55
Narcisse Ngada DESY, MKK 14.05.2014 Outline 1) What is si ulati!n " 2) Wh # siulati!n " $) %rinci &les !' siulati!n 4) ( #&es !' siulati!n 5) !nclusi!n Siulati!n Analog simulation Numerical simulation

Ngada.pdf

Embed Size (px)

Citation preview

Page 1: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 1/55

Narcisse Ngada

DESY, MKK

14.05.2014

Outline

1) What is siulati!n "

2) Wh# siulati!n "

$) %rinci&les !' siulati!n

4) (#&es !' siulati!n

5) !nclusi!n

Siulati!n

Analog simulation

Numerical simulation

Page 2: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 2/55

2

What is simulation?

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Page 3: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 3/55

3

Those who can, do.

Those who can't, simulate.-- anonymous writer 

What is siulati!n "

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Page 4: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 4/55

4

What is siulati!n "

Simulation is a procedure to analyse physical

systems

Simulation is an imitation of real-world activities

Simulation is performed by developing a model

A model builds a conceptual framing to describe aphysical system

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Page 5: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 5/55

5

What is siulati!n "

Physical system

Experiments withphysical system

Experimenta with modelsof physical system

Physical modelMathematical

model

Analytical method(accurate)

Simulation(approximate)

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Page 6: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 6/55

6

Physical system Simulation model

But please never forget!

What is siulati!n "

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Simulations are gross simplifications of the reality and are only

as good as their underlying assumptions

Page 7: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 7/55

7

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Why simulation?

Page 8: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 8/55

8

A study on the real system could be too dangerous,

too complicated, too expensive

The real system doesn’t exist yet, isn’t understood

or is very complex

The real system is working too fast / too slow or

can’t be observed directly

Nowadays the complexity of physical systems in

the power converters world makes the use of

simulation unavoidable

Wh# siulati!n "

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Page 9: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 9/55

9

Physics

Astrophysics

Chemistry

Biology

ecomomics Engineering

Social science

Training Education

Video games

And more…

Power accelerators

Power convertersSimulation

Fields of application

Wh# siulati!n "

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Page 10: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 10/55

10

Saving time and money

Repeatable and optimizable

Studying the behavior of a system withoutbuilding it

Helps to find un-expected behavior of thephysical system

Advantages of simulation

Wh# siulati!n "

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Page 11: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 11/55

11

Simulation errors

Can’t provide easy answers to complex problems

Can’t solve problems by itself

Time consuming and expensive

Disadvantages of simulation

Wh# siulati!n "

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Page 12: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 12/55

12

Principle of simulation

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Page 13: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 13/55

13

(1) Analog simulation

Simulation

Input data (Modeling)

Boundary conditions

Solution of differential / integral equations

Time precisely controllable

Space less controllable

Mainly for circuit simulation

(2) Numerical simulation

Space precisely controllable

Time less controllable

Mainly for field simulation

%rinci&le !' siulati!n

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Page 14: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 14/55

14

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

(1) Analog simulation (2) Numerical simulation

Surface current distribution of the coil andmagnetic field strength along a vertical cut plane

The current and voltage waveformsfor a pure inductance circuit

time

Page 15: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 15/55

15

Kirchhoff'scircuit laws

System ofDE / IE

Modeling(Schematic)+ +

Current law

Voltage law

(1) Analog simulation

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

%rinci&le !' siulati!n

Page 16: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 16/55

16

Meshing andBoundary conditions

System ofDE / IE

Modeling(Geometric)+ +

(2) Numerical simulation

%rinci&le !' siulati!n

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Page 17: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 17/55

17

(#&es !' siulati!n

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Analog simulation

Page 18: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 18/55

18

Pspice

Psim

Matlab / Simulink / SimPowerSystems / PLECS

LTSpice

CASPOC

ANSYS Simplorer

*nal!g siulati!n

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Some simulation tools

Page 19: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 19/55

19

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Tunnel design

Example(1): temperature simulation for European XFEL at DESY

*nal!g siulati!n

Page 20: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 20/55

20

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

− Overview of temperature profile along the XTL-tunnel

− Stable temperature profile (max. ∆T of +/- 0.5 K) during operation modes

Example(1): temperature simulation for European XFEL at DESY

Motivation

Input parameters

−Heat sources / Heat sinks (dependent on a position)

− Geology of the ground

− Experience and temperature measurement in HERA

− Analyze the transient thermal processes in the XTL tunnel

Goal

*nal!g siulati!n

Page 21: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 21/55

21

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

1) Analyses with Matlab werelimited to steady state calculation

2) Analyses with ANSYS CFD wouldhave cost too much computingtime & capacity

Example(1): temperature simulation for European XFEL at DESY

*nal!g siulati!n

Page 22: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 22/55

22

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Complex multiphysics circuit analysis:

AC, DC and TR analysis

Based on numerical methods of mathematics

Non linear Multidomain-System simulation

Very stable simulation algorithm

Enough user licenses in our department

ANSYS Simplorer als simulation tool

*nal!g Siulati!n+ Si&l!rer

electrical, power electronic, electromagnetic, thermal, electromechanicaland hydraulic

Example(1): temperature simulation for European XFEL at DESY

Page 23: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 23/55

23

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

*nal!g Siulati!n+ Si&l!rer

Duality principle

50 m XTL tunnel sectionGroundwater

Glacial till

RB Ri

thRs1

CLth

CBth

RL

d 1

Rs2

d 2 

Cs1Cs2

Example1: temperature simulation for European XFEL at DESY

Page 24: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 24/55

24

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Start alues

- Ground water: 10oC

- Concrete: 10oC

- Inlet temperature: 23oC

T3!1"#u

$%T: $w1:!1

$%T: $w2:!0

$%T: $w3:!0

D%L: T3&&'200

T2 1(uT1!1500u

$%T: $w1:!1

$%T: $w2:!0

$%T: $w3:!0

D%L: T2&&3(00

$%T: $w1:!1

$%T: $w2:!0

$%T: $w3:!0

$%T: $w1:!1

$%T: $w2:!0

$%T: $w3:!0

D%L: T1&&'200

ICA:

T_Grundwasser := 283.15

T_Luft := 296.15

T_Beton:=273.15

Twr_10:=313.15

Twr_21:=293.15

Twr_22:=303.15

*nal!g Siulati!n+ Si&l!rer

Example(1): temperature simulation for European XFEL at DESY

Page 25: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 25/55

25

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Taus)

TausL

Taus*

TeinL

TeinR

TausH

TausL

TausR

TeinH  MGrundwasser

TeinL

TeinR

TausH

TausL

TausR

TeinH  MGrundwasser1

TeinL

TeinR

TausH

TausL

TausR

TeinH  MGrundwasser2

TeinL

TeinR

TausH

TausL

TausR

TeinH  MGrundwasser3

TeinL

TeinR

TausH

TausL

TausR

TeinH  MGrundwasser4

TeinL

TeinR

TausH

TausL

TausR

TeinH  MGrundwasser5

TeinL

TeinR

TausH

TausL

TausR

TeinH  MGrundwasser6

TeinL

TeinR

TausH

TausL

TausR

TeinH  MGrundwasser7

TeinL

TeinR

TausH

TausL

TausR

TeinH  MGrundwasser8

TeinL

TeinR

TausH

TausL

TausR

TeinHMGrundwasser9

TeinL

TeinR

TausH

TausL

TausR

TeinH  MGrundwasser10

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser11

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser12

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser13

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser14

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser15

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser16

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser17

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser18

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser19

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser20

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser21

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser22

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser23

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser24

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser25

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser26

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser27

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser28

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser29

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser30

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser31

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser32

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser33

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser34

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser35

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser36

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser37

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser38

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser39

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser40

TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser41 Θ

TLuft TeinL

TeinR

TausH

TausL

TausR

TeinH   MGrundwasser42

T*+1

T*+2

T*+3

*nal!g Siulati!n+ Si&l!rer

50m

Outlet: 2150 m

1050 m

Inlet

Tunnel length: 2100 m

43 submodels

Example(1): temperature simulation for European XFEL at DESY

Page 26: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 26/55

26

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

12.03.2013: Temperature in the empty main tunnel

*nal!g Siulati!n+ Si&l!rer

Simulation could fitting measurements only after Good understanding of real system Measurements on real system

Readjustments of your simulation model

Example(1): temperature simulation for European XFEL at DESY

Tunnel length [m]

   T

  e  m  p  e  r  a   t  u  r  e   [              °   C

   ]

1 Wh i i l i "

Page 27: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 27/55

27

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

*nal!g Siulati!n+ Si&l!rer

Example(1): temperature simulation for European XFEL at DESY

H  e a t  

 s o ur 

 c e si  n

 t  h  e

T L 

 t   unn

 el  

T  unn

 el  

 s e c t  i   on

I  n o p er 

 a t   a t  i   on

 S  er v

i   c e d  a y

Pulse cables left LK ON OFF

Pulse cables right RK ON OFF

MV power cables HT ON ON

LV Power cables LK ON ON

DC power cables LK ON OFF

Pulse Transformators HT ON OFF

Impedance matching network HT ON OFF

Magnets HT ON OFF

30°C water pipe 1 (VL) RL ON ON

40°C water pipe 1 (RL) HT ON ON

20°C water pipe 2 (VL) HT ON ON

25°C water pipe 2 (RL) HT ON ON

20°C water pipe 3 (VL) HT ON ON

20°C water pipe 4 (VL) RKG ON ON

20°C water pipe 5 (VL) LK ON ON

Elektronic racks HT ON ON

Waveguides HT ON OFF

Lighting   HT   OFF   ON

Two operating modes of the XFEL

Inlet temperature: 23°C

Temperatur after 50m in the tunnel?

Temperature after 2100m at the end of thetunnel ?

Temperatur behavior in the XTL tunnel after10 days of machine operating and a serviceday(~10 h) ?

1 What is si lati!n "

Page 28: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 28/55

28

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00Time [day]

15.00

17.50

20.00

22.50

25.00

27.50

30.00

32.50

   Y   1   [  c  e   l   ]

Simplorer1Rectangular Plot1_1_1_1   ANSOFT

m1m2

m3

Curve Info

TausR.TTR

TausH.TTR

TausL.TTR

Name X Y

m1 1.3000E+001 2.7595E+001

m2 1.3000E+001 2.7470E+001

m3 1.3000E+001 2.5799E+001

*nal!g Siulati!n+ Si&l!rer

Example(1): temperature simulation for European XFEL at DESY

Temperature after 50 m in the XTL Tunnel

Time [days]

   T  e  m  p  e  r  a   t  u

  r  e   [              °   C   ]

1 What is siulati!n "

Page 29: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 29/55

29

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00Time [day]

14.00

16.00

18.00

20.00

22.00

24.00

26.00

   Y   1   [  c  e   l   ]

Simplorer1Rectangular Plot1_1_1_1_1   ANSOFT

m1

m2

m3

Curve Info

THM1.TTR

THM2.TTR

THM3.TTR

Name X Y

m1 1.3000E+001 2.2830E+001

m2 1.3000E+001 2.1804E+001

m3 1.3000E+001 2.0224E+001

*nal!g Siulati!n+ Si&l!rer

Temperature at the end of XTL Tunnel (2150 m)

Example(1): temperature simulation for European XFEL at DESY

   T  e  m  p  e  r  a   t  u

  r  e   [              °   C   ]

Time [days]

1 What is siulati!n "

Page 30: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 30/55

30

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

*nal!g Siulati!n+ Si&l!rer

Example(2): EMI behavior of XFEL modulators with pulse cables

29 HV pulse power supplies (modulators) of 10MW

RF station each in a central modulator hall (XHM)

RF stations(klytrons & pulstransformers) in theaccelerator tunnel (XTL)

Up to 1.5 km long triaxial cablesbetween RF stations and modulators

Analyses of EMI behavior with pulsecables and modulators

1. What is siulati!n "

Page 31: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 31/55

31

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

*nal!g Siulati!n+ Si&l!rer

Example(2): EMI behavior of XFEL modulators with pulse cables

1. What is siulati!n "

Page 32: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 32/55

32

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

*nal!g Siulati!n+ Si&l!rer

AM5.I [A]Ra.I [A]

t [s]

218.59

-183.29

0

-150.00

-100.00

-50.00

50.00

100.00

150.00

1.63m 2.03m1.70m 1.75m 1.80m 1.85m 1.90m 1.95m

Measurement Simulation

Example(2): EMI behavior of XFEL modulators with pulse cables

1. What is siulati!n "

Page 33: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 33/55

33

Ansys Simplorer vs LTSpice IV

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

*nal!g Siulati!n+ Si&l!rer

ANSYS Simplorer LTSpice IV

Limited student version / not free

Analog & digital circuitssimulation

Idealized / accurate model ofcomponents

Schematic draw(comfortable)

Multiphysics simulation

Free & popular

Mainly analog circuits simulation

Accurate model of components

Schematic draw(not comfortable)

Electrical circuit simulation

1. What is siulati!n "

Page 34: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 34/55

34

Roundup

Basic understanding of physicalsystem for a good simulationmodel

Simulation model as simple as

possible

Simulation model as complex asneeded

Measurement of physical modelto optimize the simulation model

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

*nal!g Siulati!n+ Si&l!rer

1. What is siulati!n "

Page 35: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 35/55

35

(#&es !' siulati!n2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Numerical simulation

1. What is siulati!n "

h l "

Page 36: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 36/55

36

Meshing and

Boundary conditions

System of

DE / IE

Models

(geometric)+ +

Nuerical siulati!n

Numerical Simulation splits the problem into smaller pieces, solves those separatelywith numerical methods, and finally merges the partial results into the solution forthe entire problem.

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

1. What is siulati!n "

2 Wh i l ti "

Page 37: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 37/55

37

finite difference method

method of weighted residuals

moment method

finite element method

transmission-line modeling

Monte Carlo method

method of lines

Nuerical siulati!n2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Some numerical methods

1. What is siulati!n "

2 Wh# siulati!n "

Page 38: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 38/55

38

ANSYS CFD ANSYS HFSS

CST Microwave studio

ANSYS Maxwell 2D

FEKO

CONCEPT-II

Quickfield

Nuerical siulati!n2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Some simulation tools

1. What is siulati!n "

2 Wh# siulati!n "

Page 39: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 39/55

39

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

− EMI during the commissioning of Modulators

− Measurement of high inducted current on PE conductor

− Source of high inducted current not clear (50Hz / up to 50App)

Motivation

Suspicion

− Theoretical analysis and measurement to confirm the suspicions− Optimization of the grounding system of modulators

Goal

Nuerical siulati!n+ -uic'ield

Example: grounding of XFEL modulators for RF stations at DESY

− Insulation fault− Inducted current from power cables

1. What is siulati!n "

2 Wh# siulati!n "

Page 40: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 40/55

40

Easy to learn / Easy to use

Mainly for EM fields simulation

Coupled multiphysics

Various analysis types

Electrical circuit combined with fields simulation

Only basic components for electrical circuit analysis

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Nuerical siulati!n+ -uic'ield

Quickfield as simulation tool

Example: grounding of XFEL modulators for RF stations at DESY

AC, DC and transient electromagnetics, electrostatics, DC, AC and transientelectric analysis, steady-state and transient heat transfer, Stress analysis)

1. What is siulati!n "

2. Wh# siulati!n "

i l i l i i 'i ld

Page 41: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 41/55

41

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Nuerical siulati!n+ -uic'ield

Transformer HV racks Power & PE cables Modulator

29 HV pulse power supplies (Modulators) capable of 10MW RF station each Modulators in a central modulator hall (XHM)

RF stations in the accelerator tunnel

View of modulators hall

Example: grounding of XFEL modulators for RF stations at DESY

1. What is siulati!n "

2. Wh# siulati!n "

N i l i l i - i 'i ld

Page 42: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 42/55

42

#

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Nuerical siulati!n+ -uic'ield

Nbr. of modulators

Output Voltage

Output current

Ave. Output power

Max. pulse power

Pulse duration

Pulse repetition rate

29

0 – 12kV

0 – 2 kA

max. 380kW

16,8 MW

0,2 – 1,7 ms

1 – 30 Hz

Technical data of a modulator

Example: grounding of XFEL modulators for RF stations at DESY

1. What is siulati!n "

2. Wh# siulati!n "

N i l i l ti - i 'i ld

Page 43: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 43/55

43

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Nuerical siulati!n+ -uic'ield

View of grounding system in the hall: PE conductor near power cables

Measure of 21 Arms / 50HzInterference current on PE-conductor

Example: grounding of XFEL modulators for RF stations at DESY

1. What is siulati!n "

2. Wh# siulati!n "

Nuerical siulati!n -uic'ield

Page 44: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 44/55

44

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Nuerical siulati!n+ -uic'ield

H-Field

Current density

I = 182,13 A

I = 182,14 A

I = 182,13 A

I = 18,53 Arms

I = 18,53 Arms

I= 0,0094 A

ρ=120/

ρ=240/

ρ=0/

Example: grounding of XFEL modulators for RF stations at DESY

Simulation results of PE conductor near power cables

1. What is siulati!n "

2. Wh# siulati!n "

Nuerical siulati!n+ -uic'ield

Page 45: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 45/55

45

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Nuerical siulati!n+ -uic'ield

6 Arms

6 Arms

H-Field

Current density

Example: grounding of XFEL modulators for RF stations at DESY

Simulation results with PE conductor between power cables

1. What is siulati!n "

2. Wh# siulati!n "

$ % i i l ' i l iNuerical siulati!n+ -uic'ield

Page 46: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 46/55

46

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Nuerical siulati!n+ -uic'ield

2,8 Arms

2,8 Arms

Current density

H-Field

Simulation results of PE conductor at ~25cm from power cables

Example: grounding of XFEL modulators for RF stations at DESY

1. What is siulati!n "

2. Wh# siulati!n "

$ % i i l ' i l tiNuerical siulati!n+ -uic'ield

Page 47: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 47/55

47

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Nuerical siulati!n+ -uic'ield

Picture Measurement

Umod =10kV; Pulse repetition =10Hz; Pulse length =1000us

Example: grounding of XFEL modulators for RF stations at DESY

Measurement with PE conductor between power cables

PE conductor ~ 12App

Power cables ~ 1,2App

1. What is siulati!n "

2. Wh# siulati!n "

$ %rinci&le !' siulati!nNuerical siulati!n+ -uic'ield

Page 48: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 48/55

48

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Nuerical siulati!n+ -uic'ield

Picture Measurement

Umod =10kV; Pulse repetition =10Hz; Pulse length =1000us

PE conductor ~ 5.6App

Power cables ~ 1,2App

Example: grounding of XFEL modulators for RF stations at DESY

Measurement with PE conductor at ~25cm from power cables

1. What is siulati!n "

2. Wh# siulati!n "

$ %rinci&le !' siulati!nNuerical siulati!n+ -uic'ield

Page 49: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 49/55

49

Roundup

Simulation to investigate abest solution for modulators

grounding system

Simulation for betterunderstanding of realsystem

Simulation to reduce theinstallation time of physicalsystem

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Nuerical siulati!n+ -uic'ield

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

Page 50: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 50/55

50

$. %rinci&le !' siulati!n

4. (#&es !' siulati!n

5. !nclusi!n

Conclusion

!nclusi!n

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

Page 51: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 51/55

51

Comfortable, intuitive input of the circuit model Correct error messages

Robust execution of the simulation Output data to be used in other softwares

Good user support

Portability of models in software update

!nclusi!n &

4. (#&es !' siulati!n

5. !nclusi!n

Expectations for a good simulation tool

!nclusi!n

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

Page 52: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 52/55

52

More intuitive usage Lower simulation time

Models & results transfer

Better user support & extended online help

Various models of components

!nclusi!n &

4. (#&es !' siulati!n

5. !nclusi!n

Challenges in world of simulation

!nclusi!n

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

Page 53: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 53/55

53

1) Investment in time and money

2) Clearly state the problem to solve

3) Determine the general type of simulation tool

4) Check the functional requirements

5) Select the most appropriate Tool

!nclusi!n4. (#&es !' siulati!n

5. !nclusi!n

Checklist to opt for a simulation tool?

!nclusi!n

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

Page 54: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 54/55

54

1) Basic understanding of your real system

2) Simulation model as simple as possible

3) Simulation model as complex as necessary

4) Interaction between simulation and physical system

!nclusi!n4. (#&es !' siulati!n

5. !nclusi!n

Important points to perform a good simulation

!nclusi!n

1. What is siulati!n "

2. Wh# siulati!n "

$. %rinci&le !' siulati!n

' l

Page 55: Ngada.pdf

8/12/2019 Ngada.pdf

http://slidepdf.com/reader/full/ngadapdf 55/55

55

Those who can, do.

Those who can't, simulate.-- anonymous writer 

Thank you for attention!

!nclusi!n

Those who can, simulate.Those who can't, don’t simulate.

4. (#&es !' siulati!n

5. !nclusi!n