61

Parametros de Fermentacion

Embed Size (px)

Citation preview

Page 1: Parametros de Fermentacion
Page 2: Parametros de Fermentacion

6. Determinación de parámetros

del sistema biológico

Page 3: Parametros de Fermentacion

Parámetros biológicos involucrados en el diseño de fermentadores:

1. Parámetros independientes de la mecánica de fluidos:

Coeficientes de velocidad biológica: k1, k2, k3

Coeficientes de productividad: S0K0, etc. Densidad microbiana húmeda y seca: 0, d, w

2. Parámetros dependientes de la mecánica de fluidos:

Tamaño de flóculo: Vp/Ap

Espesor de película microbiológica: L

Page 4: Parametros de Fermentacion

6.1. Coeficientes de velocidad y productividad

La ecuación de velocidad biológica es de naturaleza general, por lo que puede ser aplicada tanto a flóculos como a películas microbianas, una vez determinados los coeficientes de velocidad biológica (k1, k2, k3) mediante experimentos que involucran cualquiera de estas geometrías

Page 5: Parametros de Fermentacion

6.1. Coeficientes de velocidad y productividad

Principal dificultad experimental para la determinación de los coeficientes de velocidad biológica Medición de la dimensión característica apropiada, L para películas y Vp/Ap para flóculos

Page 6: Parametros de Fermentacion

6.1. Coeficientes de velocidad y productividad

6.1.1. Sistemas con flóculos microbianos

6.1.1.1. Procesos intermitentes Coeficientes de velocidad

biológicaCoeficientes de productividad

6.1.1.2. Procesos continuosCoeficientes de velocidad biológicaCoeficientes de productividad

Page 7: Parametros de Fermentacion

6.1.1.1. Procesos intermitentes

Coeficientes de velocidad biológica: Experimento con un fermentador

intermitente completamente mezclado Las cocentraciones de microorga-

nismos, sustrato y producto se monitorean durante cierto período de tiempo, obteniéndose la curva de crecimiento característica

Page 8: Parametros de Fermentacion

Fig. 1. Curva de crecimiento

Concentraciónde masa microbiana

Concentraciónde sustrato

t = 0

Mi

Ci

Tiempo

Page 9: Parametros de Fermentacion

Coeficientes de velocidad en procesos intermitentes:

En reacciones aeróbicas, la mejor forma de monitorear el experimento es mediante el consumo de oxígeno, usando el aparato de Warburg o algún respirómetro automático

Las concentraciones de microorganismos pueden determinarse mediante medidas de turbidez con una curva de calibración adecuada

Page 10: Parametros de Fermentacion

Coeficientes de velocidad en procesos intermitentes:

Haciendo un balance de la masa microbiana sobre el incremento de tiempo, t, durante la fase de crecimiento:

M(t+t) - M(t) = S0K0 RMt (1)

Page 11: Parametros de Fermentacion

Coeficientes de velocidad en procesos intermitentes:

Donde:M(t) masa de microorganismos por unidad

de volumen del fermentador al tiempo tR velocidad de remoción de sustrato por

unidad de masa de microorganismos (incluye resistencia difusional de fase líquida)

S0K0 coeficiente de productividad

Page 12: Parametros de Fermentacion

Coeficientes de velocidad en procesos intermitentes:

Considerando los límites, la ec. (1) conduce a:

1 dM = S0K0 R (2)

M dto

ln M2 = S0K0 R (t2 – t1) (3)

M1

Page 13: Parametros de Fermentacion

Coeficientes de velocidad en procesos intermitentes:

La ecuación (2) requiere la determinación experimental de la dimensión característica (Vp/Ap)

Dicho parámetro puede:a) Variar durante el curso del experimento yb) Exhibir una distribución a cualquier tiempo

Esta dificultad se resuelve con una agitación vigorosa de modo que el tamaño de partícula sea suficientemente pequeño

Page 14: Parametros de Fermentacion

Coeficientes de velocidad en procesos intermitentes:

Bajo las condiciones antes descritas la ecuación (2) se reduce a:

1 dM = S0K0 k1C = Gmax k3C (4)

M dt 0(1+k3C) 1 + k3C

Page 15: Parametros de Fermentacion

Coeficientes de velocidad en procesos intermitentes:

Los resultados experimentales pueden expresarse gráficamente en términos de = f(C*), donde:

= 1 dM (5) M dt

Combinando las ecs. (4) y (5) (Wilkinson, 1961):

= Gmax k3C (6)

1 + k3C

Page 16: Parametros de Fermentacion

Fig. 2. Método para la obtención aproximada de

valores de k1 y k3

Ecuación (6)

C. = 1/k3

max

C*

max

2

Resultados Experimentales típicos

max = Gmax = S0K0k1

k30

Page 17: Parametros de Fermentacion

Limitaciones de los datos de fermentador intermitente

Determinación de k2, pues ésta requiere de un conocimiento experimental detallado de la distribución de tamaño de partícula.

Acumulación de productos durante el período de tiempo del experimento.

Variación de coeficientes de productividad y cambios en las características bioquímicas de los m.o. a lo largo de la curva de crecimiento.

Page 18: Parametros de Fermentacion

Relación entre tiempo de duplicación y parámetros del

sistema biológico

Tiempo de duplicación (td) = tiempo requerido para duplicar la masa de determinada cepa de microorganismos

td = ln 2 = ln 2 (7)

S0K0R G

Page 19: Parametros de Fermentacion

Relación entre tiempo de duplicación y parámetros del

sistema biológico

A concentraciones suficientemente altas del sustrato limitante:

td = k3 0 ln 2 = ln 2 (8)

k1 S0K0 Gmax

Page 20: Parametros de Fermentacion

Coeficientes de productividad

La variación de la concentración de m.o. con el tiempo en un proceso intermitente está dado por la ecuación (2), de manera análoga: Para la concentración de sustrato:

dC = - R M (9) dt Para la concentración de producto:

dP = SpKp R M (10)

dt

Page 21: Parametros de Fermentacion

Coeficientes de productividad

La razón de las ecuaciones (2), (9) y (10) conduce a los coeficientes de productividad:

S0K0 = - dM dC (11)

dt dt

SpKp = - dP dC (12)

dt dt

Page 22: Parametros de Fermentacion

Fig. 3. Determinación de coeficientes de productividad

Pendiente =SpKp

Ci - C

M –

Mi

o

P -

Pi

Pendiente = -S0K0

Page 23: Parametros de Fermentacion

6.1.1.1. Procesos continuos

La operación de un fermentador continuo de tanque agitado (FCTA) tiene la ventaja de proporcionar un ambiente constante para los microorganismos

La concentración de sustrato (C), microorganismos (M) y productos bioquímicos (P) son independientes del tiempo

Page 24: Parametros de Fermentacion

6.1.1.1. Procesos continuos

Coeficientes de velocidad biológica: Haciendo un balance de masa total para

los microorganismos:

S0K0 R M V = F M (13)Donde:

F Velocidad de flujo volumétricoV Volumen del líquido en el fermentadorR Velocidad de remoción de sustrato por

unidad de masa de los microorganismos

Page 25: Parametros de Fermentacion

Coeficientes de velocidad en procesos continuos

Cuando el tamaño del flóculo microbiano es suficientemente pequeño:

C = F k1 - k3 F -1 (14)

V S0K0 0 S0K0 V

Page 26: Parametros de Fermentacion

Coeficientes de velocidad en procesos continuos

Para un sistema de crecimiento asociado simple, la concentración de producto y microorganismos están relacionadas a la ecuación (14):

M = S0K0 (Ci – C) (15)

P = Pi + SpKp (Ci – C) (16)

Page 27: Parametros de Fermentacion

Fig. 4. Concentración en un fermentador continuo de tanque

agitado

C

“Arrastre”

M

F/V

Ci

P

Pi

Prod

uctivi

dad

Page 28: Parametros de Fermentacion

Coeficientes de velocidad en procesos continuos

La ecuación (14) se puede rearreglar:

1 = Gmax k3 V – k3 (17)

C F

Donde:Gmax = SpKp k1 (18)

k3 0

Page 29: Parametros de Fermentacion

Fig. 5. Determinación de coeficientes de la ecuación

(19)

Pendiente = Gmax k3

V/Fk3

1/C

Resultados Experimentales típicos

Arrastre

Page 30: Parametros de Fermentacion

Coeficientes de velocidad en procesos continuos

Problema:

Se requieren velocidades de flujo muy pequeñas para no exceder el “arrastre” (“wash out”)

En sistemas anaeróbicos el problema se acentúa por las velocidades de crecimiento relativamente bajas

Page 31: Parametros de Fermentacion

Coeficientes de velocidad en Procesos continuos

Cuando hay arrastre, la concentración de sustrato en el fermentador C = Ci, de modo que la velocidad de flujo en el “arrastre” (Fw/o), partiendo de la ec. (14), está dada por:

Fw/o = V S0K0 k1 Ci (19)

0 (1 + k3 Ci)

Page 32: Parametros de Fermentacion

Coeficientes de velocidad en Procesos continuos

O bien:

Fw/o = V S0K0 Rmax k3 Ci (20)

1 + k3 Ci

Donde: Rmax Velocidad máxima de consumo de sustrato

= k1/0 k3

Page 33: Parametros de Fermentacion

Coeficientes de productividad

La fermentación continua conduce a coeficientes de productividad “pseudo-iniciales”

Los datos experimentales en la forma indicada en la fig. 4, junto con las ecuaciones (15) y (16), proporcionan los coeficientes de productividad

Page 34: Parametros de Fermentacion

Coeficientes de productividad

Valores de coeficientes de productividad obtenidos en fermentación continua son un poco más constantes para todos los sistemas que aquellos obtenidos en fermentación intermitente

Valores obtenidos en fermentación intermitente son mayores que aquellos alcanzados en fermentación continua

Page 35: Parametros de Fermentacion

6.2. Densidad microbiana

Densidad húmeda (w)

El peso húmedo de un flóculo microbiano incluye: El agua absorbida en la superficie del

flóculo El agua contenida en el gel El agua químicamente atada

Page 36: Parametros de Fermentacion

Densidad húmeda (w)

Aiba y col. (1964) propusieron un método para la determinación de la densidad húmeda, que involucra la medición de:

La densidad de la suspensión microbiana (s)

La densidad del medio líquido (m) El volumen húmedo de las células (Vc)

en un volumen total de suspensión Vs

Page 37: Parametros de Fermentacion

Densidad húmeda (w)

Haciendo un balance de masa:

w = Vs s - (Vs - Vc) m (21)

Vc

Page 38: Parametros de Fermentacion

Densidad húmeda (w)

Las densidades (m y s) se determinan con picnómetro

El volumen celular (Vc) se obtiene por centrifugación

Otro método consiste en suspender los flóculos en un medio líquido y equilibrar las densidades de los flóculos y el medio ajustando la concentración del medio

Page 39: Parametros de Fermentacion

Densidad seca (d)

Schroepfer y col. (1955) desarrollaron un procedimiento simple para la determinación de densidades microbianas secas mediante el uso de un aparato de volumen constante como un picnómetro

El peso del picnómetro se determina cuando contiene medio libre de células y una cantidad de microorganismos en el mismo medio

Page 40: Parametros de Fermentacion

Densidad seca (d)

El peso seco de los microorganismos (Wd) se obtiene por filtración y evaporación

Haciendo un balance de masa:

Cambio en Volumen de Cambio en densidad

peso del = células secas x del volumen líquido

picnómetro adicionadas desplazado

Page 41: Parametros de Fermentacion

Densidad seca (d)

Esto es:

W = Wd (d – m) (22)

d

O bien:d = m (23)

1 - W/Wd

Page 42: Parametros de Fermentacion

6.3. Tamaño de flóculo

El tamaño de flóculo característico de interés en el diseño de fermentadores es la razón entre el volumen húmedo y el área superficial húmeda del flóculo

Complicación en un tanque agitado existe una distribución de tamaño de flóculo

Page 43: Parametros de Fermentacion

6.3. Tamaño de flóculo

La media de dicha distribución varía con la intensidad de la agitación y la temperatura

En los procesos intermitentes puede ocurrir un incremento en el tamaño medio del flóculo durante el período de fermentación

Page 44: Parametros de Fermentacion

6.3. Tamaño de flóculo

En la ecuación de velocidad biológica:R = g (Vp/Ap , C*) ≠ g1 (Vp/Ap ) x g2 (C*)

Estrictamentamente, Vp/Ap puede ser sólo determinado a partir de la cinética

Pueden determinarse aproximaciones combinando procedimientos físicos y fotográficos

Page 45: Parametros de Fermentacion

6.3. Tamaño de flóculo

1. Tamaño de partícula medio basado en una partícula esférica

2. Tamaño de partícula medio basado en una partícula irregular

3. Tamaño de partícula efectivo basado en cinética

Page 46: Parametros de Fermentacion

I. Tamaño de flóculo basado en partícula

esférica Relación del volumen húmedo de un

flóculo con la densidad húmeda y seca:

Vp w = Vd d + (Vp –Vd) m (24)

O bien,

Vp = d - m Vd (25)

w - m

Page 47: Parametros de Fermentacion

I. Tamaño de flóculo basado en partícula

esférica El volumen seco medio de un flóculo (Vd)

está relacionado con el peso seco de una cantidad de microorganismos por:

Vd = Wd (26)

d n

Donde:n número de flóculos

-

-

Page 48: Parametros de Fermentacion

I. Tamaño de flóculo basado en partícula

esférica

Sustituyendo la ec. (26) en la (25):

Vp = d - m Wd (27)

w - md n

-

Page 49: Parametros de Fermentacion

I. Tamaño de flóculo basado en partícula

esférica ´Suponiendo que el flóculo tiene

forma esférica:

dp = 6 1/3 (Vp) 1/3 (28)

Donde:

dp tamaño medio del flóculo

-

-

-

Page 50: Parametros de Fermentacion

I. Tamaño de flóculo basado en partícula

esférica

Combinando las ecuaciones (27) y (28):

Vp = dp = 6-2/3 -1/3 d - m 1/3

Wd 1/3 (29)

Ap 6 w - md n

--

Page 51: Parametros de Fermentacion

II. Tamaño de flóculo basado en partícula

irregular

Se puede obtener una aproximación del área superficial de un flóculo microbiano mediante microfotografía

Puede asumirse que el flóculo cambia sólo de forma, pero conserva su volumen y área superficial

Page 52: Parametros de Fermentacion

II. Tamaño de flóculo basado en partícula

irregular El área puede calcularse con la siguiente

ecuación:

Ap = 2A + P Vp (30) A

Donde: A área proyectada de un flóculo húmedo

P perímetro de un flóculo húmedo

Page 53: Parametros de Fermentacion

III. Tamaño de flóculo basado en cinética

El tamaño de partícula es un parámetro físico determinado experimentalmente

Es posible usar la ecuación de velocidad biológica para flóculos con un experimento cinético en un fermentador continuo o intermitente, para determinar el tamaño de partícula efectivo.

Page 54: Parametros de Fermentacion

III. Tamaño de flóculo basado en cinética

A partir de las ecuaciones (13) y (15) para un FCTA:

R = F Ci – C0 (30)

V M0

Donde:R valor medio de R

-

-

Page 55: Parametros de Fermentacion

III. Tamaño de flóculo basado en cinética

A concentraciones bajas de sustrato y sin limitante difusional en la fase líquida:

R = tanh R k1 C0 (31)

R 0(1 + k3C0)

Page 56: Parametros de Fermentacion

III. Tamaño de flóculo basado en cinética

Donde:R = k2 Vp (31)

Ap(1 + 2k3C0)1/2

Por tanto:R = g Vp , C* (32)

Ap e

Page 57: Parametros de Fermentacion

III. Tamaño de flóculo basado en cinética

Aunque se sabe que el volumen y el área de partícula incrementan en un fermentación intermitente, existe evidencia que sugiere que su razón permanece constante (Mueller y col., 1966)

Page 58: Parametros de Fermentacion

6.4. Espesor de película

La determinación del espesor de película bajo condiciones asépticas en un fermentador de lecho fluidizado, es fácilmente lograda operando el fermentador con altas concentraciones de sustratoSustrato

Producto

Page 59: Parametros de Fermentacion

6.4. Espesor de película

Bajo dichas condiciones:

Q (Ci – C0) = k1 L As Z (33)

k3

Page 60: Parametros de Fermentacion

6.4. Espesor de película

Atkinson y Daoud (1970) desarrollaron un método para determinar el espesor de una película microbiológica delgada en un reactor

Kornegay y Andrews (1968) determinaron directamente el espesor de la película mediante procedimientos ópticos

Page 61: Parametros de Fermentacion