44
UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE VETERINÁRIA E ZOOTECNIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIENCIA ANIMAL Disciplina: SEMINÁRIOS APLICADOS P53 E O CÂNCER: REVISÃO DA LITERATURA Vanessa de Sousa Cruz Pimenta Orientador: Eugênio Gonçalves de Araújo GOIÂNIA 2012

P53 E O CÂNCER: REVISÃO DA LITERATURA

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: P53 E O CÂNCER: REVISÃO DA LITERATURA

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE VETERINÁRIA E ZOOTECNIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIENCIA ANIMAL

Disciplina: SEMINÁRIOS APLICADOS

P53 E O CÂNCER: REVISÃO DA LITERATURA

Vanessa de Sousa Cruz Pimenta Orientador: Eugênio Gonçalves de Araújo

GOIÂNIA 2012

Page 2: P53 E O CÂNCER: REVISÃO DA LITERATURA

ii

VANESSA DE SOUSA CRUZ PIMENTA

P53 E O CÂNCER: REVISÃO DA LITERATURA

Seminário apresentado junto à Disciplina Seminários Aplicados do Programa de Pós-Graduação em Ciência Animal da Escola de Veterinária e Zootecnia da Universidade Federal de Goiás. Nível: Doutorado

Área de concentração:

Patologia, Clínica e Cirurgia Animal

Linha de Pesquisa:

Patobiologia animal, experimental e comparada

Orientador:

Prof. Dr. Eugênio Gonçalves de Araújo - EV/UFG

Comitê de Orientação:

Profª. Dra. Maria Clorinda Soares Fioravanti - EV/UFG

Profª.Dra. Yandra Cassia Lobato do Prado - EV/UFG

GOIÂNIA 2012

Page 3: P53 E O CÂNCER: REVISÃO DA LITERATURA

iii

SUMÁRIO

1 INTRODUÇÃO .................................................................................................... 1

2 REVISÃO DA LITERATURA ............................................................................... 3

2.1 A proteína p53 .................................................................................................. 3

2.2 Vias de sinalização dependentes da proteína p53 ........................................... 7

2.3 Mutação da p53 ................................................................................................ 8

2.4 A influência de outros genes sobre p53 ........................................................... 9

2.4.1 O gene Mdm2 .............................................................................................. 10

2.4.2 Oncogene MCT-1 ........................................................................................ 11

2.4.3 Gene Fox03 ................................................................................................. 12

2.5 A proteína p53 em diversos tipos de câncer .................................................. 13

2.5.1 Osteossarcoma ........................................................................................... 13

2.5.2 Câncer de mama ......................................................................................... 14

2.5.3 Linfoma canino ............................................................................................ 15

2.5.4 Carcinoma espinocelular oral ...................................................................... 15

2.5.6 Papilomavírus Humano ............................................................................... 19

2.5.7 Tumores do trato gastrointestinal ................................................................ 19

2.5.8 Câncer de pele ............................................................................................ 22

2.6 Tratamentos anticâncer e a proteína p53 ....................................................... 24

2.6.1 As pequenas moléculas .............................................................................. 25

2.6.2 A proteína M ................................................................................................ 26

2.6.3 A quinase Cdc7 ........................................................................................... 27

2.6.4 A p53 adenoviral ......................................................................................... 28

3 CONSIDERAÇÕES FINAIS .............................................................................. 29

Page 4: P53 E O CÂNCER: REVISÃO DA LITERATURA

iv

LISTA DE FIGURAS

FIGURA 1 - A) Imunofluorescência de alfa e beta-tubulina, mostando células

epitelias mamárias humanas mononucleadas e binucleadas

(asteriscos). DAPI. B) Imuno FISH combinando alfa e beta tubulina

em conjunto com sondas específicas de DNA para os

cromossomos quatro e 18 revelando duas células tetraplóides

monucleadas (acima), e uma célula tetraplóide binucleada

(abaixo). .............................................................................................. 4

FIGURA 2 - Esquema do ciclo celular mostrando a intérfase (G1, S e G2) e fase

mitótica. O ponto de checagem G1/S é o local onde a p53 efetua o

bloqueio do ciclo, em caso de dano ao DNA. ...................................... 5

FIGURA 3 - Fotomicrografias de fragmentos de neoplasias, marcadas com

anticorpo anti p53. DAB, contracoloração com hematoxilina. A)

Mastocioma canino, mostrando marcação nuclear. B) Linfoma

canino, mostrando marcação no citoplasma. C) Carcinoma tubular

mamário em leoa, mostrando marcação na membrana. ..................... 9

FIGURA 4 - Fotografias de nódulos de adenocarcinoma pulmonar em ratos,

promovidos por xenoenxertos, mostrando que MCT-1 promoveu

um maior desenvolvimento dos tumores, em comparação com o

grupo controle sem MCT-1. ............................................................... 11

FIGURA 5 - Fotomicrografia de fragmento de osteossarcoma canino, marcado

com anticorpo anti p53, mostrando marcação nuclear nas células

tumorais. DAB, contracoloração com hematoxilina de Mayer, 60µm 13

FIGURA 6 - Fotografias mostrando aspecto macroscópico da superfície dorsal

da língua de ratos Wistar. A) Mucosa normal. B) Aspecto irregular

com alterações leves. C) Aspecto irregular com alterações

moderadas. Placas brancas leucoplásicas. D) Aspecto irregular

com alterações graves e superfície papilomatosa erosiva. E) Lesão

exofítica. F) Placa leucoplásica. G) Lesão erosiva na borda lateral

da língua. H) Lesão erosiva com mancha eritroplásica vermelha. .... 16

Page 5: P53 E O CÂNCER: REVISÃO DA LITERATURA

v

FIGURA 7 - Fotomicrografia de fragmento de carcinoma espinocelular oral em

gato, marcado com anticorpo anti p53. As setas indicam a

marcação nuclear. DAB, contracoloração com hematoxilina. ........... 17

FIGURA 8 - Fotomicrografias de fragmentos de carcinoma basocelular

humano. A) CBC morfeiforme. HE, 100X. B) CBC morfeiforme

marcado com anticorpo anti p53. DAB, contracoloração com

hematoxilina de Harris, 200X. C) CBC nodular. HE, 100X. D) CBC

nodular marcado com anticorpo anti p53. DAB, contracoloração

com hematoxilina de Harris, 200X. .................................................... 23

FIGURA 9 - Fotomicrografias de fragmentos neoplasia cutânea humana,

marcados com anticorpo anti p53. A) Ceratose Actínica. B)

Carcinoma Espinocelular. DAB, contracoloração com hematoxilina

de Harris, 100X. ................................................................................ 24

Page 6: P53 E O CÂNCER: REVISÃO DA LITERATURA

vi

LISTA DE ABREVIATURAS

Adp53 p53 adenoviral

BAX Bcl-2 Associated X Protein

CBC Carcinoma basocelular

CdK Cyclin dependent Kinase

CEC Carcinoma espinocelular cutâneo

CECO Carcinoma espinocelular oral

C. elegans Caenorhabditis elegans

CEP-1 Caenorhabditis elegans protein-1

CRC Câncer colorretal

ELISA Enzyme-linked immunosorbent assay

FASR Fas Receptor

Fox0 Forkhead box

G Gap: intervalo

HPV Papilomavírus Humano

IGF-BP3 Insulin like growth factor binding protein 3

JEG Adenocarcinoma da junção esofagogástrica

MCT-1 múltiplas cópias em doença maligna de células T

Mdm2 Murine doble minute 2

NSCLC Non-small-cell lung carcinoma: carcinoma pulmonar de células

não pequenas

NOXA Gene pró-apoptótico

PCNA Proliferating Cell Nuclear Antigen

PCR-RFLP Polymerase Chain Reaction - Restrictios Fragment Lenght

Polymorphism: Polimorfismo dos comprimentos dos fragmentos

de restrição

PUMA P53 Upregulated Modular of Apoptosis

RITA Reativação de p53 e Indução da Apoptose de células Tumorais

S Synthesis: síntese

TP53 tumor protein 53

UC Colite ulcerosa

XPC Xeroderma pigmentosum-complementation group C

Page 7: P53 E O CÂNCER: REVISÃO DA LITERATURA

1 INTRODUÇÃO

O câncer é uma doença genética cuja evolução conduz a inúmeras

alterações no DNA. Os proto-oncogenes são genes responsáveis pela regulação

positiva da proliferação celular, enquanto os genes supressores de tumor se

encarregam de inibir a multiplicação das células. Durante o desenvolvimento das

neoplasias ocorre a ativação de proto-oncogenes simultânea a inativação de

genes supressores de tumor. A mutação de um oncogene promove divisões

celulares sem restrição e a mutação de um gene supressor de tumor leva a

produção de proteínas defeituosas.

Há cerca de duas décadas, p53, uma proteína relacionada ao bloqueio

do ciclo celular em caso de dano ao DNA, tornou-se um foco de pesquisas e a

sua bioquímica, suas funções biológicas e sua relevância para o câncer, têm

proporcionado uma série de conhecimentos para a oncologia.

Em 1982 foi feita a primeira descrição dos anticorpos contra a proteína

p53 humana. Inicialmente o método de detecção utilizado era imunoprecipitação,

mais tarde passou a ser realizado por ELISA (Enzyme-linked immunosorbent

assay) (CRAWFORD et al., 1982).

A análise sorológica é um ensaio global que não depende da

amostragem e o mecanismo que leva à formação destes anticorpos é pouco

conhecido. Além disso, o acúmulo de p53 mutante também é um componente

importante da resposta humoral e os anticorpos podem reconhecer tanto o tipo

selvagem, quanto a p53 mutante (SOUSSI, 2000).

A imunoistoquímica tem sido utilizada na detecção da proteína p53

mutante em diversas neoplasias. O anticorpo anti p53 reconhece antígenos que

são expressos pelas células neoplásicas, permitindo conhecer melhor a biologia

do câncer e obter informações como imunorreatividade de receptores de

membrana e características proliferativas do tumor (DE NARDI, 2007).

As tecnologias em genética molecular têm favorecido o conhecimento

do gene TP53, mostrando a influência das suas alterações no desenvolvimento

das neoplasias. A procura por terapias seletivas contra o câncer, proporcionando

um direcionamento específico para as células neoplásicas, vem estimulando a

ideia de desenvolver meios para reconstituir a função da p53 selvagem.

Page 8: P53 E O CÂNCER: REVISÃO DA LITERATURA

2

Com esta revisão de literatura pretendeu-se reunir, de forma global,

informações importantes sobre a p53, especialmente sobre sua ação supressora

de tumor, relação com outros genes, expressão nos diferentes tipos de neoplasias

e papel no tratamento anticâncer.

Page 9: P53 E O CÂNCER: REVISÃO DA LITERATURA

3

2 REVISÃO DA LITERATURA

2.1 A proteína p53

O gene supressor de tumor TP53 (tumor protein 53) está localizado, na

espécie canina, no cromossomo cinco e codifica a proteína p53 (phosphoprotein

53) (MAXIMOV & MAXIMOV, 2008; FERREIRA & ROCHA, 2010).

O TP53 é um gene regulador de uma extensa rede que controla a

integridade do genoma frente a danos celulares, como alterações cromossômicas,

depleção de metabólitos, choque térmico, hipóxia, oncoproteínas virais e ativação

de oncogenes celulares (MENENDEZ et al., 2007; MAXIMOV & MAXIMOV, 2008;

FERREIRA & ROCHA, 2010). A variedade de fatores, como o estresse e

cofatores de transcrição pode influenciar a interação direta entre p53 e o reparo

ao DNA (VOGELSTEIN et al., 2000).

Tais atividades ocorrem durante o desenvolvilmento do câncer e

resultam em mudanças biológicas, como o equilíbrio entre a apoptose e a

sobrevivência celular (MENENDEZ et al., 2007; PETITJEAN et al., 2007). As

células tumorais são geneticamente instáveis e acumulam rearranjos

cromossômicos desequilibrados (PAMPALONA et al., 2012).

Os telômeros, estruturas que formam as extremidades dos

cromossomos, quando excessivamente curtos, promovem instabilidade

cromossômica, observada no início da formação do câncer humano. O

encurtamento dos telômeros ocorre devido à excessiva proliferação celular, com

deficiência no ponto de checagem, por disfunção da p53, promovendo o

aparecimento de extremidades não niveladas, levando a tipos complexos de

anormalidades genômicas que são características das células tumorais humanas

(ARTANDI et al., 2000).

Além dessa disfunção, a tetraploidia, três réplicas para cada

cromossomo, também é observada nos primeiros estágios da carcinogênese

(PAMPALONA et al., 2012).

Para determinar o mecanismo pelo qual a tetraploidia acontece em um

ambiente onde a disfunção telomérica progressiva ocorre, células epiteliais

mamárias humanas foram cultivadas e tratadas para obtenção de preparações

Page 10: P53 E O CÂNCER: REVISÃO DA LITERATURA

4

cromossômicas em metáfase. A presença de células mononucleadas e

binucleadas (Figura 1) foi analisada por imunofluorescência (PAMPALONA et al.,

2012).

FIGURA 1 - A) Imunofluorescência de alfa e beta-tubulina,

mostando células epitelias mamárias humanas mononucleadas e binucleadas (asteriscos). DAPI. B) Imuno FISH combinando alfa e beta tubulina em conjunto com sondas específicas de DNA para os cromossomos quatro e 18 revelando duas células tetraplóides monucleadas (acima), e uma célula tetraplóide binucleada (abaixo).

Fonte: PAMPALONA et al. (2012)

A maioria das células tetraplóides continham dois núcleos em um único

citoplasma, no entanto, uma fração de células mononucleadas poliplóides

também foi observada. As análises mostraram uma diminuição gradual na

frequência de células binucleadas após a restauração da telomerase e uma

redução significativa após a transdução (PAMPALONA et al., 2012).

Em conjunto, estes resultados demonstram que a restauração da

telomerase reduz a formação espontânea de células binucleadas. Sugerem,

ainda, que os telômeros curtos disfuncionais, associados à deficiência no ponto

de checagem do ciclo celular, por disfunção da p53, podem promover a formação

de células tetraplóides. A inativação, das vias moduladas pela p53, ocorre em

muitos tipos de tumores em ambiente permissivo para a proliferação de células

anormais (PAMPALONA et al., 2012).

Page 11: P53 E O CÂNCER: REVISÃO DA LITERATURA

5

A proteína p53 está diretamente relacionada ao bloqueio do ciclo

celular (Figura 2), no caso de dano ao DNA. Esta proteína sinaliza o bloqueio do

ciclo celular no ponto de checagem na fase G1/S (Gap – intervalo / Synthesis -

síntese). O ponto de checagem corresponde a um mecanismo para impedir a

formação de células anômalas. A p53 possui vários mecanismos para efetuar o

reparo ou induzir a apoptose, e diferentes fatores induzem a p53 a gerar a

resposta celular mais adequada (ZÖRNIG et al., 2001; BROOKS & GU, 2003; WU

et al., 2006; MAXIMOV & MAXIMOV, 2008).

FIGURA 2 - Esquema do ciclo celular mostrando a intérfase (G1, S e G2) e

fase mitótica. O ponto de checagem G1/S é o local onde a p53 efetua o bloqueio do ciclo, em caso de dano ao DNA.

Fonte: Adaptado de www.sobiologia.com.br

P53 foi a primeira proteína não histona, ou seja, que permanece após

as histonas serem removidas, regulada por acetilação e desacetilação. Os níveis

de acetilação da p53 aumentam, significativamente, em resposta ao estresse. Na

ausência de estresse celular, a proteína p53 é mantida em baixos níveis, sem

exercer efeito sobre o destino da célula. (LUO et al., 2000; OREN, 2003).

Page 12: P53 E O CÂNCER: REVISÃO DA LITERATURA

6

Os tipos de estresse que promovem a ativação da p53 incluem as

condições associadas com a iniciação e progressão do câncer. Desta forma, p53

é um ativador de transcrição de sequência específica, pois se liga a elementos

dentro do genoma e ativa a transcrição de genes que residem nas imediações

dos locais de ligação. Existe um contexto celular, dentre eles a disponibilidade de

sinais de sobrevivência, definido por eventos de sinalização intra e extracelulares,

que promove alterações genéticas e afeta o estado funcional da p53 (OREN,

2003).

As alterações genéticas que tenham impacto sobre a competência de

outras proteínas associadas à apoptose, o controle do ciclo celular e o reparo de

danos ao DNA, são capazes de modular a probabilidade da ação da p53, bem

como o resultado da ativação biológica e suas múltiplas interações para controlar

o crescimento das células neoplásicas (OREN, 2003).

A escolha de subconjuntos específicos do gene-alvo e as interações de

p53 com outras proteínas podem fazer a diferença entre a vida e a morte, por

apoptose, da célula em questão. O contexto celular, realizado pelo equilíbrio intra

e extracelular nos eventos de sinalização, define se a ativação de p53 poupará a

célula ou levará à sua morte por apoptose. Quando os sinais de sobrevivência

celular estão disponíveis, a ativação de p53 levará, provavelmente, à interrupção

da progressão do ciclo celular. Na ausência de fatores de sobrevivência

adequada, será mais provável que p53 conduza à apoptose (OREN, 2003).

Quando as células sofrem agressão, a p53 se acumula no núcleo, onde

pode regular os seus alvos de transcrição para induzir os eventos como apoptose

e parada do ciclo celular (ZHANG & XIONG, 2001). Logo, na célula, a principal

localização da p53, é o núcleo, onde promove a transativação dos genes-alvo. No

entanto, a p53 também pode ter alguma função de transcrição no citoplasma. E

raramente, por indução da apoptose, será encontrada na membrana (ERSTER et

al., 2004).

Outros papéis para p53 têm sido estabelecidos, incluindo a

senescência, angiogênese, autofagia e metabolismo de carbono e lipídeos

(VOUSDEN & PRIVES, 2009). O Caenorhabditis elegans é um nematódeo

utilizado como modelo para estudar o envelhecimento (MCGEE et al., 2012).

Page 13: P53 E O CÂNCER: REVISÃO DA LITERATURA

7

CEP-1 (Caenorhabditis elegans protein) é uma proteína, no C. elegans,

evolutivamente relacionada com a p53 do mamífero, cuja expressão é precoce

nos tumores uterinos e diminui com a idade. A partir de oócitos não fertilizados,

C. elegans apresenta crescimentos uterinos exacerbados com a idade,

despertando o interesse pelo estudo dos mecanismos dos fenótipos do

envelhecimento relacionados com a idade germinativa (MCGEE et al., 2012).

CEP-1 controla a transcrição de muitos genes-alvo e promove

apoptose induzida por dano ao DNA. No entanto há uma diminuição significativa

na transcrição de cep-1, com a idade, no C. elegans (DERRY et al., 2001;

SCHUMACHER et al., 2001; MCGEE et al., 2012).

O aumento de danos ao DNA por apoptose induzida, em conjunto com

níveis diminuídos de CEP-1, juntamente com tecidos com prováveis

consequências funcionais, poderia dar mais detalhes sobre a idade de tumores

uterinos em outras espécies. Nos mamíferos, a atividade de p53 também diminui

com a idade, e esta diminuição pode ser um fator contribuinte para o aumento da

incidência das neoplasias na população de idosos (MCGEE et al., 2012).

A p53 humana e canina apresentam estrutura e funções semelhantes

(VELDHOEN & MILNER, 1998).

2.2 Vias de sinalização dependentes da proteína p53

Existem vias de sinalização, no ciclo celular, que são dependentes da

ação da p53. A sequência específica do fator de transcrição da p53 coordena a

expressão de um grande número de genes alvo que participam em diferentes

respostas celulares a condições de estresse (MENENDEZ et al., 2009).

Por meio da ativação da p21, proteína reguladora da transmissão da

fase G1 para S no ciclo celular, p53 controla a fosforilação do complexo molecular

ativo ciclina-CdK (cyclin dependent kinase), interrompendo o ciclo celular

(PECORINO, 2008).

Pela conjugação da p21 à proteína PCNA (proliferating cell nuclear

antigen), p53 promove o reparo ao DNA. Este também ocorre pelo estímulo direto

à proteína codificada pelo gene XPC (Xeroderma pigmentosum-complementation

Page 14: P53 E O CÂNCER: REVISÃO DA LITERATURA

8

group C), que está envolvido com o reparo por excisão de nucleotídeos

(PECORINO, 2008).

P53, também, induz a apoptose ao regular a expressão de mediadores

anti ou pró-apoptóticos, envolvidos em atividades celulares, como os membros da

família de proteínas Bcl-2: NOXA (gene pro-apoptótico), PUMA (P53 upregulated

modulator of apoptosis), BAX (Bcl-2 associated X protein), proteína FASR (Fas

Receptor) e a proteína IGF-BP3 (Insulin-like growth factor binding protein 3)

(PECORINO, 2008).

A apoptose regulada por p53, quando ativada pela via intrínseca, é

dependente da ativação de Bcl-2, que controla a liberação da proteína citocromo

C, a partir da membrana interna da mitocôndria, promovendo a morte celular

(HAUPT et al., 1995; KELEKAR & THOMPSON, 1998).

2.3 Mutação da p53

A inativação da via p53 no câncer frequentemente ocorre por meio da

expressão da proteína p53 mutante (ANDREOTTI et al., 2011). A proteção celular

é alterada por mutações do gene TP53, combinadas com diferentes

polimorfismos, originando uma proteína não funcional (PIETSCH et al., 2006; WU

et al., 2006). As mutações são herdadas ou ocorrem por exposição à

carcinógenos ambientais ou agentes infecciosos. Acontecem sobre o domínio

central da região codificadora, entre os exons três e nove, alterando a ligação

com as sequências no DNA e promovendo alterações no potencial invasivo e

migratório das células tumorais (CADWELL & ZAMBETTI, 2001; HAGA et al.,

2001; FERREIRA & ROCHA, 2010).

Em resposta ao estresse, a acetilação de p53 pode induzir a acetilação

da lisina 120 (K120), dentro do domínio de ligação ao DNA. Esta lisina é um sítio

de repetição para a mutação da p53 no câncer, retendo a sua capacidade de

interromper o crescimento celular (TANG et al., 2006).

Como um guardião completo da integridade do genoma, p53 mutante

confere as vantagens de promoção da sobrevivência das células cancerosas,

Page 15: P53 E O CÂNCER: REVISÃO DA LITERATURA

9

exercendo efeitos anti-apoptóticos, essenciais para o desenvolvimento de um

organismo (KIM et al., 2009).

A p53 mutante ocorre em 50% a 70% das neoplasias, está associada à

pior sobrevida global livre de doença e tem sido implicada na resistência às

terapias anticâncer. Sua expressão indica um prognóstico preditivo (NGUYEN et

al., 1996; ZÖRNIG et al., 2001; MILLER et al., 2005; SOUSSI & LOZANO, 2005).

O aumento da frequência de p53 mutante em um nódulo inflamatório

não tumoral, como uma lesão pré neoplásica, pode ser considerado como um

marcador de aumento da susceptibilidade ao câncer (HUSSAIN et al., 2000).

Em células normais a concentração de p53 está abaixo dos valores

detectáveis pela imunoistoquímica, já a p53 mutante se acumula nas células,

sendo eliminada lentamente e expressa pela imunoistoquímica, como evidenciado

na Figura 3 (DE NARDI, 2007).

FIGURA 3 - Fotomicrografias de fragmentos de neoplasias, marcadas com

anticorpo anti p53. DAB, contracoloração com hematoxilina. A) Mastocioma canino, mostrando marcação nuclear. B) Linfoma canino, mostrando marcação no citoplasma. C) Carcinoma tubular mamário em leoa, mostrando marcação na membrana.

2.4 A influência de outros genes sobre p53

Vários genes podem ser recrutados simultaneamente dentro da mesma

célula. A escolha dos genes específicos parece ter envolvimento com a interação

de uma variedade de outras proteínas, favorecendo a transativação de genes pró-

apoptóticos. Qualquer alteração genética que tenha impacto sobre a competência

de outras proteínas envolvidas com a apoptose, controle do ciclo celular ou

reparo aos danos do DNA, também são capazes de modular a resposta da p53 ao

estresse (OREN, 2003).

Page 16: P53 E O CÂNCER: REVISÃO DA LITERATURA

10

2.4.1 O gene Mdm2

A proteína p53 tem sua função supressora de tumor regulada de forma

negativa, ou seja, inativada pelo gene Mdm2 (Murine doble minute 2). As

alterações genéticas das células tumorais, como a superexpressão de Mdm2,

afetam o estado funcional da p53. A maior parte da regulação negativa de p53 é

executada pela proteína Mdm2, que é um produto de um proto-oncogene

expresso na maioria dos tumores humanos (DEB, 2002; BROOKS & GU, 2006;

TANG et al., 2008).

Mdm2 leva à repressão da expressão de p53 por três mecanismos.

No primeiro, Mdm2 se liga a p53 na seu domínio de transativação e bloqueia sua

capacidade de ativar a transcrição. No segundo, promove a exportação nuclear

de p53 para o citoplasma. E no terceiro, Mdm2 serve como uma ligase de

ubiquitina que promove a degradação de p53 (MICHAEL & OREN, 2003).

Dos três mecanismos, destaca-se a ubiquitinação na extremidade

carboxi-terminal da cadeia polipeptídica, exportando a p53 do núcleo para o

citoplasma, onde a p53 será degradada pelo proteossoma, justificando a

esporádica expressão citoplasmática de p53 pela imunoistoquímica e

caracterizando uma forma mais agressiva de tumor (ZHANG & XIONG, 2001;

TEIXEIRA et al., 2011). Em situações normais, quando há mutação envolvendo o

gene p53, a estrutura quaternária da proteína p53 é modificada, alterando as

posições dos epítopos de MDM2, evitando o processo de degradação, mantendo

um acúmulo da proteína p53 no núcleo da célula (LEHRBACH et al., 2009).

Mdm2 pode interferir na atividade transcricional de p53, em virtude da

sua ligação aos domínios de transativação N-terminal de p53, desempenhando

um papel central na degradação contínua da p53, mesmo sob condições não

estressantes. Mdm2 contém dois sítios no seu primeiro intron e p53 pode se

vincular a estes sítios, acionando a expressão de Mdm2 e estabelecendo uma

retroalimentação negativa de p53, estimulando a síntese de Mdm2 que, por sua

vez, desliga a atividade de p53. (OREN, 2003).

A acetilação da p53 é suficiente para revogar a repressão de Mdm2

durante a resposta ao estresse. Além disso, a acetilação e interação de p53 com

Mdm2, no DNA, resultam na ativação de p53, independentemente do seu estado

Page 17: P53 E O CÂNCER: REVISÃO DA LITERATURA

11

de fosforilação. Desta forma, as funções de transcrição da p53 podem ser

restauradas pela inativação de Mdm2 (TANG et al., 2008).

2.4.2 Oncogene MCT-1

O oncogene MCT-1 (múltiplas cópias em doença maligna de células T)

é altamente expresso nos linfomas humanos, promovendo a sobrevivência

celular, proliferação e desvio no ponto de checagem (SHI et al., 2003).

Além disso, MCT-1 promove a depressão do gene p53, alterando a

estabilidade da função da p53 selvagem. Em contrapartida, a p53 não pode

conter os impactos tumorais de MCT-1, prosseguindo a malignidade celular

(KASIAPPAN et al., 2010).

Seis sítios de ligação de p53 foram identificados na região MCT-1,

sendo que, em células epiteliais de mama, a redução de p53 pode alterar

inversamente a expressão de MCT-1. O potencial oncogênico de MCT-1 também

foi além da função protetora de p53 em xenoenxertos de células de

adenocarcinoma pulmonar em ratos (Figura 4). O grupo expressando MCT-1

apresentou desenvolvimento do tumor 12,8 vezes maior, comparado ao grupo

controle (KASIAPPAN et al., 2010).

FIGURA 4 - Fotografias de nódulos de adenocarcinoma pulmonar em ratos,

promovidos por xenoenxertos, mostrando que MCT-1 promoveu um maior desenvolvimento dos tumores, em comparação com o grupo controle sem MCT-1.

Fonte: KASIAPPAN et al. (2010)

Nem mesmo a reativação da p53 pôde comprometer o crescimento dos

tumores induzidas pelo MCT-1, ou seja, o potencial oncogênico de MCT-1

Page 18: P53 E O CÂNCER: REVISÃO DA LITERATURA

12

ultrapassa a capacidade de supressão tumoral de p53. Conseguir um equilíbrio

entre eles poderia determinar a prevenção do desenvolvimento tumoral e a

disfunção de MCT-1 seria uma estratégia para a inibição da tumorigenicidade

(KASIAPPAN et al., 2010).

2.4.3 Gene Fox03

Existe uma ligação entre o envelhecimento e o câncer e as

intervenções que prolongam a vida podem diminuir a incidência de tumores

(MASORO, 2005). Da mesma forma, os genes que estendem a vida fazem parte

de uma rede molecular que suprime a tumorigênese (RENAULT et al., 2011).

O grupo FoxO (Forkhead Box - FoxO1, FoxO3, FoxO4 e FoxO6)

pertence a uma família de genes de fatores de transcrição e desempenha um

papel fundamental na ligação entre a longevidade e a supressão do tumor. Atua,

também, como um supressor de tumor de linhagem específica em mamíferos

(PAIK et al., 2007).

FoxO3 está envolvida com o controle, tanto do envelhecimento quanto

do câncer. Tendo relação, também, com a parada do ciclo celular, o reparo ao

DNA, hipóxia e apoptose (RENAULT et al., 2009).

Além da ligação entre o envelhecimento e o câncer, existe interação,

direta e indireta, entre FoxO3 e p53 na supressão tumoral (WANG et al., 2008).

FoxO3 e p53 compartilham funções em comum, mas estas duas

moléculas podem ter papéis antagonista sobre o tempo de vida no organismo. A

regulação da expressão gênica por FoxO3 e p53 pode ser específica para um

determinado tipo de tecido, podendo funcionar melhor em algumas células em

relação a outras (RENAULT et al., 2011).

A ação de p53 promove o envelhecimento em ratos, vermes e moscas,

diminuindo o tempo de vida em moscas macho, porém aumentando a

longevidade em moscas fêmeas (MAIER et al., 2004; ARUM & JOHNSON, 2007;

SHEN & TOWER, 2010).

As bases moleculares para as diferenças entre FoxO3 e p53 no

envelhecimento não são conhecidas, mas entender a relação entre estas duas

Page 19: P53 E O CÂNCER: REVISÃO DA LITERATURA

13

proteínas pode fornecer informações essenciais para os mecanismos que

regulam a longevidade (RENAULT et al., 2011).

2.5 A proteína p53 em diversos tipos de câncer

2.5.1 Osteossarcoma

LOUKOPOULOS et al. (2003) avaliaram 167 tumores ósseos caninos

e classificaram os osteossarcomas em subtipos histológicos, de acordo com a

matriz extracelular, em osteoblástico, condroblástico, fibroblástico, pouco

diferenciado, de células gigantes e telangiectásico. A análise foi feita de acordo

com a frequência e intensidade de marcação para p53 (Figura 5). A intensidade

da marcação nuclear foi estimada e expressa como fraca, moderada ou forte. A

marcação citoplasmática foi observada, porém só foi registrada como positiva

quando a marcação nuclear também estava presente.

FIGURA 5 - Fotomicrografia de fragmento de

osteossarcoma canino, marcado com anticorpo anti p53, mostrando marcação nuclear nas células tumorais. DAB, contracoloração com hematoxilina de Mayer, 60µm

Fonte: LOUKOPOULOS et al. (2003)

Page 20: P53 E O CÂNCER: REVISÃO DA LITERATURA

14

Uma correlação direta foi percebida entre a marcação de p53 e os

parâmetros clínico patológicos, incluindo a avaliação histológica como o número

de figuras mitóticas, grau de necrose tumoral e grau de pleomorfismo nuclear. O

índice de p53 foi maior em osteossarcomas condroblásticos, que apresentam

comportamento biológico mais agressivo e taxa de proliferação celular

descontrolada (LOUKOPOULOS et al., 2003).

2.5.2 Câncer de mama

O câncer de mama é a neoplasia mais comum em cadelas e 50%

destes tumores são malignos, sendo que o seu comportamento biológico é

semelhante ao do mesmo tumor na espécie humana (ZUCCARI et al., 2005).

A expressão de p53 em carcinomas mamários está associada com a

agressividade tumoral, resistência à quimioterapia e recidiva

(KUMARAGURUPARAN et al., 2006).

DE NARDI (2007) analisou 60 amostras de tumores mamários em

cadelas por meio da imunoistoquímica e estabeleceu um escore pontuando a

intensidade da coloração. Houve baixa expressão de p53 nos adenomas e

marcação acentuada nos carcinomas com pior prognóstico, nas metástases e nos

carcinomas inflamatórios, associando a mutação de p53 com a malignidade das

neoplasias mamárias.

TEIXEIRA et al. (2011) avaliaram a expressão da proteína p53, por

imunoistoquímica, em tecido mamário com carcinoma e glândulas normais do

mesmo animal, totalizando 18 cadelas. Analisaram, também, as mutações no

éxon oito do gene Tp53, pela técnica de PCR-RFLP (Polymerase Chain Reaction

- Restrictions Fragment Lenght Polymorphism: Polimorfismo dos comprimentos

dos fragmentos de restrição). Como marcação imunoistoquímica consideraram a

localização nuclear e citoplasmática. Não foi observada nenhuma expressão da

p53 no grupo das glândulas normais. Também, não houve associação

estatisticamente significativa entre o grau histológico e a intensidade da

imunomarcação no grupo dos carcinomas.

Page 21: P53 E O CÂNCER: REVISÃO DA LITERATURA

15

O estudo pela técnica de PCR-RFLP apresentou resultados

dependentes de mutações em locais específicos, pois as mutações observadas

no éxon oito foram frequentes, inclusive nas mamas que ainda não apresentavam

alterações histopatológicas. Este exame pode vir a ser uma importante ferramenta

para o estudo da carcinogênese mamária em cadela, permitindo gerar

diagnósticos precoces (TEIXEIRA et al., 2011).

2.5.3 Linfoma canino

As características histológicas, imunológicas e a resposta à terapia do

linfoma são semelhantes no cão e no homem, sendo que nos cães, o linfoma B

ocorre com maior frequência e o linfoma T tem pior prognóstico (KIUPEL et al.,

1999; CALAZANS, 2009). A intensidade da expressão de p53 está relacionada ao

grau histológico do linfoma canino, sendo maior nos linfomas de célula T

(SUEIRO et al., 2004).

A sequência do gene TP53 e a expressão da p53 foram analisadas em

amostras de neoplasia, linfonodo e bulbo piloso de tecido normal de 12 cães com

linfoma canino. A imunomarcação de p53 foi obtida pela imunoistoquímica e a

sequência do gene por extração do DNA genômico e PCR. A maioria (90%) dos

linfomas apresentou expressão de p53. O único linfoma que não apresentou

marcação foi classificado como centrocítico-centroblástico, com baixo grau de

malignidade. As maiores expressões ocorreram nos pacientes com menor tempo

de sobrevida, associando a imunomarcação de p53 com o prognóstico

desfavorável. Não houve relação entre a reatividade pela imunoistoquímica e as

mutações na região entre os éxons quatro e nove do gene TP53 (CALAZANS,

2009).

2.5.4 Carcinoma espinocelular oral

Em todo o mundo, mais de 300.000 novos casos de carcinoma

espinocelular oral (CECO), são diagnosticados por ano, em seres humanos. Os

Page 22: P53 E O CÂNCER: REVISÃO DA LITERATURA

16

principais fatores associados ao desenvolvimento desta neoplasia são o

tabagismo e o consumo de bebidas alcoólicas (GREENLEE et al., 2000;

MINICUCCI, 2008).

A leucoplasia, placa queratótica branca, é a lesão pré-neoplásica mais

comum que precede o CECO (BRENNAN et al., 2007).

MINICUCCI (2008) investigou o papel da proteína p53 e do gene TP53,

induzindo a carcinogênese bucal por agente químico, em língua de rato Wistar. As

lesões iniciaram após a 12ª semana de tratamento (Figura 6), sendo observado

CECO a partir da 20ª semana. A expressão de p53 nuclear foi observada nas

displasias e no carcinoma. Porém, as amostras estudadas apresentaram

sequenciamento idêntico ao controle utilizado, sem nenhuma mutação na região

entre os éxons cinco e oito do gene TP53. Concluiu-se que a expressão de p53

não foi relacionada à presença de mutações entre os éxons cinco e oito do gene

TP53.

FIGURA 6 - Fotografias mostrando aspecto macroscópico da superfície dorsal da

língua de ratos Wistar. A) Mucosa normal. B) Aspecto irregular com alterações leves. C) Aspecto irregular com alterações moderadas. Placas brancas leucoplásicas. D) Aspecto irregular com alterações graves e superfície papilomatosa erosiva. E) Lesão exofítica. F) Placa leucoplásica. G) Lesão erosiva na borda lateral da língua. H) Lesão erosiva com mancha eritroplásica vermelha.

Fonte: MINICUCCI (2008)

A fumaça, de produtos do tabaco, contem substâncias cancerígenas

que podem afetar o não fumante. A exposição crônica a esta fumaça pode colocar

Page 23: P53 E O CÂNCER: REVISÃO DA LITERATURA

17

indivíduos não fumantes em risco maior de desenvolver neoplasias. Os gatos que

convivem com indivíduos fumantes podem ser expostos às mesmas situações

ambientais contaminantes, tanto por meio de inalação, quanto por ingestão oral

de partículas do fumo (BUKOWSKI & WARTENBERG, 1997; SNYDER et al.,

2004).

Em felinos, o carcinoma espinocelular oral é uma agressiva neoplasia,

localmente invasiva e frequentemente ulcerativa, podendo causar mudança lítica

em estruturas ósseas subjacentes. Mesmo com tratamento agressivo, as taxas de

sobrevivência por mais de um ano são menores do que 10% (SNYDER et al.,

2004).

SNYDER et al. (2004) realizaram um estudo em 23 amostras de

CECO, associando a expressão da p53 aos fatores como estilo de vida e

exposição ambiental ao fumo do tabaco. Somente a marcação nuclear foi

considerada positiva (Figura 7). Como grupo controle, foi utilizado epitélio normal

da região lingual e sublingual de gato doméstico de pelo curto.

FIGURA 7 - Fotomicrografia de fragmento de

carcinoma espinocelular oral em gato, marcado com anticorpo anti p53. As setas indicam a marcação nuclear. DAB, contracoloração com hematoxilina.

Fonte: SNYDER et al. (2004)

Page 24: P53 E O CÂNCER: REVISÃO DA LITERATURA

18

As amostras dos gatos expostos ao fumo ambiental apresentaram

expressão 4,5 vezes maior que os tumores de gatos não expostos. Todos os

aspectos investigados, sobre a rotina do animal, correlacionados com a

expressão, positiva ou negativa, de p53 estão listadas na Tabela 1. Os dados

indicam que a expressão de p53 frequentemente ocorre em CECO de gatos

domésticos e sugerem o envolvimento desta proteína na carcinogênese do tumor

(SNYDER et al., 2004).

TABELA 1- Associação entre diversos fatores de risco, no ambiente do gato doméstico, com a expressão de p53 no carcinoma espinocelular oral.

CARACTERÍSTICA AVALIADA VARIÁVEL p53 + p53 - TOTAL

Gênero masculino

feminino

9

6

7

1

16

7

Componente principal da dieta alimento seco

enlatado

5

10

2

6

7

16

Qualquer atum na dieta não

sim

7

8

4

4

11

12

Uso de produto de antipulgas nunca

sempre

6

9

2

6

8

15

Uso de coleira antipulgas nunca

sempre

9

6

4

4

13

10

Uso de xampu antipulgas nunca

sempre

15

0

8

0

23

0

Comprimento da pelagem longo

curto

4

11

5

3

9

14

Exposição domiciliar ao tabaco nunca

sempre

6

9

6

2

12

11

Duração da exposição em

anos*

< 5 anos

≥ 5 anos

7

7

7

1

14

8

Número de cigarros por dia* < 20

≥ 20

11

3

7

1

18

4

*Análise limitada aos gatos expostos a qualquer agregado fumante Fonte: Adaptado de SNYDER et al. (2004)

Page 25: P53 E O CÂNCER: REVISÃO DA LITERATURA

19

SNYDER et al. (2004) encontraram uma forte associação entre a

marcação de p53 e a exposição ao fumo ambiental nas amostras de CECO. Além

disso, gatas e felinos de pelo curto têm uma probabilidade de maior expressão

desta proteína. Alimentos enlatados, ingestão de atum e utilização de produtos

antipulgas aumentam o risco do CECO em gatos, no entanto, não estão

associados ao aumento da expressão de p53.

2.5.5 Papilomavírus humano

O papilomavírus humano (HPV) desempenha um importante papel na

indução de carcinomas do colo uterino. A maioria dos carcinomas cervicais

expressa uma oncoproteína viral, que promove a degradação da p53 e a

transferência horizontal de oncogenes de HPV, podendo ser um mecanismo

alternativo de carcinogênese (GAIFFE et al., 2012).

Os oncogenes do HPV são capazes de transformar células e bloquear

a via de supressão da p53. O DNA viral, transferido por células apoptóticas, pode

ser reutilizado pelas células receptoras, que expressam diminuição dos níveis de

p53 selvagem, podendo explicar as alterações no circuito de controle do

crescimento e a transformação cancerosa (BERGSMEDH et al., 2002;

BERGSMEDH et al., 2006).

2.5.6 Tumores do trato gastrointestinal

O câncer de esôfago representa a terceira causa mais comum de

câncer do trato gastrointestinal em seres humanos. Fatores ambientais, estilo de

vida, doença celíaca e raça negra são fatores predisponentes a este tipo de

câncer. O TP53 é o principal gene alterado nos tumores de esôfago, sendo que o

carcinoma esofágico apresenta a segunda maior incidência de mutação deste

gene (COTRAN et al., 2000).

FELIN et al. (2008) escolheram 31 amostras de carcinoma de células

escamosas de esôfago humano. Amostras de áreas não-tumorais da mucosa

Page 26: P53 E O CÂNCER: REVISÃO DA LITERATURA

20

adjacente, referentes a cada caso, foram incluídas no estudo para fins de

comparação. A expressão de p53 foi considerada positiva quando a marcação

nuclear ocorreu em quantidade igual ou superior a 10%. A análise

imunoistoquímica foi estatisticamente diferente do tecido normal em 15 amostras

tumorais, ou seja, 48,38% das amostras tumorais apresentaram p53 mutante.

Com base nos achados deste estudo, a proteína p53 não pode ser associada ao

estadiamento destes tumores, devendo ser mais amplamente estudada em

relação a outros parâmetros histopatológicos.

O adenocarcinoma da junção esofagogástrica (JEG) é um tumor que

acontece 5 cm acima ou abaixo da cárdia anatômica. Nas últimas décadas houve

uma aumento considerável do número de casos de (JEG) nos países ocidentais.

No Brasil, esta é uma neoplasia comum, com taxa de mortalidade elevada

(SIEWERT & STEIN, 1998).

Cortes histológicos de 75 JEG foram analisados por imunoistoquímica

para a p53, tendo marcação positiva em todos os tumores, mas não houve

associação entre a expressão e a invasão vascular ou perineural, características

que determinam a sobrevida geral nos pacientes com JEG (LEHRBACH et al.,

2009).

O câncer colorretal (CRC) é o terceiro câncer mais comum em homens

e o segundo em mulheres. Há 943.000 novos casos por ano. Condições

associadas à polipose podem ter início na segunda década de vida, sendo que o

carcinoma se desenvolve, em média, dez anos após o aparecimento dos pólipos

(BISHNUPURI et al., 2006; ARMAGHANY et al., 2012).

Uma sequência de eventos leva ao desenvolvimento do câncer

colorretal, onde o epitélio passa por transformações invasivas, correlacionadas

com a progressão da neoplasia. As vias específicas para o seu desenvolvimento

resultam em mutação e diferenciação de genes que regulam o crescimento

celular. Estas alterações genéticas levam à inativação de genes supressores de

tumor, como o TP53. A p53 mutante transforma a divisão celular em um processo

descontrolado e induz a formação do CRC (FEARON & VOGELSTEIN, 1990;

LIMA et al., 2006).

O acúmulo de células indiferenciadas nas criptas do cólon leva à

formação de um pólipo e as mutações subsequentes, envolvendo o geneTP53,

Page 27: P53 E O CÂNCER: REVISÃO DA LITERATURA

21

podem levar ao carcinoma. A mutação da p53 ocorre, geralmente, durante a

instabilidade cromossômica, no momento da transição adenoma-carcinoma

(LANE & BENCHIMOL, 1990; ARMAGHANY et al., 2012).

Durante um estudo sobre o significado prognóstico da mutação da p53,

os pacientes com CRC e expressão positiva da proteína, tiveram cinco anos de

tempo de sobrevida, enquanto que os pacientes com expressão negativa

sobreviveram por dez anos (ZENG et al., 1994). Entretanto, em outro estudo, a

expressão de p53 nos pacientes em tratamento com quimioterapia, não teve valor

prognóstico significativo (POPAT et al., 2006).

MENEZES et al. (2010) avaliaram a expressão imunoistoquímica da

proteína p53 em 82 casos de CRC, correlacionando-a com fatores prognósticos.

O intervalo livre da doença foi considerado a partir da remoção cirúrgica até a

recorrência local ou distante do tumor, variando entre seis e 64 meses. A

expressão de p53 foi positiva em 70 tumores (85,4%) e negativa em 12 (14,6%),

sendo positiva em 84,6% dos tumores de baixo grau e 100% positiva entre os

tumores de alto grau.

Houve recorrência do tumor em 18 pacientes. Não houve correlação,

estatisticamente significativa, entre a expressão imunoistoquímica e a recorrência.

Nos 16 pacientes que morreram durante o período do pós-operatório, a p53 foi

positiva em 14 (87,5%) e negativa em dois (12,5%) (MENEZES et al., 2010).

A colite ulcerosa (UC) é uma doença inflamatória crônica que produz

espécies reativas de oxigênio e nitrogênio e aumenta o risco do CRC. A

instabilidade tem sido relatada em UC, podendo gerar um fenótipo mutante,

levando ao desenvolvimento do câncer (RABINOVITCH et al., 1999).

HUSSAIN et al. (2000) submeteram lesões ativas e amostras normais

de cólon à análise de códons do gene TP53. As lesões mostraram quantidade

variável de inflamação, incluindo infiltração de neutrófilos com formação de

microabscessos. Foi encontrada alta frequência de alelos de p53 mutante nas

lesões com inflamação, sendo que o mesmo não ocorreu nas lesões normais do

grupo controle, tornando consistente a hipótese de que espécies reativas,

produzidas durante a inflamação, podem induzir estas mutações (HUSSAIN et al.,

2000).

Page 28: P53 E O CÂNCER: REVISÃO DA LITERATURA

22

HUSSAIN et al. (2000) observaram que um número significativo de

pacientes com UC possuem uma carga elevada de p53 mutante, sugerindo

estudos prospectivos para determinar se UC, com expressão de p53 mutante, têm

maior probabilidade de desenvolver CRC.

2.5.8 Câncer de pele

O carcinoma basocelular (CBC) é o tipo de câncer de pele mais comum

em humanos. Ocorre, principalmente, em pessoas com mais de 50 anos de idade

e gênero masculino. Apresenta-se como nódulo infiltrativo, da cor da pele,

eritematoso ou de coloração acastanhada, com telangiectasias e aspecto

perolado. O crescimento é lento, de baixa agressividade e raramente apresenta

metástase (LAGE et al., 2001; CORREA et al., 2009).

Para identificação dos fatores de risco para o desenvolvimento de

lesões mais agressivas, com maior potencial de recidiva e metástases, CORREA

et al. (2009) avaliaram a expressão de p53 em 15 casos de CBC com diagnóstico

histopatológico confirmado, comparando com amostras de indivíduos normais do

grupo controle. Nos testes imunoistoquímicos, foram consideradas positivas as

reações estritamente nucleares (Figura 8). Nenhum dos pacientes do grupo

controle apresentou expressão desse marcador e, de acordo com os resultados

encontrados neste estudo, a expressão da p53 pode indicar uma tendência à

gravidade do carcinoma basocelular.

Page 29: P53 E O CÂNCER: REVISÃO DA LITERATURA

23

FIGURA 8 - Fotomicrografias de fragmentos de carcinoma basocelular humano.

A) CBC morfeiforme. HE, 100X. B) CBC morfeiforme marcado com anticorpo anti p53. DAB, contracoloração com hematoxilina de Harris, 200X. C) CBC nodular. HE, 100X. D) CBC nodular marcado com anticorpo anti p53. DAB, contracoloração com hematoxilina de Harris, 200X.

Fonte: CORREA et al. (2009) O carcinoma espinocelular cutâneo (CEC) representa 20% das

neoplasias malignas cutâneas em humanos e origina-se a partir da proliferação

de células escamosas atípicas e lesões não invasivas como a ceratose actínica

(DORNELAS et al., 2009).

DORNELAS et al. (2009) estudaram amostras de 30 pacientes, sendo

dez com diagnóstico histopatológico de ceratose actínica, dez com carcinoma

espinocelular e dez amostras de pele de pálpebra, do grupo controle negativo. O

perfil imunoistoquímico das lesões foi considerado positivo quando as células

apresentavam coloração acastanhada, estritamente nuclear para p53. Houve

expressão de p53 (Figura 9), em todos os casos avaliados, sendo graduada em

escala de um a quatro pontos. Os resultados, quando associados a outros

Page 30: P53 E O CÂNCER: REVISÃO DA LITERATURA

24

indicadores como a análise histopatológica e a apresentação clínica, sugerem que

a expressão de p53 reflete o grau de malignidade destas lesões cutâneas,

permitindo um diagnóstico mais seguro (DORNELAS et al., 2009).

FIGURA 9 - Fotomicrografias de fragmentos neoplasia cutânea humana,

marcados com anticorpo anti p53. A) Ceratose Actínica. B) Carcinoma Espinocelular. DAB, contracoloração com hematoxilina de Harris, 100X.

Fonte: DORNELAS et al. (2009)

2.6 Tratamentos anticâncer e a proteína p53

Tanto a senescência, quanto a apoptose contribuem para a ação do

quimioterápico e a perda de qualquer processo promove a falha do tratamento.

Diversos agentes anticancerígenos podem induzir a apoptose através de vias

comuns e, as mutações que desativam estas vias, podem promover resistência a

estes quimioterápicos. Os agentes anticâncer podem ativar a p53 selvagem a

promover a apoptose, no entanto, os defeitos apoptóticos contribuem para a má

evolução de pacientes portadores de tumores com p53 mutante. Além disso, a

perda da função de p53 também pode determinar resistência ao tratamento

(JOHNSTONE et al., 2002; SCHMITT et al., 2002).

A quimioterapia continua sendo o principal tratamento para doenças

malignas sistêmicas. No entanto, alguns tumores são insensíveis a agentes

quimioterápicos e outros adquirem resistência sobre a recidiva (JOHNSTONE et

al., 2002).

Em linhagens celulares e em modelos experimentais utilizando animais

é possível estabelecer que a reconstituição da atividade de p53 pode levar à

Page 31: P53 E O CÂNCER: REVISÃO DA LITERATURA

25

morte de células tumorais e a regressão de tumores já estabelecidos. Estes

resultados têm estimulado a ideia de desenvolver meios para restaurar a função

da p53 selvagem nas células neoplásicas (FOSTER et al., 1999; ANDREOTTI et

al., 2011).

A ativação excessiva de p53 é considerada como uma oportunidade de

opção para terapias seletivas contra o câncer, proporcionando um direcionamento

para as células neoplásicas e poupando o tecido normal não afetado pelo câncer

(OREN, 2003).

2.6.1 As pequenas moléculas

Uma proposta de tratamento, visando a inibição do crescimento

tumoral, é a ativação da via de p53 através da supressão da proteína Mdm2. Com

o objetivo de identificar compostos que pudessem inibir a interação p53-Mdm2,

VASSILEV et al. (2004) selecionaram, em uma biblioteca química, os compostos

nutlins. Nutlins são imidazolínicos análogos que inibem a interação entre Mdm2 e

p53. Procedeu-se o tratamento de células de cultivo do câncer de cólon, com a

finalidade de promover a estabilização e o acúmulo da proteína p53, bloqueando

sua saída e promovendo a ativação de outros genes regulados pela proteína p53.

Os resultados confirmaram que a p53 do tipo selvagem pode se acumular nas

células tratadas com nutlin-1, elevando os níveis de Mdm2, consistente com a

ativação da via de p53.

Para confirmar se o acúmulo de p53 era devido à degradação da

proteína ao invés da expressão elevada do gene TP53, foram tratadas três linhas

celulares com nutlin-1 durante 8 horas A transcrição de p21 aumentou, de forma

dependente da dose, nas 3 linhas de células, consistente com o acúmulo da p53.

Em contraste, o gene TP53 não foi alterado por nutlin-1, mesmo na mais alta

concentração (VASSILEV et al., 2004).

Foi feita análise do ciclo, para detecção de células em proliferação

confirmando que nutlin-1 ativa a função celular da via p53. Além do nutlin-1, duas

drogas genotóxicos, doxorrubicina (antibiótico da família das antraciclinas) e

fosfato de etoposido (inibidor da enzima topoisomerase II) foram analisadas por

Page 32: P53 E O CÂNCER: REVISÃO DA LITERATURA

26

western blot, revelando que todos os três compostos induziram o acúmulo de p53.

No entanto, somente a doxorrubicina e o etoposido causaram fosforilação,

sugerindo que nutlin-1, provavelmente, não contribua com mecanismos

genotóxicos, para a ativação de p53 (VASSILEV et al., 2004).

VASSILEV et al. (2005) também avaliaram se nutlin-3 poderia suprimir

o crescimento de xenoenxertos de tumores de osteossarcoma humano em

camundongos. A utilização de nutlin-3, por via oral inibiu o crescimento do tumor,

sem perda significativa de peso e sem anormalidades durante a necropsia.

Da mesma forma, ANDREOTTI et al. (2011) analisaram a interação

funcional p53-Mdm2, bem como o impacto das pequenas moléculas nessa

interação. Nutlin se ligou a Mdm2 e RITA (reativação de p53 e indução da

apoptose de células tumorais) a p53, levando a mudanças conformacionais nas

proteínas. O tratamento com nutlin afetou diretamente a ligação de Mdm2 com a

região amino-terminal de p53, conduzindo ao acúmulo de p53 em várias células

tumorais, interrompendo o ciclo celular, sem muita evidência de toxicidade.

RITA é uma pequena molécula que se liga à p53, induzindo o seu

acúmulo nas células tumorais. Além disso, RITA inibe a interação p53-Mdm-2,

minimizando os efeitos reguladores negativos da Mdm-2 sobre a p53. Ao induzir

esta molécula, foi possível promover a apoptose em linhagens de células

tumorais, expressando a p53 selvagem. RITA pode ser uma esperança no

desenvolvimento de novas drogas antineoplásicas a partir da atividade da p53

selvagem (ISSAEVA et al., 2004).

2.6.2 A proteína M

Com a intenção de aumentar a resistência ao câncer, a proteína M foi

examinada em vários contextos celulares. Esta proteína interage com o tipo

selvagem da p53, aumentando a sua estabilidade e mantendo a sua localização

nuclear intacta e funcional, mesmo na ausência de estresse. Ao impedir a saída

da p53 para o citoplasma, consegue evitar a sua degradação, promovendo um

estado de hiperatividade crônica (MOORE et al., 2007).

Page 33: P53 E O CÂNCER: REVISÃO DA LITERATURA

27

Para avaliar as funções antiproliferativas da proteína M, na presença e

ausência de p53, ensaios de supressão de colônias foram realizados em três

linhas de células de osteossarcoma humano. Quando a proteína M foi introduzida

nestas células, houve supressão da formação de colônias, sugerindo que esta

proteína tem funções supressivas de crescimento, independente de p53. Com a

adição de p53 selvagem houve um aumento significativo na supressão do

crescimento e redução na formação das colônias. Estes resultados sugerem que

a proteína M pode melhorar a função supressora de colônias de p53 (MOORE et

al., 2007).

Em outro estudo, ao gerar ratos com alterações no tipo selvagem da

p53, promovendo um alelo truncado, sob o efeito da proteína M, foi possível

perceber alta resistência ao desenvolvimento de tumores. No entanto, estes ratos

exibiram início precoce de sintomas associados ao envelhecimento, tais como

redução do peso, atrofia muscular, osteoporose e uma diminuição da tolerância

ao estresse (TYNER et al., 2002).

2.6.3 A quinase Cdc7

Cdc7 é uma quinase que desempenha um papel crítico na origem da

replicação do DNA, sendo essencial para a proliferação de células nos

mamíferos. No entanto, sua depleção provoca a morte celular, mesmo em células

p53 positivas (MASAI & ARAI, 2002; YAMASHITA et al., 2005).

Neste contexto, a morte celular foi induzida em células tumorais p53

positivas e negativas. Utilizou-se uma linhagem de células de câncer colorretal,

analisando os efeitos da depleção da Cdc7. Em muitas células cancerosas, a

depleção de Cdc7 provocou a morte celular. Em seguida, examinou-se o efeito de

agentes genotóxicos, utilizados em tratamentos convencionais para o câncer, em

combinação com inibidores de Cdc7, concluindo que o tratamento simultâneo

estimula a apoptose. Os melhores resultados foram obtidos em células

cancerígenas p53 positivas. No entanto, o mesmo resultado não foi observado em

células p53 negativas (ITO et al., 2012).

Page 34: P53 E O CÂNCER: REVISÃO DA LITERATURA

28

2.6.4 A p53 adenoviral

As abordagens envolvendo terapia gênica de segmentação do gene

p53 têm sido exploradas para reforçar tratamentos quimioterápicos em pacientes

oncológicos. A p53 adenoviral (Adp53) é um adenovírus mediado (Ad) contendo

transferência de p53 humana (NEMUNAITIS et al., 2000).

Vinte e quatro pacientes humanos com avançado estágio de carcinoma

pulmonar de células não pequenas (NSCLC: Non-small-cell lung carcinoma)

receberam um total de 83 injeções intratumoral com Adp53 associadas ao

tratamento quimioterápico com cisplatina. A administração foi feita por

broncoscopia ou por via percutânea (KLASTERSKY et al., 1989; NGUYEN et al.,

1996; NEMUNAITIS et al., 2000).

O grau de apoptose foi avaliado em amostras de biópsias coletadas

antes do tratamento e no sétimo dia de cada curso de administração. O índice de

apoptose foi registrado como o número de células positivas observadas por

número de células avaliadas. Se uma única célula foi positiva, esta foi

interpretada como evidência de apoptose. Dezessete pacientes obtiveram uma

melhora na resposta clínica da doença e dois pacientes uma resposta parcial. A

cisplatina isolada induz um baixo grau de apoptose nas células tumorais,

enquanto a maioria dos pacientes mostrou um aumento no índice de apoptose

com a suplementação de Adp53. A injeção intratumoral com Adp53, em

combinação com a cisplatina, foi bem tolerada, sendo a febre a única toxicidade

relacionada ao tratamento (NEMUNAITIS et al., 2000).

Page 35: P53 E O CÂNCER: REVISÃO DA LITERATURA

29

3 CONSIDERAÇÕES FINAIS

As mutações no gene TP53 podem não ter correlação com a

expressão de p53, no entanto cada tipo de câncer parece ter envolvimento com

mutações em éxons diferentes.

É preciso conhecer a p53 e manter-se informado sobre suas

atualizações e descobertas para interpretar os resultados da sua expressão nos

diferentes tipos de câncer. As divergências podem ocorrer por muitos fatores,

incluindo a diferença nos anticorpos utilizados, os métodos de fixação, a

intensidade e localização da marcação, a subjetividade da interpretação e a

técnica empregada.

A maioria dos estudos, que utiliza a imunoistoquímica, não considera a

localização citoplasmática como marcação, sendo que ela é frequente e tem

ligação com o mecanismo de exportação nuclear de p53 para o citoplasma,

promovido pela ação inibidora de Mdm2. Este fato pode representar uma forma

de transformação tumoral, como característica de maior agressividade.

A avaliação de p53 pode ser útil na identificação precoce do câncer,

em indivíduos com exposição a agentes cancerígenos, em situações clínicas

onde as lesões não malignas podem ser detectadas antes da progressão para o

câncer e para determinar o prognóstico de neoplasias já existentes.

Restaurar a função da p53 selvagem parece ser uma esperança na

busca de terapias seletivas contra o câncer, haja visto os resultados que têm sido

obtidos por meio de estudos que envolvem cultivo celular e técnicas de

diagnóstico molecular.

Page 36: P53 E O CÂNCER: REVISÃO DA LITERATURA

30

REFERÊNCIAS

1. ANDREOTTI, V.; CIRIBILLI, Y.; MONTI, P.; BISIO, A.; LION, M.; JORDAN, J.; FRONZA, G.; MENICHINI, P.; RESNICK, M. A.; INGA, A. p53 transactivation and the impact of mutations, cofactors and small molecules using a simplified yeast-based screening system. PLoS One, São Francisco, v. 6, n. 6, p. e20643, 2011. 2. ARMAGHANY, T.; WILSON, J. D.; CHU, Q.; MILLS, G. Genetic alterations in colorectal cancer. Gastrointestinal Cancer Research Journal, New York, v. 5, n. 1, p. 19-27, 2012. 3. ARTANDI, S. E.; CHANG, S.; LEE, S. L.; ALSON, S.; GOTTLIEB, G. J.; CHIN, L.; DEPINHO, R. A. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature, London, v. 406, n. 6796, p. 641-645, 2000. 4. ARUM, O.; JOHNSON, T. E. Reduced expression of the Caenorhabditis elegans p53 ortholog cep-1 results in increased longevity. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, Oxford, v. 62, n. 9, p. 951-959, 2007. 5. BERGSMEDH, A.; EHNFORS, J.; KAWANE, K.; MOTOYAMA, N.; NAGATA, S.; HOLMGREN, L. DNase II and the Chk2 DNA damage pathway form a genetic barrier blocking replication of horizontally transferred DNA. Molecular Cancer Research, Philadelphia, v. 4, n. 3, p. 187-195, 2006. 6. BERGSMEDH, A.; SZELES, A.; SPETZ, A. L.; HOLMGREN, L. Loss of the p21(Cip1/Waf1) cyclin kinase inhibitor results in propagation of horizontally transferred DNA. Cancer Research, Philadelphia, v. 62, n. 2, p. 575-579, 2002. 7. BISHNUPURI, K. S.; LUO, Q.; MURMU, N.; HOUCHEN, C. W.; ANANT, S.; DIECKGRAEFE, B. K. Reg IV activates the epidermal growth factor receptor/Akt/AP-1 signaling pathway in colon adenocarcinomas. Gastroenterology, Philadelphia, v. 130, n. 1, p. 137-149, 2006. 8. BRENNAN, M.; MIGLIORATI, C. A.; LOCKHART, P. B.; WRAY, D.; AL-HASHIMI, I.; AXÉLL, T.; BRUCE, A. J.; CARPENTER, W.; EISENBERG, E.; EPSTEIN, J. B.; HOLMSTRUP, P.; JONTELL, M.; NAIR, R.; SASSER, H.; SCHIFTER, M.; SILVERMAN, B.; THONGPRASOM, K.; THORNHILL, M.; WARNAKULASURIYA, S.; VAN DER WAAL, I. Management of oral epithelial dysplasia: a review. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology & Endodontics, v. 103 Suppl, n. p. S19.e11-12, 2007. 9. BROOKS, C. L.; GU, W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Current Opinion in Cell Biology, Philadelphia, v. 15, n. 2, p. 164-171, 2003. 10. BROOKS, C. L.; GU, W. p53 ubiquitination: Mdm2 and beyond. Molecular Cell, Cambridge, v. 21, n. 3, p. 307-315, 2006.

Page 37: P53 E O CÂNCER: REVISÃO DA LITERATURA

31

11. BUKOWSKI, J. A.; WARTENBERG, D. An alternative approach for investigating the carcinogenicity of indoor air pollution: pets as sentinels of environmental cancer risk. Environmental Health Perspectives, Cary, v. 105, n. 12, p. 1312-1319, 1997. 12. CADWELL, C.; ZAMBETTI, G. P. The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene, Philadelphia, v. 277, n. 1-2, p. 15-30, 2001. 13. CALAZANS, S. Análise mutacional do gene supressor de tumor TP53 e imunorreatividade da p53 em linfomas caninos. 2009. f. Tese (Doutorado em Cirurgia Veterinária) - Universidade Estadual Paulista, Jaboticabal. 14. CORREA, M.; FERREIRA, A.; GOLLNER, A.; RODRIGUES, M.; GUERRA, M. Expressão de marcadores de proliferação celular e apoptose em carcinoma basocelular. Anais Brasileiros de Dermatologia, Rio de Janeiro, v. 84, n. p. 606-614, 2009. 15. COTRAN, R.; KUMAR, V.; COLLINS, T. Robbins patologia estrutural e funcional. Rio de Janeiro: Guanabara Koogan, 2000. 1251 p. 16. CRAWFORD, L. V.; PIM, D. C.; BULBROOK, R. D. Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. Internacional Journal of Cancer, Heidelberg, v. 30, n. 4, p. 403-408, 1982. 17. DE NARDI, A. Correlação da Ciclooxigenase-2 com Ki-67, p53 e caspase-3 nas neoplasias de mama em cadelas. 2007. 110 f. Tese (Doutorado em Ciência Veterinária ) - Universidade de São Paulo, Jaboticabal. 18. DEB, S. P. Function and dysfunction of the human oncoprotein MDM2. Frontiers in Bioscience, Tampa, v. 7, n. p. d235-243, 2002. 19. DERRY, W. B.; PUTZKE, A. P.; ROTHMAN, J. H. Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science, New York, v. 294, n. 5542, p. 591-595, 2001. 20. DORNELAS, M.; MACHADO, D.; FERREIRA, A.; RODRIGUES, M.; GOLLNER, A. Expressão de marcadores de proliferação celular e apoptose no carcinoma espinocelular de pele e ceratose actínica. Anais Brasileiros de Dermatologia, Rio de Janeiro, v. 84, n. p. 469-475, 2009. 21. DUMBLE, M.; MOORE, L.; CHAMBERS, S. M.; GEIGER, H.; VAN ZANT, G.; GOODELL, M. A.; DONEHOWER, L. A. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood, Washington, v. 109, n. 4, p. 1736-1742, 2007. 22. ERSTER, S.; MIHARA, M.; KIM, R. H.; PETRENKO, O.; MOLL, U. M. In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response

Page 38: P53 E O CÂNCER: REVISÃO DA LITERATURA

32

to DNA damage that can precede p53 target gene activation. Molecular and Cellular Biology, Washington, v. 24, n. 15, p. 6728-6741, 2004. 23. FEARON, E. R.; VOGELSTEIN, B. A genetic model for colorectal tumorigenesis. Cell, Maryland Heights, v. 61, n. 5, p. 759-767, 1990. 24. FELIN, I.; GRIVICICH, I.; FELIN, C.; REGNER, A.; ROCHA, A. Expressão de p53, p16 e COX-2 em carcinoma escamoso de esôfago e associação histopatológica. Arquivos de Gastroenterologia, São Paulo, v. 45, n. p. 308-312, 2008. 25. FERREIRA, C.; ROCHA, J. Oncologia Molecular. 2010. f. - Editora Atheneu, São Paulo. 26. FOSTER, B. A.; COFFEY, H. A.; MORIN, M. J.; RASTINEJAD, F. Pharmacological rescue of mutant p53 conformation and function. Science, New York, v. 286, n. 5449, p. 2507-2510, 1999. 27. GAIFFE, E.; PRÉTET, J. L.; LAUNAY, S.; JACQUIN, E.; SAUNIER, M.; HETZEL, G.; OUDET, P.; MOUGIN, C. Apoptotic HPV positive cancer cells exhibit transforming properties. PLoS One, San Francisco, v. 7, n. 5, p. e36766, 2012. 28. GATZA, C. E.; DUMBLE, M.; KITTRELL, F.; EDWARDS, D. G.; DEARTH, R. K.; LEE, A. V.; XU, J.; MEDINA, D.; DONEHOWER, L. A. Altered mammary gland development in the p53+/m mouse, a model of accelerated aging. Developmental Biology, v. 313, n. 1, p. 130-141, 2008. 29. GREENLEE, R. T.; MURRAY, T.; BOLDEN, S.; WINGO, P. A. Cancer statistics, 2000. CA - A Cancer Journal for Clinicians, v. 50, n. 1, p. 7-33, 2000. 30. HAGA, S.; NAKAYAMA, M.; TATSUMI, K.; MAEDA, M.; IMAI, S.; UMESAKO, S.; YAMAMOTO, H.; HILGERS, J.; SARKAR, N. H. Overexpression of the p53 gene product in canine mammary tumors. Oncology Reports, Athens, v. 8, n. 6, p. 1215-1219, 2001. 31. HAUPT, Y.; ROWAN, S.; SHAULIAN, E.; VOUSDEN, K. H.; OREN, M. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes & Development, New York, v. 9, n. 17, p. 2170-2183, 1995. 32. HUSSAIN, S. P.; AMSTAD, P.; RAJA, K.; AMBS, S.; NAGASHIMA, M.; BENNETT, W. P.; SHIELDS, P. G.; HAM, A. J.; SWENBERG, J. A.; MARROGI, A. J.; HARRIS, C. C. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Research, Philadelphia, v. 60, n. 13, p. 3333-3337, 2000. 33. ISSAEVA, N.; BOZKO, P.; ENGE, M.; PROTOPOPOVA, M.; VERHOEF, L. G.; MASUCCI, M.; PRAMANIK, A.; SELIVANOVA, G. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nature Medicine, New York, v. 10, n. 12, p. 1321-1328, 2004.

Page 39: P53 E O CÂNCER: REVISÃO DA LITERATURA

33

34. ITO, S.; ISHII, A.; KAKUSHO, N.; TANIYAMA, C.; YAMAZAKI, S.; FUKATSU, R.; SAKAUE-SAWANO, A.; MIYAWAKI, A.; MASAI, H. Mechanism of cancer cell death induced by depletion of an essential replication regulator. PLoS One, San Francisco, v. 7, n. 5, p. e36372, 2012. 35. JAIN, A. K.; ALLTON, K.; IACOVINO, M.; MAHEN, E.; MILCZAREK, R. J.; ZWAKA, T. P.; KYBA, M.; BARTON, M. C. p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biology, San Francisco, v. 10, n. 2, p. e1001268, 2012. 36. JOHNSTONE, R. W.; RUEFLI, A. A.; LOWE, S. W. Apoptosis: a link between cancer genetics and chemotherapy. Cell, Maryland Heights, v. 108, n. 2, p. 153-164, 2002. 37. KASIAPPAN, R.; SHIH, H. J.; WU, M. H.; CHOY, C.; LIN, T. D.; CHEN, L.; HSU, H. L. The antagonism between MCT-1 and p53 affects the tumorigenic outcomes. Molecular Cancer, London, v. 9, n. p. 311, 2010. 38. KELEKAR, A.; THOMPSON, C. B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends in Cell Biology, Maryland Heights, v. 8, n. 8, p. 324-330, 1998. 39. KIM, E.; GIESE, A.; DEPPERT, W. Wild-type p53 in cancer cells: when a guardian turns into a blackguard. Biochemical Pharmacology, Kansas City, v. 77, n. 1, p. 11-20, 2009. 40. KIUPEL, M.; TESKE, E.; BOSTOCK, D. Prognostic factors for treated canine malignant lymphoma. Veterinary Pathology, Lawrence, v. 36, n. 4, p. 292-300, 1999. 41. KLASTERSKY, J.; SCULIER, J. P.; BUREAU, G.; LIBERT, P.; RAVEZ, P.; VANDERMOTEN, G.; THIRIAUX, J.; LECOMTE, J.; CORDIER, R.; DABOUIS, G. Cisplatin versus cisplatin plus etoposide in the treatment of advanced non-small-cell lung cancer. Lung Cancer Working Party, Belgium. Journal of Clinical Oncology, Alexandria, v. 7, n. 8, p. 1087-1092, 1989. 42. KUMARAGURUPARAN, R.; PRATHIBA, D.; NAGINI, S. Of humans and canines: Immunohistochemical analysis of PCNA, Bcl-2, p53, cytokeratin and ER in mammary tumours. Research in Veterinary Science, Rome, v. 81, n. 2, p. 218-224, 2006. 43. LAGE, I.; RAMIREZ, E.; AYALAS, J.; LAGE, M. Epidemiologia del Cáncer de Piel no Melanoma. Revista Cubana de Oncologia, Havana, v. 17, n. p. 43-47, 2001. 44. LANE, D. P.; BENCHIMOL, S. p53: oncogene or anti-oncogene? Genes & Development, New York, v. 4, n. 1, p. 1-8, 1990.

Page 40: P53 E O CÂNCER: REVISÃO DA LITERATURA

34

45. LEHRBACH, D. M.; CECCONELLO, I.; RIBEIRO JR, U.; CAPELOZZI, V. L.; AB'SABER, A. M.; ALVES, V. A. Adenocarcinoma of the esophagogastric junction: relationship between clinicopathological data and p53, cyclin D1 and Bcl-2 immunoexpressions. Arquivos de Gastroenterologia, São Paulo, v. 46, n. 4, p. 315-320, 2009. 46. LIMA, J. M.; SERAFIM, P. V.; SILVA, I. D.; FORONES, N. M. [Role of the genetic polymorphism of p53 (codon 72) gene in colorectal cancer]. Arquivos de Gastroenterologia, São Paulo, v. 43, n. 1, p. 8-13, 2006. 47. LOUKOPOULOS, P.; THORNTON, J. R.; ROBINSON, W. F. Clinical and pathologic relevance of p53 index in canine osseous tumors. Veterinary Pathology, Basel, v. 40, n. 3, p. 237-248, 2003. 48. LUO, J.; SU, F.; CHEN, D.; SHILOH, A.; GU, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, London, v. 408, n. 6810, p. 377-381, 2000. 49. MAIER, B.; GLUBA, W.; BERNIER, B.; TURNER, T.; MOHAMMAD, K.; GUISE, T.; SUTHERLAND, A.; THORNER, M.; SCRABLE, H. Modulation of mammalian life span by the short isoform of p53. Genes & Development, New York, v. 18, n. 3, p. 306-319, 2004. 50. MASAI, H.; ARAI, K. Cdc7 kinase complex: a key regulator in the initiation of DNA replication. Journal of Cellular Physiology, Philadelphia, v. 190, n. 3, p. 287-296, 2002. 51. MASORO, E. J. Overview of caloric restriction and ageing. Mechanisms of Ageing and Development, Oxford, v. 126, n. 9, p. 913-922, 2005. 52. MAXIMOV, G.; MAXIMOV, K. The role of p53 tumor-suppressor protein in apoptosis and cancerogenesis. Biotechnology & Biotechnological Equipment, Sófia, v. 22, n. p. 664-668, 2008. 53. MCGEE, M. D.; DAY, N.; GRAHAM, J.; MELOV, S. cep-1/p53-dependent dysplastic pathology of the aging C. elegans gonad. Aging, New York, v. 4, n. 4, p. 256-269, 2012. 54. MENENDEZ, D.; INGA, A.; JORDAN, J. J.; RESNICK, M. A. Changing the p53 master regulatory network: Elementary, my dear Mr Watson. Oncogene, New York, v. 26, n. 15, p. 2191-2201, 2007. 55. MENENDEZ, D.; INGA, A.; RESNICK, M. A. The expanding universe of p53 targets. Nature Reviews Cancer, London, v. 9, n. 10, p. 724-737, 2009. 56. MENEZES, H. L.; JUCÁ, M. J.; GOMES, E. G.; NUNES, B. L.; COSTA, H. O.; MATOS, D. Analysis of the immunohistochemical expressions of p53, bcl-2 and Ki-67 in colorectal adenocarcinoma and their correlations with the prognostic

Page 41: P53 E O CÂNCER: REVISÃO DA LITERATURA

35

factors. Arquivos de Gastroenterologia, São Paulo, v. 47, n. 2, p. 141-147, 2010. 57. MICHAEL, D.; OREN, M. The p53-Mdm2 module and the ubiquitin system. Seminars in Cancer Biology, Philadelphia, v. 13, n. 1, p. 49-58, 2003. 58. MILLER, L. D.; SMEDS, J.; GEORGE, J.; VEGA, V. B.; VERGARA, L.; PLONER, A.; PAWITAN, Y.; HALL, P.; KLAAR, S.; LIU, E. T.; BERGH, J. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 102, n. 38, p. 13550-13555, 2005. 59. MINICUCCI, E. O papel da proteína p53 e do gene TP53 na carcinogênese bucal quimicamente induzida pela 4NQO em ratos. 2008. 59 f. Tese (Doutorado em Bases Gerais da Cirurgia) - Universidade Estadual Paulista, Jaboticabal. 60. MOORE, L.; LU, X.; GHEBRANIOUS, N.; TYNER, S.; DONEHOWER, L. A. Aging-associated truncated form of p53 interacts with wild-type p53 and alters p53 stability, localization, and activity. Mechanisms of Ageing and Developmant, Oxford, v. 128, n. 11-12, p. 717-730, 2007. 61. NEMUNAITIS, J.; TIMMONS, T.; SWISHER, S.; CONNORS, D.; MACK, M.; DOERKSEN, L.; WEILL, D.; WAIT, J.; LAWRENCE, D.; KEMP, B.; FOSSELA, F.; GLISSON, B.; HONG, W.; KHURI, F.; LEE, J.; NGUYEN, D.; NESBITT, J.; PERZ-SOLER, R.; PISTER, K.; PUTNAM, J.; RICHLI, W.; SHIN, D.; WALSH, G.; MERRITT, J.; ROTH, J. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. Journal of Clinical Oncology, New York, v. 18, n. p. 609-622, 2000. 62. NGUYEN, D. M.; SPITZ, F. R.; YEN, N.; CRISTIANO, R. J.; ROTH, J. A. Gene therapy for lung cancer: enhancement of tumor suppression by a combination of sequential systemic cisplatin and adenovirus-mediated p53 gene transfer. Japanese Journal of Thoracic and Cardiovascular Surgery, Tokyo, v. 112, n. 5, p. 1372-1376; discussion 1376-1377, 1996. 63. OREN, M. Decision making by p53: life, death and cancer. Cell Death and Differentiation, Oxford, v. 10, n. 4, p. 431-442, 2003. 64. PAIK, J. H.; KOLLIPARA, R.; CHU, G.; JI, H.; XIAO, Y.; DING, Z.; MIAO, L.; TOTHOVA, Z.; HORNER, J. W.; CARRASCO, D. R.; JIANG, S.; GILLILAND, D. G.; CHIN, L.; WONG, W. H.; CASTRILLON, D. H.; DEPINHO, R. A. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell, Marylland Heights, v. 128, n. 2, p. 309-323, 2007. 65. PAMPALONA, J.; FRÍAS, C.; GENESCÀ, A.; TUSELL, L. Progressive telomere dysfunction causes cytokinesis failure and leads to the accumulation of polyploid cells. PLoS Genetics, San Francisco, v. 8, n. 4, p. e1002679, 2012.

Page 42: P53 E O CÂNCER: REVISÃO DA LITERATURA

36

66. PECORINO, L. Molecular Biology of Cancer - Mechanisms, Targets and Therapeutics. 2.ed. New York: Oxford University Press, 2008. p. 67. PETITJEAN, A.; MATHE, E.; KATO, S.; ISHIOKA, C.; TAVTIGIAN, S. V.; HAINAUT, P.; OLIVIER, M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Human Mutation, New York, v. 28, n. 6, p. 622-629, 2007. 68. PIETSCH, E. C.; HUMBEY, O.; MURPHY, M. E. Polymorphisms in the p53 pathway. Oncogene, New York, v. 25, n. 11, p. 1602-1611, 2006. 69. POPAT, S.; CHEN, Z.; ZHAO, D.; PAN, H.; HEARLE, N.; CHANDLER, I.; SHAO, Y.; AHERNE, W.; HOULSTON, R. A prospective, blinded analysis of thymidylate synthase and p53 expression as prognostic markers in the adjuvant treatment of colorectal cancer. Annals of Oncology, Dordrecht, v. 17, n. 12, p. 1810-1817, 2006. 70. RABINOVITCH, P. S.; DZIADON, S.; BRENTNALL, T. A.; EMOND, M. J.; CRISPIN, D. A.; HAGGITT, R. C.; BRONNER, M. P. Pancolonic chromosomal instability precedes dysplasia and cancer in ulcerative colitis. Cancer Research, Baltimore, v. 59, n. 20, p. 5148-5153, 1999. 71. RENAULT, V. M.; RAFALSKI, V. A.; MORGAN, A. A.; SALIH, D. A.; BRETT, J. O.; WEBB, A. E.; VILLEDA, S. A.; THEKKAT, P. U.; GUILLEREY, C.; DENKO, N. C.; PALMER, T. D.; BUTTE, A. J.; BRUNET, A. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell, Mayland Heights, v. 5, n. 5, p. 527-539, 2009. 72. RENAULT, V. M.; THEKKAT, P. U.; HOANG, K. L.; WHITE, J. L.; BRADY, C. A.; KENZELMANN BROZ, D.; VENTURELLI, O. S.; JOHNSON, T. M.; OSKOUI, P. R.; XUAN, Z.; SANTO, E. E.; ZHANG, M. Q.; VOGEL, H.; ATTARDI, L. D.; BRUNET, A. The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene, New York, v. 30, n. 29, p. 3207-3221, 2011. 73. SCHMITT, C. A.; FRIDMAN, J. S.; YANG, M.; LEE, S.; BARANOV, E.; HOFFMAN, R. M.; LOWE, S. W. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell, Maryland Heights, v. 109, n. 3, p. 335-346, 2002. 74. SCHUMACHER, B.; HOFMANN, K.; BOULTON, S.; GARTNER, A. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Current Biology, London, v. 11, n. 21, p. 1722-1727, 2001. 75. SHEN, J.; TOWER, J. Drosophila foxo acts in males to cause sexual-dimorphism in tissue-specific p53 life span effects. Experimental Gerontology, Oxford, v. 45, n. 2, p. 97-105, 2010. 76. SHERR, C. J. Parsing Ink4a/Arf: "pure" p16-null mice. Cell, Mariland Heights, v. 106, n. 5, p. 531-534, 2001.

Page 43: P53 E O CÂNCER: REVISÃO DA LITERATURA

37

77. SHI, B.; HSU, H. L.; EVENS, A. M.; GORDON, L. I.; GARTENHAUS, R. B. Expression of the candidate MCT-1 oncogene in B- and T-cell lymphoid malignancies. Blood, Washington, v. 102, n. 1, p. 297-302, 2003. 78. SIEWERT, J. R.; STEIN, H. J. Classification of adenocarcinoma of the oesophagogastric junction. British Journal of Surgery, Bristol, v. 85, n. 11, p. 1457-1459, 1998. 79. SNYDER, L. A.; BERTONE, E. R.; JAKOWSKI, R. M.; DOONER, M. S.; JENNINGS-RITCHIE, J.; MOORE, A. S. p53 expression and environmental tobacco smoke exposure in feline oral squamous cell carcinoma. Veterinary Pathology, Basel, v. 41, n. 3, p. 209-214, 2004. 80. SOUSSI, T. p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Research, Baltimore, v. 60, n. 7, p. 1777-1788, 2000. 81. SOUSSI, T.; LOZANO, G. p53 mutation heterogeneity in cancer. Biochemical and Biophysical Research Communications, New York, v. 331, n. 3, p. 834-842, 2005. 82. SUEIRO, F.; ALESSI, A.; VASSALO, J. Canine lymphomas: a morphological and immunohistochemical study of 55 cases, with observations on p53 immunoexpression. Journal of Comparative Pathology, Liverpool, v. 131, n. p. 207-213, 2004. 83. TANG, Y.; LUO, J.; ZHANG, W.; GU, W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Molecular Cell, Cambridge, v. 24, n. 6, p. 827-839, 2006. 84. TANG, Y.; ZHAO, W.; CHEN, Y.; ZHAO, Y.; GU, W. Acetylation is indispensable for p53 activation. Cell, Marylands Heights, v. 133, n. 4, p. 612-626, 2008. 85. TEIXEIRA, M.; SOBRAL, A.; LIMA, M.; MAIA, F.; CHRISTILIS, M.; SOUZA, D.; ADRIÃO, M.; WISCHRAL, A. Avaliação da superexpressão da proteína p53 e das mutações no éxon 8 do gene TP53 em carcinomas mamários caninos e glândulas normais. Pesquisa Veterinária Brasileira, Rio de Janeiro, v. 31, n. p. 521-526, 2011. 86. TYNER, S. D.; VENKATACHALAM, S.; CHOI, J.; JONES, S.; GHEBRANIOUS, N.; IGELMANN, H.; LU, X.; SORON, G.; COOPER, B.; BRAYTON, C.; PARK, S. H.; THOMPSON, T.; KARSENTY, G.; BRADLEY, A.; DONEHOWER, L. A. p53 mutant mice that display early ageing-associated phenotypes. Nature, London, v. 415, n. 6867, p. 45-53, 2002. 87. VASSILEV, L. T.; VU, B. T.; GRAVES, B.; CARVAJAL, D.; PODLASKI, F.; FILIPOVIC, Z.; KONG, N.; KAMMLOTT, U.; LUKACS, C.; KLEIN, C.; FOTOUHI, N.; LIU, E. A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science, New York, v. 303, n. 5659, p. 844-848, 2004.

Page 44: P53 E O CÂNCER: REVISÃO DA LITERATURA

38

88. VELDHOEN, N.; MILNER, J. Isolation of canine p53 cDNA and detailed characterization of the full length canine p53 protein. Oncogene, New York, v. 16, n. 8, p. 1077-1084, 1998. 89. VOGELSTEIN, B.; LANE, D.; LEVINE, A. J. Surfing the p53 network. Nature, London, v. 408, n. 6810, p. 307-310, 2000. 90. VOUSDEN, K. H.; PRIVES, C. Blinded by the light: the growing complexity of p53. Cell, Maryland Heights, v. 137, n. 3, p. 413-431, 2009. 91. WANG, F.; MARSHALL, C. B.; YAMAMOTO, K.; LI, G. Y.; PLEVIN, M. J.; YOU, H.; MAK, T. W.; IKURA, M. Biochemical and structural characterization of an intramolecular interaction in FOXO3a and its binding with p53. Journal of Molecular Biology, London, v. 384, n. 3, p. 590-603, 2008. 92. WU, H.; HAYASHI, T.; INOUE, M. Immunohistochemical expression of Mdm2 and p53 in canine cutaneous mast cell tumours. Journal of Veterinary Medicine A Physiology, Pathology, Clinical Medicine, Berlim, v. 53, n. 2, p. 65-68, 2006. 93. YAMASHITA, N.; KIM, J. M.; KOIWAI, O.; ARAI, K.; MASAI, H. Functional analyses of mouse ASK, an activation subunit for Cdc7 kinase, using conditional ASK knockout ES cells. Genes to Cells, Oxford, v. 10, n. 6, p. 551-563, 2005. 94. ZENG, Z. S.; SARKIS, A. S.; ZHANG, Z. F.; KLIMSTRA, D. S.; CHARYTONOWICZ, E.; GUILLEM, J. G.; CORDON-CARDO, C.; COHEN, A. M. p53 nuclear overexpression: an independent predictor of survival in lymph node--positive colorectal cancer patients. Journal of Clinical Oncology, New York, v. 12, n. 10, p. 2043-2050, 1994. 95. ZHANG, Y.; XIONG, Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science, New York, v. 292, n. 5523, p. 1910-1915, 2001. 96. ZUCCARI, D.; TERZIAN, A.; PEREIRA, R.; PAVAM, M.; RUIZ, C.; SUEIRO, F.; ANDRADE, J.; CORDEIRO, J. Avaliação imunohistoquímica do gene p53 nas neoplasias mamárias caninas. ARS Veterinária, Jaboticabal, v. 21, n. p. 344-350, 2005. 97. ZÖRNIG, M.; HUEBER, A.; BAUM, W.; EVAN, G. Apoptosis regulators and their role in tumorigenesis. Biochimica et Biophysica Acta, Amsterdam, v. 1551, n. 2, p. F1-37, 2001.