    {fk }k=1 v mt dy cc im {xk}k=1 trong tp compact K sao cho

    |fk (xk)| = |fk, k| > 2, k(y) = (xk y),

    m dy {xk}k=1 nm trong tp compact K nn n c dy con, n gin tagi s dy {xk}k=1 hi t n x0 trong K, khi d thy

    E limk

    k = 0, 0(y) = (x0 y)

    nn theo B 1.14 c limk

    fk, k0 = 0 do , vi k ln |fk, 0| > ,iu ny tri vi gi thit E lim

    kfk = 0,

    nh vy, iu gi s sau hay trn mi tp compact K Rn m dy {fk }k=1hi t u n 0,

    D(fk )(x) = (fk D)(x).3. Nu fk S(Rn), S(Rn), k = 1, 2, . . . , S lim

    kfk = 0 th

    limk

    |fk (x)| = limk

    |fk, | = 0, (y) = (x y),x Rn, gi s c mt tp compact K Rn m dy {fk }k=1 khng hi t un 0 trn , ngha l c mt s dng , mt dy con, n gin ta gi s

    {fk }k=1 v mt dy cc im {xk}k=1 trong tp compact K sao cho

    |fk (xk)| = |fk, k| > 2, k(y) = (xk y),

    m dy {xk}k=1 nm trong tp compact K nn n c dy con, n gin tagi s dy {xk}k=1 hi t n x0 trong K, khi d thy

    S limk

    k = 0, 0(y) = (x0 y)

    nn theo B 1.19 c limk

    fk, k0 = 0 do , vi k ln |fk, 0| > ,iu ny tri vi gi thit S lim

    kfk = 0,

    nh vy, iu gi s sau hay trn mi tp compact K Rn m dy {fk }k=1hi t u n 0,

    D(fk )(x) = (fk D)(x).4. Nu fk E(Rn), C0 (Rn), k = 1, 2, . . . ,E lim

    kfk = 0 th c mt tp compact

    K Rn supp(fk ) K, k = 1, 2, . . . .5. Nu fk E(Rn), S(Rn), k = 1, 2, . . . ,E lim

    kfk = 0, th

    c mt tp compact K supp fk K, k = 1, 2, . . . ,

  • 47

    c mt s dng R0, mt hm C0 (Rn) m (x) = 1, x K, supp BR0(0). M E

    limk

    fk = 0 c S limk

    fk = 0 hay c mt s t nhin m v mt

    s dng c

    |(fk )(x)| = |fk, | supyRn

    (1 + ||y||2)m||m

    |D(y)|, k = 1, 2, . . . ,

    trong , (y) = (y)(x y), supp BR0(0) v vi l = 1, 2, . . . ,

    (1 + ||x||2)l supyRn

    (1 + ||y||2)m||m

    |D(y)|

    c( ||m

    (1 + ||x y||2)2l|D(x y)|2) 12 sup

    yBR0 (0)(1 + ||y||2)l+m(

    ||m|D(y)|2) 12

    do , vi k, l = 1, 2, . . . , c

    (1 + ||x||2)l|(fk )(x)| Cl,m( ||m

    (1 + ||x||2)2l|D(x)|2) 12 cl,m, (2.5) vi ||x||2 2cl+1,m

    do E lim

    kfk = 0 nn D

    limk

    fk = 0 m C0 (Rn),do c mt s k0 vi k k0 c (1 + ||x||2)l|(fk )(x)| 2 ,

    vi ||x||2 2cl+1,mc (1 + ||x||2)l|(fk )(x)| (1+||x||2)l+1|(fk)(x)|1+||x||2 2 ,

    D(fk )(x) = (fk D)(x).

    Nhn xt. 1. Nu , D(Rn), f D(Rn) th f E(Rn), D(Rn). Do ,(f ) , f ( ) l hon ton xc nh.2. Nu E(Rn), D(Rn), f E(Rn) th f E(Rn), f D(Rn), D(Rn). Do , (f ) , (f ) , f ( ) l hon ton xc nh.3. Nu , S(Rn), f S(Rn) th f E(Rn), S(Rn). Do , (f ) , f ( ) l hon ton xc nh. Ngoi ra, c mt s t nhin l0, mt s dng c sao cho

    |(f )(x)| c(1 + ||x||2)l0 ,x Rn.

    Mnh 2.4. Cho , D(Rn), f D(Rn) hay E(Rn), D(Rn), f E(Rn)hoc , S(Rn), f S(Rn). Khi ,

    (f ) = f ( ) = f ( ) = (f ) .

  • 48

    Chng minh. Trong trng hp c gi compact, tch chp (x), ((f ) )(x) uc dng tch phn Riemann trn hnh lp phng P cha supp

    ( )(x) =P

    (x y)(y)dy, v ((f ) )(x) =P

    (f )(x y)(y)dy,

    nn tng Riemann

    h(x) = hnk

    (x kh)(kh), v gh(x) = hnk

    (f )(x kh)(kh)

    trong tng

    k

    ly trn cc im c to nguyn trong Rn, tng ny l tng hu hn

    v supp l compact, hi t n ( )(x), ((f ) )(x) trong D(Rn) hay E(Rn), tutheo , f D(Rn) hay E(Rn) khi h gim dn v 0,m (f h)(x) = gh(x) nn nu D(Rn), f D(Rn) hay E(Rn), f E(Rn) th

    (f ) = E limh0+

    gh = E limh0+

    f h = f ( ).

    Trong trng hp D(Rn) c

    (f ) = f ( ) = f ( ) = (f ) .

    Trong trng hp E(Rn), f E(Rn), do C0 (Rn) tr mt trong E(Rn) nn c mt dy{k}k=1 trong C0 (Rn) hi t n trong E(Rn) do

    f = E limk

    f k, (f ) = E limk

    (f ) k, = = E lim

    k k = E lim

    kk ,

    m (f k) = f (k ) = f ( k) = (f ) k nn

    (f ) = f ( ) = f ( ) = (f ) .

    Trong trng hp , S(Rn), f S(Rn), do C0 (Rn) tr mt trong S(Rn) nn c mtdy {k}k=1 trong C0 (Rn) hi t n trong S(Rn) do

    f = E limk

    f k, (f ) = E limk

    (f ) k, = = S lim

    k k = S lim

    kk ,

    m (f k) = f (k ) = f ( k) = (f ) k nn

    (f ) = f ( ) = f ( ) = (f ) .

  • 49

    Ch . Vi f S(Rn), , S(Rn) c

    f, ( ) = (f ( ))(0) = ((f ) )(0) =Rn(f )(y)(y 0)dy

    nn f c th coi l mt hm suy rng tng chm.Mnh 2.5. (i) Nu f D(Rn) th f = D lim

    0+f .(ii) Nu f E(Rn) th f = E lim

    0+f .(iii) Nu f S(Rn) th f = S lim

    0+f .Chng minh. Ly D(Rn) khi f D(Rn), hay E(Rn) khi f E(Rn), S(Rn)khi f S(Rn). t (x) = (x) c

    f , = ((f ) )(0) = (f ()))(0) = f, ( ),m theo Mnh 2.2 ( ) hi t n trong D(Rn) hay E(Rn), S(Rn) tu theo D(Rn) hay E(Rn), S(Rn) nn ta c iu phi chng minh.

    Nhn xt. T Mnh 2.5 c tp C0 (Rn) tr mt trong E(Rn), C(Rn) tr mt trongD(Rn). Khi , vi a(.) C(Rn), f D(Rn) c mt dy {k}k=1 trong C(Rn) hit n f trong D(Rn). Do , vi mi Zn+ c

    D limk

    DaDk = DaDf,D limk

    D(ak) = D(af), ,

    m D(ak) =

    (

    )DaDk

    nn D(af) =

    (

    )DaDf.T nhn xt ca Mnh 2.2, nu ta thay bi cc hm k C0 (Rn) m

    Rnk(x)dx = 1, suppk+1 suppk,k=1 suppk = {0}

    th ta cng cc kt lun nh Mnh 2.5.

    nh l 2.6. C0 (Rn) l tp tr mt trong S(Rn),D(Rn).

    Chng minh. Ly u D(Rn), C0 (Rn) hay u S(Rn), S(Rn).Do Bk(0) l tp compact nn c mt hm k C0 (Rn) m k(x) = 1, x Bk(0).t uk = (ku) 1

    kc uk C0 (Rn) v

    nu S(Rn) th = S limk

    k( 1k ),

    nu C0 (Rn) th = D limk

    k( 1k ),nn lim

    kuk, = lim

    k(ku) 1

    k, = lim

    ku, k( 1

    k ) = u, hay

    nu u S(Rn), S(Rn) th u = S limk

    uk,

    nu u D(Rn), C0 (Rn) th u = D limk

    uk.

  • 50

    2.1.3 Tch chp gia cc hm suy rng

    Vi f D(Rn), g E(Rn) c mt dy {gk}k=1 trong C0 (Rn) m E limk

    gk = g.

    Vi mi D(Rn) c D limk

    gk = g . Do ,limk

    f gk, = limk

    (f (gk ))(0) = (f (g ))(0),nn dy {f gk}k=1 l dy Cauchy trong D(Rn), m D(Rn) l , nn hi t n mthm suy rng, k hiu f g, xc nh bi cng thc (khng ph thuc vo vic chn dy{gk}k=1)

    f g, = (f (g ))(0), D(Rn).Vi f E(Rn), g D(Rn) c mt dy {gk}k=1 trong C0 (Rn) m D lim

    kgk = g. Vi

    mi D(Rn) c E limk

    gk = g . Do ,limk

    f gk, = limk

    (f (gk ))(0) = (f (g ))(0),nn dy {f gk}k=1 l dy Cauchy trong D(Rn), m D(Rn) l , nn hi t n mthm suy rng, k hiu f g, xc nh bi cng thc (khng ph thuc vo vic chn dy{gk}k=1)

    f g, = (f (g ))(0), D(Rn).nh ngha 2.2. Cho f, g D(Rn), m t nht mt hm suy rng c gi compact. Hmsuy rng f g c gi l tch chp ca hm suy rng f theo hm suy rng g.V d 1. Vi f D(Rn) c f = f = f.Nhn xt. 1. Vi D(Rn), f, g D(Rn),(t nht mt hm suy rng c gi compact) c((f g) )(x) = f g, = lim

    k(f (gk ))(0) = (f (g ))(x), (y) = (x y)nn (f g) = f (g ) v f g, = f, (g ).2. Vi E(Rn), g D(Rn),(t nht mt trong chng c gi compact) th nu coi nhmt hm suy rng c

    g = limk

    gk = limk

    gk = g ..Khi , vi f, g D(Rn), (t nht mt hm suy rng c gi compact), do 1

    k 1

    k

    C0 , supp( 1k 1

    k) = B 2

    k(0),

    Rn( 1k

    1k)(x)dx = 1 nn theo nhn xt ca Mnh 2.5

    c

    f g = D limk

    f (g ( 1k 1

    k))

    = D limk

    f ((g 1k) 1

    k)( do 1

    k C0 (Rn))

    = D limk

    f ( 1k (g 1

    k))( do g 1

    k C(Rn))

    = D limk

    (f 1k) (g 1

    k)( do g 1

    k C(Rn))

    = D limk

    (g 1k) (f 1

    k)( do f 1

    k C(Rn)) = g f.

  • 51

    Vi f, g D(Rn), (t nht mt hm suy rng c gi compact) do f g = D limk

    f (g 1k)

    m supp(f (g 1k)) (supp f + supp g + B 1

    k(0)) nn nu x 6 (supp f + supp g) m

    (supp f +supp g) l tp ng, c mt s kx x 6 (supp f +supp g+ B 1k(0)), khi k > kxdo f (g 1

    k) = 0 ti x khi k > kx hay f g = 0 ti x. Nh vy, nu f g 6= 0 ti xth x ((supp f + supp g) hay supp(f g) (supp f + supp g).Vi f, g, h D(Rn), (nhiu nht mt hm suy rng khng c gi compact) th

    (f g) h = D limk

    (f g) (h 1k) = D lim

    kf (g (h 1

    k))

    = D limk

    f ((g h) 1k) = f (g h). (2.6)

    Nu trong f, g, h c nhiu nht mt hm suy rng c gi compact th ng thc (2.6) ni

    chung khng cn ng, chng hn trn R, vi 1 l hm hng bng 1 c

    1 D = 0, 0 = 0, nn (1 D) = 0, D = , 1 = 1, nn 1 (D ) = 1.

    Vi mi Zn+, do o hm suy rng D l nh x tuyn tnh lin tc trong D(Rn) nn

    D(f g) = D limk

    D(f (g 1k)) = (Df) g = f (Dg).

    3. Vi f S(Rn), g E(Rn), S(Rn) th (g ) S(Rn) nn f, (g ) l xc nhhay f g l phim hm tuyn tnh trn S(Rn). Hn na, nu k S(Rn) m S lim

    kk = 0

    c S limk

    (g k ) = 0 nn limk

    f, (g k ) = 0 hay f g S(Rn).Vi f, g E(Rn) do supp(f g) (supp f + supp g) nn f g c gi compact hayf g E(Rn).Mnh 2.7. (i) Nu f D(Rn), g E(Rn) th

    nh x h 7 f h = h f l nh x tuyn tnh lin tc t E(Rn) vo D(Rn), nh x h 7 h g = g h l nh x tuyn tnh lin tc t D(Rn) vo D(Rn), nh x h 7 h g = g h l nh x tuyn tnh lin tc t E(Rn) vo E(Rn).(ii) Nu f E(Rn), g S(Rn) th

    nh x h 7 f h = h f l nh x tuyn tnh lin tc t S(Rn) vo S(Rn), nh x h 7 h g = g h l nh x tuyn tnh lin tc t E(Rn) vo S(Rn).Chng minh. Tnh tuyn tnh ca cc nh x l do cc khng gian D(Rn),E(Rn) l tuyntnh v vi mi , R, D(Rn)

    f + h, (g ) = f, (g )+ h, (g ), f, ((g + h) ) = f, (g )+ f, (h ).

  • 52

    Gi s {hk}k=1 l mt dy trong D(Rn) v D limk

    hk = 0 th

    nu g E(Rn), D(Rn) c (g ) D(Rn) nn limk

    hk, (g ) = 0.

    Gi s {hk}k=1 l mt dy trong E(Rn) v E limk

    hk = 0 th

    nu g D(Rn), D(Rn) c (g ) E(Rn) nn limk

    hk, (g ) = 0.

    nu g E(Rn) c supp(g hk) (supp g + supphk), k = 1, 2, . . . ,

    nu g S(Rn), hoc vi D(Rn) c s l,m Z+, l > m v cm > 0 sao cho(i)|g, | cm sup

    xRn(1 + ||x||2)m

    ||m|D(x)|, D(Rn)(ii) t bt ng thc (2.5), vi mi k N c

    supxRn

    (1 + ||x||2)m||m

    |D(hk )(x)| c supyRn

    (1 + ||x||2)l||l

    |D(x)|,

    v c mt tp compact K Rn, supp(hk ) K,nn |g, (hk )| c sup

    xRn(1 + ||x||2)l

    ||l|D(x)|, k = 1, 2, . . . ,hay vi S(Rn) c g E(Rn) nn lim

    khk, (g ) = 0.

    Gi s {hk}k=1 l mt dy trong S(Rn) v S limk

    hk = 0 th vi g E(Rn), D(Rn)c (g ) D(Rn) v, t bt ng thc (2.4), mt s t nhin l0, mt s dng c sao cho

    (1 + ||x||2)m||m

    |D(g )(x)| c(1 + ||x||2)m||l0

    |D(x)|,m N

    m S(Rn) v S limk

    hk = 0 nn c mt s t nhin m > l0 v mt s dng c

    |hk, (g )| c supxRn

    (1+ ||x||2)m||m

    |D(g )(x)| supxRn

    (1+ ||x||2)m||m

    |D(x)|,

    hay vi S(Rn) c g S(Rn) nn limk

    hk, (g ) = 0.

    nh l 2.8. (i) Cho L l mt nh x tuyn tnh lin tc t D(Rn) vo E(Rn) tho mn

    Lh = hL, h Rn, D(Rn),

    vi php dch chuyn h c xc nh bi h(x) = (x h).Khi , c duy nht mt hm suy rng T D(Rn) L = T , D(Rn)

    (ii)Cho T D(Rn). Khi , nh x bin mi D(Rn) thnh T l nh x tuyntnh lin tc t D(Rn) vo E(Rn).

  • 53

    Chng minh. (i) Do nh x 7 l nh x tuyn tnh lin tc trong D(Rn) nn phimhm 7 L()(0) xc nh mt hm suy rng T D(Rn).Do vi mi D(Rn) c Lx = xL, x Rn nn

    L()(x) = (xL())(0) = (L(x))(0) = T (x) = (T )(x)

    nn L() = T .(ii) Vic chng minh da vo Mnh 2.3.

    Nhn xt. T nh l 2.8 c th coi mi hm suy rng (phim hm tuyn tnh lin tc t

    D(Rn) vo R) l mt nh x tuyn tnh t D(Rn) vo E(Rn) giao hon vi php ton dchchuyn, do tch chp ca hai hm suy rng (t nht mt trong chng c gi compact) c

    th coi l mt nh x tuyn tnh t D(Rn) vo E(Rn) giao hon i vi php dch chuyn,v ngc li.

  • 54

    2.2 Php bin i Fourier

    2.2.1 Php bin i Fourier trong S(Rn) v S(Rn)

    nh ngha 2.3. Cho S(Rn). Bin i Fourier ca hm , k hiu l F, l hm cxc nh bi

    F() = (2pi)n2

    Rneix,(x)dx,

    v bin i Fourier ngc ca hm , k hiu l F1, l hm c xc nh bi

    F1() = (2pi)n2

    Rneix,(x)dx.

    Ch . Do |eix,| = |eix,| = 1 v L1(Rn) nn bin i Fourier F v bin iFourier ngc F1 l xc nh trn Rn. Ngoi ra, F() = F1(),F1() = F().K hiu B0(Rn) = {f L(Rn) C(Rn) lim

    ||x|||f(x)| = 0}.Khi , nu f L1(Rn) th Ff,F1f B0(Rn).V d 2. Cho (x) = e

    ||x||22 , bin i Fourier bng bin i Fourier ngc ca v

    F() =nk=1

    (2pi)12

    +

    eixkkx2k2 dxk =

    nk=1

    e2k2 (2pi)

    12

    +

    e12(xkik)2dxk,

    m hm e12z2l hm gii tch nn

    0 =

    CR

    e12z2dz =

    RR

    e12t2dt

    RR

    e12(t+ik)2dt+

    k0

    e12R2eiRe

    122d

    k0

    e12R2eiRe

    122d,

    trong CR l ng cong kn i theo chiu ngc chiu kim ng h gm cc on

    [R,R], [R,R + ik], [R + ik,R + ik], [R + ik,R],m

    limR

    RR

    e12t2dt =

    +

    e12t2dt, lim

    R

    RR

    e12(t+ik)2dt =

    +

    e12(t+ik)2dt,

    limR

    k0

    e12R2eiRe

    122d = 0 = lim

    R

    k0

    e12R2eiRe

    122d

    nn (2pi)12

    + e

    12(xkik)2dxk = (2pi)

    12

    + e

    12x2kdxk = 1 hay F() = ().

    Mnh 2.9. (i) Cho S(Rn). Khi , F,F1 S(Rn) v

    DF() = (i)||F(x(x))(), DF1() = i||F1(x(x))(), F() = (i)||F(D(x))(), F1() = i||F1(D(x))().

  • 55

    T ta c, php bin i Fourier F v php bin i Fourier ngc F1 l nh x tuyntnh lin tc trn S(Rn).(ii)FF1 = F1F = , S(Rn).T ta c, php bin i Fourier F l mt ng cu tuyn tnh trn S(Rn) vi nh xngc chnh l php bin i Fourier ngc F1.(iii) Vi , S(Rn) c

    RnF(x)(x)dx =

    Rn()F()d,

    Rn|(x)|2dx =

    Rn|F()|2d.

    T ta c, php bin i Fourier F l mt ng cu tuyn tnh trn S(Rn) theo tpL2(Rn) vi nh x ngc chnh l php bin i Fourier ngc F1. Khi , ta c th thctrin php bin i Fourier F ln thnh mt ng cu tuyn tnh ng c, t lin hp trn

    L2(Rn) vi nh x ngc F1.(iv) Vi , S(Rn) c

    F( )() = (2pi)n2F()F(), (2pi)n2F((x)(x))() = F() F(),F1( )() = (2pi)n2F1()F1(), (2pi)n2F1((x)(x))() = F1() F1().

    Chng minh. (i) Gi s S(Rn). C ng thc

    D (F)() = D

    ((2pi)

    n2

    Rneix,(x)dx

    )= (2pi)

    n2

    Rn(ix)eix,(x)dx

    = (i)||F(x(x))()

    do eix,x(x) c tch phn trn Rn hi t u theo . Do , F C(Rn).Do vi mi Rn, , Zn+ c Dx(eix,(x)) tin v 0 khi ||x|| tin ra v cng nnbng php tnh tch phn tng phn c

    F() = (2pi)n2

    Rn(iDx)

    eix,(x)dx = (2pi)n2

    Rneix,(iDx)(x)dx

    = (i)||F(D)().

    Nh vy, vi mi , Zn+ c

    D (F)() = (2pi)n

    2

    Rneix,(iDx)

    ((ix)(x))dxnn

    supRn

    |D (F)()| (2pi)n2 supxRn

    |Dx((x)(x))|(1 + ||x||)n+1

    Rn

    1

    (1 + ||x||)n+1dx

    C supxRn

    (1 + ||x||2)n+1+||

    |D(x)|

  • 56

    F S(Rn), v php bin i Fourier l nh x tuyn tnh lin tc trn S(Rn).i vi php bin i Fourier ngc F1 ta chng minh tng t.(ii) Vi , S(Rn) do

    Rneix,

    ((2pi)

    n2

    Rneiy,(y)dy

    )F()d =

    Rneix,()()d =

    =

    Rneix,F()

    ((2pi)

    n2

    Rneiy,(y)dy

    )d

    nn theo nh l Fubini cRn(y)

    ((2pi)

    n2

    Rneixy,F()d

    )dy =

    =

    Rn(y)

    ((2pi)

    n2

    Rneixy,F()d

    )dy

    hay Rn(y)F1(F)(x y)dy =

    Rn(y)F1(F)(x y)dy.

    Chn (x) = (2pi)n2 e

    ||x||22 , (x) =

    n(x), > 0 c

    F() = F1() = (),

    nn Rn(y)(x y)dy =

    Rn(y)F

    1(F)(x y)dy

    khi , theo Nhn xt 2 sau Mnh 2.2, ta cho gim dn v 0 th (x) = F1(F)(x).Nh vy, F1(F) = , S(Rn). Do , F l ng cu tuyn tnh trn S(Rn) vi nh xngc F1.(iii) Vi , S(Rn) theo Fubini c

    Rn(y)

    ((2pi)

    n2

    Rneiy,()d

    )dy =

    Rn()

    ((2pi)

    n2

    Rneiy,(y)dy

    )d

    nn Rn(y)F(y)dy =

    Rn()F()d,

    nu thay bi F1 = F c = F vRn|(y)|2dy =

    Rn|F()|2d.

    Nh vy, php bin i Fourier F l mt php ng cu tuyn tnh, t lin hp, ng c trn

    khng gian S(Rn) vi metric L2(Rn).Do tp S(Rn) tr mt trong L2(Rn) nn c th thc trin php bin i Fourier F thnh mt

  • 57

    php ng cu tuyn tnh, t lin hp, ng c trn L2(Rn).(iv) Vi , S(Rn) t nh l Fubini c

    (2pi)n2

    Rneix,

    ( Rn(y)(x y)dy)dx =

    =

    Rneiy,(y)

    ((2pi)

    n2

    Rneixy,(x y)dx)dy,

    (2pi)n2

    Rneix,

    ( Rn(y)(x y)dy)dx =

    =

    Rneiy,(y)

    ((2pi)

    n2

    Rneixy,(x y)dx)dy,nn

    F( )() = (2pi)n2F()F(),F1( )() = (2pi)n2F1()F1(),

    do

    (F F)() = (2pi)n2F(F1(F)F1(F))() = (2pi)n2F()(),(F1 F1)() = (2pi)n2F1(F(F1)F(F1))() = (2pi)n2F1())().

    Mnh 2.10. Mt s tnh cht ca php bin i Fourier.

    (i) F( h) = F[eihx(x)](), , h Rn, S(Rn).

    (ii) F[(x h)]() = eihF(), , h Rn, S(Rn).

    (iii)F[(tx)]() = |t|nF( t), t 6= 0, Rn, S(Rn).

    (iv) Nu A GL(Rn) th F[(Ax)]() = 1| detA|F((A1)t).

    nh ngha 2.4. Cho f S(Rn). Bin i Fourier ca hm suy rng f, k hiu Ff, l hmsuy rng tng chm c xc nh bi

    Ff, = f,F, S(Rn),

    v bin i Fourier ngc, k hiu F1f, l hm suy rng tng chm c xc nh bi

    F1f, = f,F1, S(Rn).

    Ch . 1. T phn (i) ca Mnh 2.9 php bin i Fourier F, v php bin i Fourier

    ngc F1 l nh x tuyn tnh lin tc trn S(Rn) nn nh x 7 f,F v 7

  • 58

    f,F1 l nh x tuyn tnh lin tc t S(Rn) vo R, vi mi f S(Rn).Ngoi ra, vi S(Rn) c(D(Ff)), = (1)||fx,F(D) = fx, (ix)(F)(x) = F((ix)fx), (Ff), = fx,F() = fx, (iD)(F)(x) = F((iD)fx), nn D(Ff) = (i)||F(xf), (Ff) = (i)||F(Df).Tng t, c D(F1f) = i||F1(xf), (F1f) = i||F1(Df).Hn na, vi php bin i Fourier F, v php bin i Fourier ngc F1 l nh x tuyntnh lin tc trn S(Rn).2. T phn (ii) ca Mnh 2.9 c

    F1Ff, = f,FF1 = f, = f,F1F = FF1f, , S(Rn),nn FF1f = F1Ff, f S(Rn). Do , php bin i Fourier F l ng cu tuyn tnhlin tc trn S(Rn) vi nh x ngc l php bin i Fourier ngc F1.3. Vi f S(Rn), S(Rn) theo Ch ca Mnh 2.4 th f S(Rn). Khi ,bin i Fourier F(f ) l hm suy rng tng chm c xc nh nh sau

    F(f ), = f ,F = ((f ) (F))(0)= f, ( F1) = f, (F1(F) F1)= f, (2pi)n2F((F)) = (2pi)n2FFf, trong S(Rn), nn F(f ) = (2pi)n2FFf.Tng t, c F1(f ) = (2pi)n2F1F1f.Khi , c

    Ff F = F((2pi)n2F1(F)F1(Ff)) = (2pi)n2F(f),F1f F1 = F1((2pi)n2F(F1)F(F1f)) = (2pi)n2F1(f).V d 3. F l hm hng (2pi)

    n2 .

    V d 4. Hm hng 1 (l hm suy rng tng chm) c bin i Fourier F1 = (2pi)n2 .

    V d 5. Trong khng gian Rn+1, bin i Fourier ca hm Dirac theo bin x c xcnh nh sau

    Fx, = (2pi)n2Rnxeix,0(x, 0)dx = (2pi)

    n2

    Rnx(x, 0)dx.

    V d 6. Tm nghim c bn E ca phng trnh Parabolic:

    (

    tx)E = . (2.7)

    Hm suy rng E tho mn phng trnh (2.7) khi v ch khi bin i Fourier (theo bin x)

    FxE tho mn phng trnh vi phn thng

    tFxE + ||||2FxE = Fx. (2.8)

  • 59

    C FxE(, t) = (2pi)n

    2 e||||2t, t > 0 v FxE(, t) = 0, t 0, tho mn phng trnh(2.8)v vi C0 (Rn+1) c

    tFxE + ||||2FxE, =

    +0

    Rn(2pi)

    n2 e||||

    2t(

    t(, t) ||||2(, t))ddt

    =Rn

    +0

    (2pi)n2 e||||

    2t

    t(, t)dtd

    +

    Rn

    +0

    (2pi)n2 e||||

    2t||||2(, t)dtd

    =(2pi)n2

    Rn(, 0)d = Fx,

    do E(x, t) = (2pit)n2 e

    ||x||22t , t > 0 v E(x, t) = 0, t 0 nghim c bn ca phngtrnh Parabolic (2.7).

    V d 7. Trn R, vi mi R > 0, C0 (R) c

    F[(R |x|)](), = (R |x|),F = RR

    (2pi)12

    +

    eix(x)dxd

    nn theo nh l Fubini, F[(R |x|)]() = RR eixd = ( 2pi ) 12 sin(R) .V d 8. Vi (x, t) R R tm nghim c bn ca phng trnh hyperbolic trn ngthng

    (2

    t2

    2

    x2)E = . (2.9)

    Hm suy rng E tho mn phng trnh (2.9) khi v ch khi bin i Fourier theo bin x

    ca n FxE tho mn phng trnh vi phn thng cp 2

    2

    t2FxE + ||2FxE = Fx. (2.10)

    C FxE(, t) = (2pi) 12sin(t)tho mn phng trnh (2.10)v vi C0 (R2) c

    2

    t2FxE + ||2FxE, =

    +0

    R(2pi)

    12sin(t)

    (2

    t2(, t) + ||2(, t))ddt

    =

    R

    +0

    (2pi)12sin(t)

    2

    t2(, t)dtd

    +

    R

    +0

    (2pi)12sin(t)

    ||2(, t)dtd

    =(2pi)12

    R(, 0)d = Fx,

    do , E(x, t) = 12(t |x|).

  • 60

    2.2.2 Cc nh l Paley- Wiener

    Cho C0 (Rn), supp BR(0), bin i Fourier F ca hm l mt hm gimnhanh, do C0 (Rn) S(Rn). Hn na, ta cn c th thc trin F ln trn Cn

    F : 7 F() = (2pi)n2BR(0)

    eix,(x)dx,

    vi, x, =nk=1 xkk =nk=1 xkk + ink=1 xkk, k = k + ik.D thy, F() l hm kh vi v hn trn Cn. Ngoi ra, ta c

    F() = (2pi)n2

    ||x||R

    eix,(iD)(x)dx

    = (2pi)n2

    ||x||R

    ex,ix,(iD)(x)dx ( = + i)

    nn |F()| CeR|| do , vi mi N > 0 u c mt s CN > 0

    |F()| < CN(1 + ||||)NeR||=||, Cn. (2.11)

    Tng t, c

    |D(F)()| = |F(x)()| CR||eR||=||, C

    nn F() l hm gii tch trn Cn.nh l Paley- Wiener s chng minh bt ng thc (2.11) l iu kin cn v mt

    hm gii tch trn Cn l bin i Fourier ca mt hm kh vi v hn c gi compact trnRn.

    nh l 2.11. Cho : Cn C l hm gii tch. Khi , iu kin cn v c mt sR > 0 mt hm C0 (Rn), supp BR(0) sao cho () = F() ltn ti mt s R > 0, vi mi N > 0 u c mt s CN > 0 sao cho

    |()| < CN(1 + ||||)NeR||=||, Cn. (2.12)

    Chng minh. iu kin cn c chng minh trn. Ta ch cn phi chng minh iu

    kin . T bt ng thc (2.12) tch phn (x) = (2pi)n2

    Rn e

    ix,()d l xc nhvi mi x, ng thi n l hm kh vi theo x, do eix,() l hm c tch phn trn Rn

    hi t u theo x. Vi mi Rn, do hm eix,() l hm gii tch trn Cn nn n

  • 61

    gii tch theo tng bin, tng t nh V d 2, c

    (x) = (2pi)n2

    Rn

    eix,()d

    = (2pi)n2

    Rn

    ei(x11+n

    j=2 xjj)(1, 2, . . . , n)d

    = (2pi)n2

    Rn

    ei(x11+x22+n

    j=3 xjj)(1, 2, 3, . . . , n)d

    = (2pi)n2

    Rn

    ei(n

    j=1 xjj)(1, . . . , n)d

    = (2pi)n2

    Rn

    eix,+i( + i)d.

    Khi , t bt ng thc (2.12) c (.+ i) L2(Rn) nn t Mnh 2.9, phn (iii) c

    F( + i) = (2pi)nxRn

    eix,+iRn

    eix,+i( + i)ddx

    = (2pi)nxRn

    eix,Rn

    eix,( + i)dxdx = F(F1[(.+ i)])()

    = ( + i)

    v |(x)| CneR||||x,Rn(1 + ||||)n1dm

    Rn(1 + ||||)n1d hi t,v nu ||x|| > R, = 1

    tx th lim

    t0+eR||||x, = lim

    t0+e(R||x||)||x||

    t = 0

    nn (x) = 0, ||x|| > R, do C0 (Rn), supp BR(0).

    T nh l Paley- Wiener, ta c th nh ngha bin i Fourier cho hm suy rng bng

    cch sau.

    nh ngha 2.5. Khng gian S(Cn) l khng gian bao gm tt c cc hm gii tch A(Cn) vi tnh cht

    R > 0,N > 0,C = CN > 0 : |()| C(1 + ||||)NeR||=||, Cn,

    vi khi nim hi t nh sau

    mt dy {k}k=1 trong S(Cn) c gi l hi t n hm S(Cn) trong S(Cn) nu

    (i) R > 0,N > 0,C = CR > 0 :

    |k()| C(1 + ||||)NeR||=||, Cn, k = 1, 2, . . . ,

    (ii) limk

    supCn

    |k() ()| = 0, Cn.

  • 62

    T nh l Paley- Wiener ta c php bin i Fourier F l mt ng cu tuyn tnh t

    D(Rn) vo S(Cn), m c php nhng lin tc D(Rn) S(Rn)nn, theo Mnh 2.9, cnhng lin tc t S(Cn) vo S(Rn). T , mi hm suy rng tng chm c th coi l mtphim hm tuyn tnh lin tc trn S(Cn).

    nh ngha 2.6. Cho f D(Rn). Bin i Fourier ca hm suy rng f, k hiu Ff, lmt nh x t S(Cn) vo C c xc nh nh sau,

    7 Ff, = f, , S(Cn),

    trong , C0 (Rn) c xc nh, theo nh l Paley- Wiener, t sao cho () =F().

    Ch . 1. Php bin i Fourier F l mt ng cu tuyn tnh t D(Rn) vo S(Cn) nn Ffl mt phim hm tuyn tnh lin tc trn S(Cn).2. Vi f S(Rn), th bin i Fourier Ff c th thc trin ln thnh mt phim hm tuyntnh lin tc trn S(Rn) bng cch

    7 f,F, S(Rn).

    Do , nh ngha 2.6 khng mu thun vi nh ngha 2.4.

    Phn u ca mc ny l nh l Paley -Wiener cho hm c bn. Tip theo, ta s trnh

    by nh l Paley-Wiener- Schwartz cho hm suy rng.

    Cho f E(Rn). Do E(Rn) S(Rn) nn bin i Fourier Ff c xc nh nh sau

    7 f,F, S(Rn).

    Do S(Rn) c mt dy {k}k=1 trong C0 (Rn) hi t n trong S(Rn).Vi mi k, gi suppk l tp compact trong Rn,Fk E(Rn), nn cc tng Riemann

    h() = (2pi)n

    2

    j

    eijh,k(jh),

    trong ,

    j

    l tng ly trn cc im c to nguyn trong Rn,tng ny l hu hn v

    gi suppk tp compact, hi t n Fk() trong E(Rn) khi h gim dn v 0 nn

    f,Fk = limh0+

    f, h = (2pi)n2 limh0+

    j

    f, eijh,k(jh)

    = (2pi)n2 limh0+

    j

    k(jh)f, eijh,

    m tng Riemann

    h() = (2pi)n

    2

    j

    k(jh)f, eijh,

  • 63

    hi t n (2pi)n2

    xRn k(x)f, eix,dx khi h gim dn v 0, do

    f,Fk = (2pi)n2xRn

    k(x)f, eix,dx.

    Li c do S limk

    k = nn S limk

    Fk = F, m f E(Rn) c cp 0, vi mix Rn hm eix, E(Rn) nn c s dng C v s t nhin m khng ph thuc x saocho

    |f, eix,| C supRn

    ||m

    |D (eix,)| C(1 + ||x||)m

    do cho k ra v cng c

    f,F = (2pi)n2xRn

    (x)f, eix,dx

    do , hm suy rng Ff c th vit di dng hm thng thng (2pi)n2 f, eix,.V d 9. Trn R3, R > 0 hm suy rng (R ||x||) c xc nh nh sau

    7 (R ||x||), =||x||=R

    (x)dS.

    D thy gi supp (R ||x||) = SR l tp compact hay (R ||x||) E(R3). Khi , bini Fourier ca (R ||x||) l hm

    F[(R ||x||)]() = (2pi) 32 (R ||x||), eix, = (2pi)n2||x||=R

    eix,dS,

    chuyn sang h to cc (vi trc (0, 0, t) = )c

    F[(R ||x||)]() = (2pi) 32R2 pi0

    2pi0

    sin()eiR cos()||||dd

    = (2pi)32R4pi

    sin(R||||)|||| .

    V d 10. Trong (x, t) R3R, tm nghim c bn E ca phng trnh sng trong khnggian

    (2

    t2x)E = . (2.13)

    Hm suy rng E l nghim ca phng trnh (2.13) khi v ch khi bin i Fourier ca E

    (theo bin x)FxE tho mn phng trnh vi phn thng

    2

    t2FxE + ||||2FxE = Fx. (2.14)

  • 64

    C FxE(x, t) = (2pi)32

    sin(t||||)|||| , t > 0 v FxE(x, t) = 0, t 0 tho mn phng trnh(2.14), v vi C0 (R2) c

    2

    t2FxE + ||||2FxE, =

    +0

    R3(2pi)

    32sin(t||||)|||| (

    2

    t2(, t) + ||||2(, t))ddt

    =

    R3

    +0

    (2pi)32sin(t||||)||||

    2

    t2(, t)dtd

    +

    R3

    +0

    (2pi)32sin(t||||)|||| ||||

    2(, t)dtd

    =(2pi)32

    R(, 0)d = Fx,

    do , E(x, t) = 14pit(t ||x||), t > 0, E(x, t) = 0, t 0.Nh vy, vi f E(Rn) th bin i Fourier Ff l mt hm t Rn vo C c xc nhbi

    7 fx, eix,.Hm Ff() l hm kh vi v hn v c th thc trin ln thnh mt hm gii tch trn Cn

    nh sau

    7 fx, eix,.Do f E(Rn), nn c mt s R > 0 supp f BR(0). Khi , c mt hm C0 (R)m (t) = 0, t 1, (t) = 1, t 1

    2.

    t (x) = eix,(||||(||x|| R)) c

    vi mi th C0 (Rn),

    vi = 0 th 0(x) = eix,0, D(x) = 0,x Rn, 6= 0,

    vi 6= 0 th (x) = eix,,||x|| R + 12|||| , supp BR+ 1|||| (0), v

    D(x) =

    (i)eix,Dx (||||(||x|| R)),

    m f E(Rn), supp f BR(0)

    nn fx, eix, = f, , v c mt s N Z+, v mt s c > 0 sao cho

    |f, | c supxRn

    ||N

    |D(x)|

    c(1 + ||||)NeR||=||. (2.15)

    nh l Paley -Wiener- Schwartz khng nh iu kin cn v mt hm gii tch l

    bin i Fourier ca mt hm suy rng c gi compact l bt ng thc (2.15).

  • 65

    nh l 2.12. Cho : Cn C l hm gii tch. Khi , iu kin cn v c mt sR > 0, mt hm suy rng f E(Rn), supp f BR(0) sao cho () = Ff() ltn ti s R,N,C > 0 sao cho

    |()| C(1 + ||||)NeR||=||, Cn. (2.16)Chng minh. iu kin cn c chng minh trn. Ta ch cn phi chng minh iu

    kin . T bt ng thc (2.16) Vi mi Rn, hm (. + i) S(Rn) nn bin iFourier ca n f = F1[()] S(Rn) v Ff() = (), Cn.Do D(Rn)( S(Rn)), f S(Rn) nn nu t f = f th hm

    F(f) = (2pi)n2F()F(f) = (2pi)

    n2F()

    l hm gii tch trn Cn.Li c, do C0 (Rn), supp() B(0) nn theo nh l Paley- Wiener vi miN1 > 0,u c mt s CN1 > 0

    |F()()| CN1(1 + ||||)N1e||=||, Cn

    do , t bt ng thc (2.11), c

    |F(f)()| CN1C(1 + ||||)N1+Ne(R+)||=||, Cn.T nh l Paley- Wiener c supp(f) BR+(0),m S lim

    0+f = f nn supp f BR(0).

    Cho f S(Rn), g E(Rn). T nh l Paley- Wiener- Schwartz, bin i Fourier cahm suy rng c gi compact g l Fg() = gx, eix, l hm kh vi v hn trn Rn vc s N,C > 0 sao cho

    |Fg()| C(1 + ||||)N , Rn,nn vi mi Zn+ u c s N, C > 0 sao cho

    |D(Fg)()| = |||Fg()| C(1 + ||||)N , Rn,do , tch FgFf S(Rn). Ngoi ra f g S(Rn) nn F(f g) S(Rn).Khi , vi mi S(Rn) c

    FgFf, = Ff, (Fg) = f,F((Fg))= (2pi)

    n2 f,F(Fg) F() (Fg S(Rn))

    = (2pi)n2 f, g F() (Fg = F1g)

    = (2pi)n2 f (g F()) = (2pi)n2 f (g (F))

    = (2pi)n2 f g,Fnn F(f g) = (2pi)n2FgFf.Tng t, F1(f g) = (2pi)n2F1gF1f.

  • Chng 3

    Khng gian Sobolev

    3.1 nh ngha v mt s tnh cht

    3.1.1 Khng gian Sobolev cp nguyn khng m

    Cho l mt tp m trong Rn. Cho f L2()( L2loc() L1loc()), khi f c thcoi nh mt hm suy rng c xc nh nh sau

    7 f, =

    f(x)(x)dx, D().

    T bt ng thc Cauchy- Schwartz c nh gi

    |f, | (

    |f(x)|2dx) 1

    2(

    |(x)|2dx) 1

    2, D(). (3.1)

    Ta s chng minh bt ng thc (3.1) l iu kin cn v mt hm suy rng l mt

    hm trong L2(). Vi ch , khng gian i ngu (gm cc phim hm tuyn tnh lin tc)

    ca L2() cng l L2() nn ta s pht biu Mnh di dng sau.

    Mnh 3.1. (i) Cho f D(). Nu c mt s dng C sao cho

    |f, | C(

    |(x)|2dx) 12 , D() (3.2)

    th ta c th thc trin f ln thnh mt phim hm tuyn tnh lin tc trn L2().

    (ii) Cho f L2(). Khi , thu hp ca f trn D() l mt hm suy rng tho mn btng thc (3.2) vi hng s C = ||f ||L2 .

    Chng minh. (i) Do C0 () tr mt trong L2() nn nu hm suy rng f tho mn bt ng

    thc (3.2) th ta c th thc trin f ln thnh phim hm tuyn tnh lin tc trn L2(). Thc

    trin ny l thc trin duy nht.

    (ii) Phn ny c chng minh t bt ng thc Cauchy- Schwartz.

    65

  • 66

    Ch . Nh vy, ta c th coi L2() l khng gian tt c cc hm suy rng tho mn bt

    ng thc (3.1), vi ch f, g L2() bng nhau theo ngha suy rng khi v ch khi bngnhau trong L2().

    Nu coi mt hm bnh phng kh tch l mt hm suy rng th s hi t theo ngha suy

    rng chnh l s hi t yu. S hi t yu ny khng dn n s hi t trong L2()

    ngay c khi thm c tnh b chn u. Chng hn, ta xt v d sau trn ng thng R,ly fk(x) = [k,k+1](x) hi t yu v 0 khi k tin ra v cng v vi mi D(Rn)c mt s k0 N supp [k0, k0], nn

    R [k,k+1](x)(x) = 0, vi k > k0. v

    ||[k,k+1]||L2 = 1, k = 1, 2, . . . , nn dy {[k,k+1]}k=1 khng hi t trong L2(R).Khc vi cc khng gian hm suy rng khc, nu f D(S,E,E, S,D) th Df D(S,E,E, S,D), Zn+, mt cch tng ng; nu f L2() th cha chc Df L2(), ngay c khi f c o hm suy rng cp cao hn nm trong L2().

    Chng hn, trn = [1, 1], hm Heaviside H(t) L2(1, 1) nhng DH = 6L2(1, 1). Hoc hm du sgn(t) L2(1, 1) nhng D sgn(t) 6 L2(1, 1) v gi s khngphi th 1

    1D sgn(t)(t)dt =

    11

    sgn