28
Effects of cormorants on species diversity and abundance of phantom midges and spiders by Caroline Essenberg Plants & Ecology Plant Ecology 2009/11 Department of Botany Stockholm University

Plants & Ecology

  • Upload
    buihanh

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Plants & Ecology

Effects of cormorants on species diversity and abundance of

phantom midges and spiders by

Caroline Essenberg

Plants & Ecology Plant Ecology 2009/11 Department of Botany Stockholm University

Page 2: Plants & Ecology

1

Effects of cormorants on species diversity and

abundance of phantom midges and spiders

by

Caroline Essenberg

Supervisor: Peter Hambäck

Plants & Ecology

Plant Ecology 2009/11 Department of Botany Stockholm University

Page 3: Plants & Ecology

2

Plants & Ecology

Plant Ecology

Department of Botany

Stockholm University

S-106 91 Stockholm

Sweden

© Plant Ecology

ISSN 1651-9248

Printed by Solna Printcenter

Cover: Great cormorants (Phalacrocorax carbo) in Stockholm archipelago, Sweden.

Photo by Caroline Essenberg

Page 4: Plants & Ecology

3

Abstract

Great cormorant (Phalacrocorax carbo) is a colonial seabird that transports loads of nutrients

(e.g. nitrogen) from water to land. Contributed nitrogen may increase or kill the vegetation

depending on cormorant density; it may also leach into the water affecting the algal growth in

the surrounding water bodies. An increased algal growth may affect its consumers e.g.

phantom midges, which enter the terrestrial food web as predator food when swarming over

land. This study investigates how the terrestrial animal life is affected by nesting cormorants.

Phantom midges and spiders were sampled on cormorant nesting islands, abandoned

cormorant islands and non-cormorant islands to compare species richness and abundance in

two trophic levels. The study was conducted in the archipelago of Stockholm, Sweden in

2008. The statistical analysis shows a negative trend, where phantom midge species richness

decreases with higher cormorant density. Hunting and ground dwelling spider (e.g.

Lycosidae) species richness and abundance decreases significantly with higher cormorant

density. Contributed nitrogen in cormorant colonies may increase algal growth, but also cause

a shift in the primary production where fast growing plants and algae may outcompete

macrophytes. A decrease in species richness among primary producers may decrease species

richness in higher trophic levels. Spiders may also be affected negatively by changed

conditions and damaged habitats on cormorant islands and therefore decrease in species

richness and abundance.

Page 5: Plants & Ecology

4

Introduction

Seabirds living in both aquatic and terrestrial ecosystems are important vectors in transferring

nutrients from water to land (Lindeboom 1984; Polis and Hurd 1995, 1996; Sánches-Piñero

and Polis 2000; Osono et al. 2002; Ellis et al. 2006). When the birds feed in water, they bring

aquatic matter through their carcasses (Sanches-Pinero and Polis 2000) and guano (Anderson

and Polis 1999; Sanches-Pinero and Polis 2000; Stapp and Polis 2003; Hobara et al. 2005;

Wait et al. 2005) to their nesting places on land. The contributed nutrients are incorporated in

the soil and alter the chemical composition, indirectly affecting plants (Smith 1978; Anderson

and Polis 1999; Ellis 2005; Wait et al. 2005) and animals (Barrett et al. 2005). Seabird

populations may have important consequences for plant and animal communities on islands

and in the surrounding water bodies.

Great cormorant (Phalacrocorax carbo) is a colonial bird that is distributed almost all over

the world (Cramp and Simmons 1977). Their colonies may be very big and contain up to

10,000 breeding pairs. They catch fish in lakes, rivers and coastal areas and are one of the top-

predators in aquatic food webs (Hobson et al. 1994). By feeding in water and establishing

breeding colonies on land, cormorants transport mainly two nutrients, phosphorus and

nitrogen, from water to land (Kirkkala et al. 1998; Howarth and Marino 2006; Elser et al.

2007). Both phosphorus and nitrogen are important limiting factors of primary productivity

(Kirkkala et al. 1998; Howarth and Marino 2006; Elser et al 2007). The effects of the

increased nutrients in soil depends on cormorant nest density, it may either favour or kill

vegetation (Ellis 2005). An increased input of nitrogen and phosphorus may lead to an

increasing primary productivity (Onuf et al. 1977; Ryan & Watkins 1989; Anderson & Polis

1999; Wait et al. 2005), but when bird density is very high the nitrogen concentration in soil

becomes toxic (Ellis 2005).

Phosphorus accumulates in the surface soil, while nitrogen instead is more mobile (Vitousek

and Howarth 1991). Nitrogen in guano is uric acid and degrades microbiologically to

ammonium. Ammonium may then follow different pathways: ammonia volatilization (Hobara

et al. 2001; Lindeboom 1984), leach into the water (Wainwright et al. 1998) or be taken up by

plants (Wainwright et al. 1998; Ellis 2005). Nitrogen leaching to the water may enter the

Page 6: Plants & Ecology

5

marine food web through aquatic plants. It can cause an increasing growth of algae which

may affect their consumers, e.g. phantom midges (Chironomidae) (Wainwright et al. 1998).

The larval and pupal stages among phantom midges are constrained to aquatic habitats, while

the adults are aerial (Wiederholm 1989). An increase in algae growth may lead to increased

densities of phantom midges, which may re-enter the terrestrial food web as predator food.

Stable isotope analysis (a tool for studying food-web interactions) in Mellbrand (2009)

showed that spiders, which are the most abundant arthropod predators in seashores, mainly

fed on phantom midges which have fed on green algae. Hodkinson et al. (2001) found a

significant correlation between phantom midge density and spider density in coastal

ecosystems, and Sanzone et al. (2003) showed that wolf spiders (Lycosidae) heavily relied on

emerging adult insects. These studies support the hypothesis that insectivores are facilitating

the transfer of energy from emerging aquatic prey along the water edge, which in turn

increases the density of predators in seashores (Jackson and Fisher 1986).

Material and methods

Study species

Great cormorant is a species with increasing density in Europe. The number of cormorants has

increased rapidly due to eutrophication of water bodies, protective measures, reduction of

pesticides and alternation of water systems such as sluices and dams which facilitate foraging.

Overfishing has caused changes in the size distribution of fishes; large predatory fishes have

decreased which implicates an increase in the number of small fishes which enhancing the

foraging conditions of cormorants (CARSS 2002).

The increasing number of cormorants has led to conflicts between interest groups (Suter

1995). The cormorants are blamed for many different negative effects in the environment e.g.

for destruction of islands and reducing fish communities. Only a few studies investigate how

cormorants influence the terrestrial ecosystems, and the ongoing public discussion about

cormorants impact on the environment makes scientific studies about their ecological effects

very important. This study investigates how the terrestrial animal life is affected by nesting

cormorants. Abundance and species richness of phantom midges (Chironomidae) and spiders

Page 7: Plants & Ecology

6

(Araneae) on cormorant nesting islands and abandoned cormorant islands is analysed to

examine the effects of cormorants.

Study area

This study was conducted in the archipelago of Stockholm, Sweden. The archipelago consists

of 21,000 islands with varying sizes. The vegetation on the islands differ, some islands are

covered with bare rocks, and others with herbs, grass and even forests. Bigger islands are built

with houses, mainly summer houses.

In 2008, there were 21 cormorant colonies with 5,196 nests in the archipelago. In this study,

five cormorant nesting islands and two abandoned cormorant island were examined (table 1).

As control islands, neighbouring islands without nesting cormorants were used. Most of the

study islands were small in size and covered with grass and low vegetation. Trees were

present on most of the islands, and bigger islands contained forests. The control islands

differed in size (800-4,500 m2) from the cormorant islands, but we have tried to find

appropriate islands in relation to the study islands.

Methods

Hunting and ground dwelling spiders were captured using pitfall traps (plastic jars, 8 cm

diameter and 6 cm height) in June 2008. The jars were placed in the ground, and collected two

days after. Number of pitfall traps on each island was in relation with island size (table 1). Net

building spiders and phantom midges were sampled by sweep netting in August 2008. Sweep

netting was conducted in four gradients at two sides of the islands. Two of the gradients were

placed one meter from sea, and two gradients at ten meters from sea. Each gradient had a

distance of ten meters. Sampled spiders and phantom midges were stored in 70% alcohol until

examination at laboratory.

Adult and subadult spiders were sorted out for examination. Adult spiders were identified to

species, and subadult spiders to genus. Most of the spiders were examined by me with the

keys by Roberts (1996) and Almqvist (2005; 2006), and some spiders were sent away for

identification. Males of the sampled phantom midges were sorted into morpho-species, and

Page 8: Plants & Ecology

7

then sent away to Yngve Brodin at The Swedish National Environmental Protection Agency

for species identification.

On some islands, the birds pulled out some pitfall traps, which resulted in a varying number

of traps on each island (table 1) and made them therefore difficult to compare. To arrange this

problem rarefaction was calculated in the program EstimateS Win 8.2, and abundance was

calculated by dividing number of individuals with number of re-collected pitfall traps on each

island.

Linear regression was used to analyse how species richness and abundance of phantom

midges and spiders are affected by cormorant density. Cormorant density was calculated by

dividing mean number of active cormorant nests in years 2005 - 2008 with island area (m2).

All data was log-transformed and the statistical analysis was made in Statistica 5.5.

Table 1: summary of study islands.

Area Time span of Number of active cormorant nests Mean density Number of Number of

m2 colonisation 2005 2006 2007 2008 2005 - 2008 pitfall traps re-collected

(nests/m2) pitfall traps

Nesting islands

Bergskäret 22,728 1998-2008 555 595 656 637 0.0269 200 46

Småholmarna "N" 8,550 2000-2008 410 591 538 448 0.0581 100 84

Marskärskobben 7,164 2003-2008 81 186 177 212 0.0229 100 68

Ryssmasterna "N" 3,224 2003-2008 65 171 127 183 0.0423 50 24

Alörarna 2,332 2007-2008 0 0 56 156 0.0227 50 40

Abandoned islands

St. Trädskär 15,729 1996-2006 80 50 0 0 0.0021 150 75

St. Halmören 8,091 2002-2005 222 0 0 0 0.0069 100 71

Non-cormorant islands

Mjölingsö 27,285 200 190

Ägglösen 17,357 150 118

Hannas holme 7,743 100 89

Nickesören 5,209 75 34

Fårören 3,286 50 48

Page 9: Plants & Ecology

8

Results

Phantom midges sampled by sweep netting

In this study, 6,141 male phantom midges were caught. A varying number of individuals were

caught on the different island categories. On cormorant nesting islands, 4,942 individuals

were caught, 140 individuals on abandoned cormorant islands and 1,059 individuals on non-

cormorant islands (app. 1, table 1). The big difference in the number of sampled phantom

midges is caused by the high number of individuals caught on the cormorant nesting island,

Alörarna, where 4,039 individuals were caught.

Species determination resulted in 41 different species (app. 1, table 1). The number of species

on each island varied between 9 and 24 species, and the most abundant species on the study

islands were Paratanytarsus dissimilis, Tanytarsus usmaensis, Cricotopus bicinctus and

Cricotopus caducus. Most of the sampled species are common in Sweden and Europe except

for C. caducus, which was found in Sweden for the first time. The species is common in the

rest of Europe and in my samples it was one of the four most abundant species. It was found

on most of the study islands and is probably a quite common species in the rest of the

archipelago. Linear regression analysis of cormorant density and phantom midges species

richness (R2=0.32, F=4.78, N=12, p=0.054) (fig. 1), and abundance and cormorant density

(R2=0.12, F=1.33, N=12, p=0.280) were not significant.

Page 10: Plants & Ecology

9

Cormorant density (nests/m2)

Num

ber

of

specie

s

(scale

is log-t

ransfo

rmed)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Figure 1: Species richness of phantom midges.

Spiders sampled by pitfall traps

In a total, 39 spider species (app. 1, table 2) and 598 individuals were sampled. The most

abundant species on the study islands were Pardosa amentata, Pardosa agricola, Trochosa

ruricola and Pachygnatha degeeri. On most of the islands, P. amentata was the most

abundant species, but P. agricola was very common on three of the study islands. Many

spiders of the group “money spiders” were also caught in the pitfall traps. Because of the

difficulty of species identification of these spiders, they were all sorted out and are not

included in this study.

On cormorant nesting islands 92 individuals were caught, 206 individuals on abandoned

cormorant islands and 300 individuals on non-cormorant islands (app.1, table 2). Rarefaction

resulted in a variation between 1 and 9.53 species on each island. Linear regression analysis

shows that abundance (R2=0.47, F=8.76, N=12, p=0.014) (fig. 2) and species richness

(R2=0.56, F=12.67, N=12, p=0.005) (fig. 3) of hunting and ground dwelling spiders decreases

with higher cormorant density.

Two points

Page 11: Plants & Ecology

10

Cormorant density (nests/m2)

Ab

un

da

nce

(sca

le is lo

g-t

ran

sfo

rme

d)

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

0,00 0,01 0,02 0,03 0,04 0,05 0,06

Figure 2: Abundance of hunting and ground dwelling spiders (e.g. Lycosidae). Abundance

was estimated on number of individuals / pitfall trap.

Cormorant density (nests/m2)

Nu

mb

er

of

sp

ecie

s

(sca

le is lo

g-t

ran

sfo

rme

d)

0,0

0,4

0,8

1,2

1,6

2,0

2,4

0,00 0,01 0,02 0,03 0,04 0,05 0,06

Figure 3: Species richness of hunting and ground dwelling spiders (e.g. Lycosidae). Number

of species is rarefied.

Two points

Page 12: Plants & Ecology

11

Spiders sampled by sweep netting

With sweep netting, 344 individuals and 21 species were sampled. Species list can be found in

appendix 1, table 3. Tetragnatha montana was the most abundant species on the study islands,

Larinioides cornutus, Tetragnatha dearmata and Xysticus cristatus were also common

species. On cormorant nesting islands 119 individuals were caught, 85 individuals on

abandoned cormorant islands and 140 individuals were caught on non-cormorant islands (app.

1, table 3). Linear regression analysis of species richness and cormorant density (R2=0.03,

F=0.27, N=12, p=0.616), and abundance and cormorant density (R2=0.009, F=0.09, N=12,

p=0.771) were not significant.

Correlation analysis

To test if hunting and ground dwelling spider species richness are depending on phantom

midge species richness, a correlation analysis was made (r=0.57, p=0.053) (fig. 4).

(scale is log-transformed)

Number of spiders species

Nu

mb

er

of

ph

an

tom

mid

ge

sp

ecie

s

(sca

le is lo

g-t

ran

sfo

rme

d)

2,0

2,2

2,4

2,6

2,8

3,0

3,2

3,4

0,0 0,4 0,8 1,2 1,6 2,0 2,4

Figure 4: Correlation analysis of phantom midges species richness and hunting and ground

dwelling spider (e.g. Lycosidae) species richness. Spider species richness is rarefied.

Page 13: Plants & Ecology

12

Discussion

The cormorants bring loads of nutrients to their nesting places, affecting the surrounding

environment. They nest in big colonies on small areas and bring nutrients (phosphorus and

nitrogen) from water to land (Kirkkala et al. 1998; Howarth and Marino 2006; Elser et al.

2007). The nutrients incorporate in soil, and nitrogen may also leach into the water and affect

the aquatic plants and indirectly its consumers (Wainright et al. 1998). Contributed nitrogen

may increase algal growth (Wainright et al. 1998), but also cause a shift in primary producers.

Fast growing macroalgae, epiphytes and phytoplankton will out-compete macrophytes by

exploiting the nutrients and by reducing light penetration for submerged plants (Sand-Jensen

and Borum 1991; Short et al. 1995; Taylor et al. 1995; Wear et al. 1999). High species

diversity among primary producers allows rare consumer species to become abundant and,

therefore, increases species richness of the consumers (Hutchinson 1959). A decrease in

diversity of primary production consequently leads to a decrease in consumer diversity

(Siemann 1998; Haddad et al. 2000). This study shows a negative trend (p=0,054) between

phantom midge species richness and cormorant density probably caused by a decrease in

diversity of primary producers due to a high input of nitrogen.

Phantom midges are aerial as adults (Wiederholm 1989) and enter the terrestrial system when

swarming over land (Wainright et al. 1998). Spiders are the most abundant arthropod

predators on seashores and mainly feed on phantom midges (Jackson and Fisher 1986;

Hodkinson et al. 2001; Sanzone et al. 2003; Mellbrand 2009). A decrease in herbivore

diversity may also decrease the diversity in higher trophic levels (Siemann 1998; Keats et al.

2004), and this study shows that hunting and ground dwelling spiders (e.g. Lycosidae)

significantly decreases in abundance and species richness with higher cormorant density.

Another important factor that may affect species diversity and abundance of spiders on

cormorant islands is the terrestrial vegetation. When the high input of nutrients is incorporated

in the soil, it affects the terrestrial plants by increasing biomass and by decreasing species

richness (Smith 1978; Anderson and Polis 1999; Ellis 2005; Wait et al. 2005). In seabird

colonies, annual and biennial plant species increase while perennial species decrease (Smith

1978; Vidal et a. 1998; Garcia et al. 2002), and when the bird densities are very high the

nutrient concentration in soil becomes toxic and may kill the vegetation (Ellis 2005). Spiders

Page 14: Plants & Ecology

13

may be sensitive to changed conditions and damage habitats and consequently decrease in

abundance and species richness (Greenstone 1984; Siemann 1998; Haddad et al. 2000).

Net building spiders showed no significant response to cormorant density in abundance and

species richness. This is quite unexpected since these spiders may as well as hunting spiders

utilize phantom midges as food resource to a high degree and persists in reduced vegetation.

Web building spiders differ in hunting methods and ecology from ground dwelling spiders

and may respond differently to damage habitats.

Conclusion

The cormorants bring loads of nutrients to their nesting places which affect the environment

around them. Cormorant derived nitrogen leaching to the water affects the surrounding water

bodies by changing species composition of aquatic plants. This study indicates that species

richness of phantom midges (algae consumers) decreases with higher cormorant density as a

result of low species richness among alage around cormorant islands. Phantom midges are

aerial as adults and enter the terrestrial food web as predator food. Hunting and ground

dwelling spiders (e.g. Lycosidae), which are common arthropod predators in seashores,

decreases significantly in abundance and species richness with higher cormorant density. This

may be a result of a decreased species diversity of prey and damaged habitats on cormorant

islands.

Acknowledgements

I want to thank Peter Hambäck and Gundula Kolb for supervising this study, and Lenn and

Eskil Jerling for their hospitality and helping in the field. I also want to thank Yngve Brodin

for species identification of phantom midges, and Sandra Öberg, Torbjörn Kronstedt and Lars

Jonsson for helping with species identification of spiders.

Page 15: Plants & Ecology

14

References

Almquist, S. 2006. Swedish araneae, part 2 – families Dictynidae to Salticidae. Insect and

evolution supplement, No 63.

Almquist, S. 2005. Swedish araneae, part 1 – families Atypidae to Hahniidae (Linyphiidae

excluded). Insect systematics and evolution supplement, No 62.

Anderson, W. B. and Polis, G. A. 1999. Nutrient fluxes from water to land: seabirds affect

plant nutrient status on Gulf of California islands. Oecologia 118:324-332.

Barrett, K. Anderson, W. B. Wait, D. A. Grismer, L. L. Polis, G. A. and Rose, M. D. Marine

subsidies alter the diet and abundance of insular and coastal lizard populations. Oikos

109:145-153.

Carss, D. N. 2002. Reducing the conflict between cormorants and fisheries on a pan-European

scale. REDCAFE. Final report. Natural Environment Research Council. Centre for

Ecology and Hydrology. Banchory Aberdeenshire, Scotland.

Cramp, S. and Simmons, K. E. 1977. The birds of the western palearctic. vol. 1. Oxford

University Press.

Ellis, J. C. 2005. Marine birds on land: a review of plant biomass, species richness and

community composition in seabird colonies. Plant ecology 181:227-241.

Ellis, J. C. Fariña, J. M. and Witman, J. D. 2006. Nutrient transfer from sea to land: tha case

of gulls and cormorants in the Gulf of Maine. Journal of Animal Ecology 75:565-574.

Elser, J. J. Bracken, M. E. Cleland, E. E. Gruuner, D. S. Harpole, W. S. Hillebrand, H. Ngai,

J. T. Seabloom, E. W. Shurin, J. B. and Smith, J. E. 2007. Global analysis of nitrogen

and phosphorus limitation of primary producers in freshwater, marine and terrestrial

ecosystems. Eclogy Letters 10:1135-1142.

Garcia, L. V. Marañón, T. Ojeda, F. Clemente, L. and Redondo, R. 2002. Seagull influence on

soil properties, chenopod shrub distribution, and leaf nutrient status in semi-arid

Mediterranean islands. Oikos 98:75-86.

Greenstone, M. H. 1984. Determinants of web spider species diversity: vegetation structural

diversity vs. prey availability. Oecologia 62:299-304.

Haddad, N. M. Haarstad, J. and Tilman, D. 2000. The effects of long-term nitrogen loading on

grassland insect communities. Oecologia 124(1):73-84.

Hobara, S. Koba, K. Osono, T. Tokuchi, N. Ishida, A. and Kameda, K. 2005. Nitrogen and

phosphorus anrichment and balance in forests colonized by cormorants: implications of

the influence of soil adsorption. Plant and Soil 268:89-101.

Hobara, S. Osono, T. Koba, K. Tokuchi, N. Fujiwara, S. and Kameda, K. 2001. Forest floor

quality and N transformations in a temperate forest affected by avian-derived N

deposition. Water, Air and Soil Pollution 130:679-684.

Hobson, K. A. Piatt, J. F. and Pitocchelli, J. 1994. Using stable isopotes to determine seabird

trophic relationships. The Journal of Animal Ecology 63(4):786-798.

Hodkinson, D. D. Coulson, S. J. and Harrison, J. 2001. What a wonderful web they weave:

spiders, nutrient capture and early ecosystem development in the high Arctic - some

counter-intuitive ideas on community assembly. Oikos 95(2):349-352.

Howarth, R. W. and Marino, R. 2006. Nitrogen as the limiting nutrient for eutrophication in

Page 16: Plants & Ecology

15

coastal marine ecosystems: evoloving views over three decades. Limnology and

Oceanography 51(1):364-376.

Hutchinson, G. E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals?

The American Naturalist 93(870):145-159.

Jackson, J. K. and Fisher, S. G. 1986. Secondary production, emergence, and export of

aquatic insects of a sonoran desert stream. Ecology 67(3):629-638.

Keats, R. A. Osher, L. J. and Neckles, H. A. 2004. The effect of nitrogen loading on a

brackish estuarine faunal community: a stable isotope approach. Estuaries 27(3):460-

471.

Kirkkala, T. Helminen, H. and Erkkilä, A. 1998. Variability of nutrient limitation in the

archipelago sea, SW Finland. Hydrobiologia 363:117-126.

Lindeboom, H. J. 1984. The nitrogen pathway in a penguin rookery. Ecology 65(1):269-277.

Mellbrand, K. 2009. The spider and the sea. Effects of marine subsidies on the role of spiders

in the terrestrial food webs. Doctoral thesis in Plant Ecology at Stockholm University,

Sweden.

Onuf, C. P. Teal, J. M. and Valiela, I. 1977. Interactions of nutrients, plant growth and

herbivory in a mangrove ecosystem. Ecology 58(3):514-526.

Osono, T. Hobara, S. Fujiwara, K. and Kameda, K. 2002. Abundance, diversity, and species

composition of fungal communities in a temperate forest affected by excreta of the

great cormorant Phalacrocorax carbo. Soil Biology and Biochemistry 34:1537-1547.

Polis, G. A. and Hurd, S. D. 1995. Extraordinarily high spider densities on islands: flow of

energy from the marine to terrestrial food webs and the absence of predation.

Proceedings of the National Academy of Sciences of the United States of America

92:4382-4386.

Polis, G. A. and Hurd, S. D. 1996. Linking marine and terrestrial food webs: allochtonous

input from the ocean supports high secondary productivity on small islands and coastal

land communities. The American Naturalist 147(3):396-423.

Roberts, M. J. 1996. Spiders of Britain and northern Europe. Collins field guide. Harper

Collins Publishers.

Ryan, P. G. and Watkins, B. P. 1989. The influence of physical factors and ornithogenic

products on plant and arthropod abundance at an inland nunatak group in Antarctica.

Polar biology 10:151-160.

Sánches-Piñero, G. and Polis, G. A. 2000. Bottom-up dynamics of allochtonous input: direct

and indirect effects of seabirds on islands. Ecology 81(11):3117-3132.

Sand-Jensen, K. and Borum, J. 1991. Interactions among phytoplankton, periphyton and

macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41:137-175.

Sanzone, D. M. Meyer, J. L. Marti, E. Gardiner, E. P. Tank, J. L. and Grimm, N. B. 2003.

Carbon and nitrogen transfer from a desert stream to riparian predators. Oecologia

134:238-250.

Short, F. T. Burdick, D. M. and Kaldy III, J. E. 1995. Mesocosm experiments quantify the

effects of eutrophication on eelgrass, Zostera marina. Limnology and Oceanography

40:740-749.

Siemann, E. 1998. Experimental tests of effects of plant productivity and diversity on

Page 17: Plants & Ecology

16

grassland arthropod diversity. Ecology 79(6):2057-2070.

Smith, V. R. 1978. Animal-plant-soil nutrient relationships on Marion island (Subantarctic).

Oecologia 32(2):239-253.

Stapp, P. Polis, G. A. 2003. Influence of pulsed resources and marine subsidies on insular

rodent populations. Oikos 102:111-123.

Suter, W. 1995. The effect of predation by wintering cormorants Phalacrocorax carbo on

grayling Thymallus thymallus and trout (Salmonidae) populations: two case studies

from Swiss rivers. Journal of Applied Ecology 32:29-46.

Taylor, D. I. Nixon, A. W. Granger, S. L. Buckley, B. A. McMahon, J. P. Lin, H.-J. 1995.

Responses of coastal lagoon plant communities to different forms of nutrient

enrichment – a mesocosm experiment. Aquatic Botany 52:19-34.

Vitousek, P. M. and Howarth, R. W. 1991. Nitrogen limitation on land and in the sea: how

can it occur? Biogeochemistry 13(2):87-115.

Wainright, S. C. Haney, J. C. Kerr, C. Golovkin, A. N. and Flint, M. V. 1998. Utilization of

nitrogen derived from seabird guano by terrestrial and marine plants at St. Paul,

Pribilof Islands, Bering Sea, Alaska. Marine Biology 131:63-71.

Wait, D. A. Aubrey, D. P. and Anderson, W. B. 2005. Seabird guano influences on desert

islands: soil chemistry and herbaceous species richness and productivity. Journal of

Arid Envrionments 60:681-695.

Wear, D. J. Sullivan, M. J. Moore, A. D. Millie, D. F. 1999. Effects of water-column

enrichment on the production dynamics of three seagrass species and their epiphytic

algae. Marine Ecology Progress Series 179:201-213.

Wiederholm, T. 1989. Chironomidae of the holoarctic region. Keys and Diagnosis, part 3-

adult males. Entomologica Scandinavica Supplement, 34. Bogströms tryckeri.

Page 18: Plants & Ecology

17

Appendix 1

Table 1: list of phantom midge species and number of individuals

Question mark between genus and species signifies that the genus is assured but not species.

Subfamily Species Cormorant Abandoned Non - Total

nesting cormorant cormorant

islands islands island

Chironominae Chironomus aprilinus 228 22 222 472

Chironomus plumosus 12 5 10 27

Dicrotendipes pulsus 213 4 78 295

Harnischia curtilamellata 1 1

Microchironomus tener 13 14 27

Microtendipes pedellus 220 26 57 303

Parachironomus arcuatus 7 8 15

Paratanytarsus dissimilis 466 10 139 615

Paratanytarsus natvigi 3 3

Paratendipes albimanus 2 2

Phaenopsectra flavipes 20 25 45

Polypedilum nubeculosum 52 36 88

Polypedilum scalaenum 253 40 24 317

Tanytarsus ? brundini 134 40 174

Tanytarsus usmaensis 927 4 74 1005

Xenochironomus xenolabis 11 4 15

Orthocladiinae Bryophaenocladius ? scanicus 5 11 16

Cricotopus annulator 4 4

Cricotopus bicinctus 1618 2 92 1712

Cricotopus caducus 458 58 516

Cricotopus flavocinctus 1 1

Cricotopus intersectus 10 8 18

Cricotopus ? ornatus 2 2

Cricotopus sylvestris 119 2 63 184

Halocladius variabilis 30 4 2 36

Limnophyes difficilis 6 23 29

Limnophyes minimus 3 3

Limnophyes pumilio 3 6 9

Limnophyes sp. A 1 1

Nanocladius dichromus 4 4

Nanocladius rectinervis 1 1

Orthocladius sp. A 1 1

Paratrichocladius rufiventris 6 1 7

Psectrocladius ? limbatellus 1 1

Psectrocladius ? oligosetus 7 7

Smittia sp. A 1 1

Tanypodiane Ablabesmyia monilis 56 13 69

Ablabesmyia longistyla 2 2

Page 19: Plants & Ecology

18

Procladius culiciformis 10 14 16 40

Procladius ? ferrugineus 4 4 7 15

Procladius ? sagittalis 41 3 14 58

Table 2: list of spiders species and number of individuals sampled by pitfall traps

Family Species Cormorant Abandoned Non - Total

nesting cormorant cormorant

islands islands island

Araneidae Larinioides patagiatus 1 1 2

Larinioides (imm.) 2 2

Clubionidae Clubiona (imm.) 1 1 2

Gnaphosidae Callilepis nocturna 3 3

Drassyllus praeficus 1 1

Gnaphosa montana 1 1

Haplodrassus signifer 3 3

Micaria nimosa 1 1

Micaria pulicaria 2 1 3

Zelotes petrensis 1 1

Zelotes subterraneus 2 1 5 8

Zelotes (imm.) 4 1 4 9

Hahniidae Antistea elegans 1 1

Linyphiidae Lepthyphantes flavipes 1 1 2

Lepthyphantes mengei 1 1

Stemonyphantes lineatus 1 1

Tenuiphantes flavipes 1 1

Lycosidae Alopecosa pulverulenta 8 8

Alopecosa (imm.) 1 1

Arctosa leopardus 1 1 10 12

Arctosa (imm.) 6 7 13

Pardosa agrestis 2 1 7 10

Pardosa agricola 14 49 80 143

Pardosa amentata 8 34 17 59

Pardosa fulvipes 3 5 8

Pardosa lugubris 3 3

Pardosa monticola 1 12 13

Pardosa nigriceps 2 2

Pardosa palustris 2 1 3

Pardosa prativaga 12 17 29

Pardosa pullata 2 2 4

Pardosa (imm.) 3 3

Pirata piraticus 1 1

Page 20: Plants & Ecology

19

Trochosa ruricola 9 10 10 29

Trochosa spinipalpis 1 1 2

Trochosa terricola 2 4 4 10

Trochosa (imm.) 8 31 33 72

Salticidae Heliophanus cupreus 1 1

Tetragnathidae Pachygnatha clercki 2 17 2 21

Pachygnatha degeeri 7 49 45 101

Theridiidae Crustulina guttata 1 1

Thomisidae Ozyptila praticola 3 3

Thanatus striatus 1 1

Xysticus cristatus 2 2

Zoridae Zora spinimana 1 1

Table 3: list of spider species and number of individuals sampled by sweep netting

Family Species Cormorant Abandoned Non - Total

nesting cormorant cormorant

islands islands island

Araneidae Araniella (imm.) 2 2

Larinioides cornutus 2 4 1 7

Larinioides patagiatus 1 1 2

Larinioides (imm.) 20 21 9 50

Clubionidae Clubiona (imm.) 3 3

Dictynidae Dictyna (imm.) 7 7

Linyphiidae Gongyliduim rufipes 3 3

Kaestneria dorsalis 5 8 13

Neriene (imm.) 1 1

Salticidae Heliophanus dubius 1 1 2

Heliophanus (imm.) 5 5

Tetragnathidae Meta mengei 1 1

Meta segmentata 9 1 10 20

Meta (imm.) 1 1 2

Pachygnatha degeeri 1 1

Tetragnatha dearmata 12 6 5 23

Tetragnatha extensa 2 4 6 12

Tetragnatha montana 32 24 18 74

Tetragnatha striata 3 1 11 15

Tetragnatha (imm.) 16 5 29 50

Theridiidae Anelosimus (imm.) 1 1

Theridion (imm.) 1 2 3

Thomisidae Philodromus (imm.) 2 4 6

Tibellus oblongus 1 1

Page 21: Plants & Ecology

20

Xysticus cristatus 1 1 4 6

Xysticus (imm.) 5 16 13 34

Page 22: Plants & Ecology

21

Serien Plants & Ecology (ISSN 1651-9248) har tidigare haft namnen "Meddelanden från

Växtekologiska avdelningen, Botaniska institutionen, Stockholms Universitet" nummer

1978:1 – 1993:1 samt "Växtekologi". (ISSN 1400-9501) nummer 1994:1 – 2003:3.

Följande publikationer ingår i utgivningen:

1978:1 Liljelund, Lars-Erik: Kompendium i matematik för ekologer.

1978:2 Carlsson, Lars: Vegetationen på Littejåkkadeltat vid Sitasjaure, Lule Lappmark.

1978:3 Tapper, Per-Göran: Den maritima lövskogen i Stockholms skärgård.

1978:4: Forsse, Erik: Vegetationskartans användbarhet vid detaljplanering av

fritidsbebyggelse.

1978:5 Bråvander, Lars-Gunnar och Engelmark, Thorbjörn: Botaniska studier vid

Porjusselets och St. Lulevattens stränder i samband med regleringen 1974.

1979:1 Engström, Peter: Tillväxt, sulfatupptag och omsättning av cellmaterial hos

pelagiska saltvattensbakterier.

1979:2 Eriksson, Sonja: Vegetationsutvecklingen i Husby-Långhundra de senaste

tvåhundra åren.

1979:3 Bråvander, Lars-Gunnar: Vegetation och flora i övre Teusadalen och vid Auta-

och Sitjasjaure; Norra Lule Lappmark. En översiktlig inventering med anledning av

områdets exploatering för vattenkraftsändamål i Ritsemprojektet.

1979:4 Liljelund, Lars-Erik, Emanuelsson, Urban, Florgård, C. och Hofman-Bang,

Vilhelm: Kunskapsöversikt och forskningsbehov rörande mekanisk påverkan på

mark och vegetation.

1979:5 Reinhard, Ylva: Avloppsinfiltration - ett försök till konsekvensbeskrivning.

1980:1 Telenius, Anders och Torstensson, Peter: Populationsstudie på Spergularia marina

och Spergularia media. I Frödimorfism och reproduktion.

1980:2 Hilding, Tuija: Populationsstudier på Spergularia marina och Spergularia media.

II Resursallokering och mortalitet.

1980:3 Eriksson, Ove: Reproduktion och vegetativ spridning hos Potentilla anserina L.

1981:1 Eriksson, Torsten: Aspekter på färgvariation hos Dactylorhiza sambucina.

1983:1 Blom, Göran: Undersökningar av lertäkter i Färentuna, Ekerö kommun.

1984:1 Jerling, Ingemar: Kalkning som motåtgärd till försurningen och dess effekter på

blåbär, Vaccinium myrtillus.

1986:1 Svanberg, Kerstin: En studie av grusbräckans (Saxifraga tridactylites) demografi.

1986:2 Nyberg, Hans: Förändringar i träd- och buskskiktets sammansättning i

ädellövskogen på Tullgarnsnäset 1960-1983.

1987:1 Edenholm, Krister: Undersökningar av vegetationspåverkan av vildsvinsbök i

Tullgarnsområdet.

1987:2 Nilsson, Thomas: Variation i fröstorlek och tillväxthastighet inom släktet Veronica.

1988:1 Ehrlén, Johan: Fröproduktion hos vårärt (Lathyrus vernus L.). - Begränsningar och

reglering.

1988:2 Dinnétz, Patrik: Local variation in degree of gynodioecy and protogyny in Plantago

maritima.

1988:3 Blom, Göran och Wincent, Helena: Effekter of kalkning på ängsvegetation.

1989:1 Eriksson, Pia: Täthetsreglering i Littoralvegetation.

1989:2 Kalvas, Arja: Jämförande studier av Fucus-populationer från Östersjön och

västkusten.

1990:1 Kiviniemi, Katariina: Groddplantsetablering och spridning hos smultron, Fragaria

vesca.

Page 23: Plants & Ecology

22

1990:2 Idestam-Almquist, Jerker: Transplantationsförsök med Borstnate.

1992:1 Malm, Torleif: Allokemisk påverkan från mucus hos åtta bruna makroalger på

epifytiska alger.

1992:2 Pontis, Cristina: Om groddknoppar och tandrötter. Funderingar kring en klonal

växt: Dentaria bulbifera.

1992:3 Agartz, Susanne: Optimal utkorsning hos Primula farinosa.

1992:4 Berglund, Anita: Ekologiska effekter av en parasitsvamp - Uromyces lineolatus på

Glaux maritima (Strandkrypa).

1992:5 Ehn, Maria: Distribution and tetrasporophytes in populations of Chondrus crispus

Stackhouse (Gigartinaceae, Rhodophyta) on the west coast of Sweden.

1992:6 Peterson, Torbjörn: Mollusc herbivory.

1993:1 Klásterská-Hedenberg, Martina: The influence of pH, N:P ratio and zooplankton

on the phytoplanctic composition in hypertrophic ponds in the Trebon-region, Czech

Republic.

1994:1 Fröborg, Heléne: Pollination and seed set in Vaccinium and Andromeda.

1994:2 Eriksson, Åsa: Makrofossilanalys av förekomst och populationsdynamik hos Najas

flexilis i Sörmland.

1994:3 Klee, Irene: Effekter av kvävetillförsel på 6 vanliga arter i gran- och tallskog.

1995:1 Holm, Martin: Beståndshistorik - vad 492 träd på Fagerön i Uppland kan berätta.

1995:2 Löfgren, Anders: Distribution patterns and population structure of an economically

important Amazon palm, Jessenia bataua (Mart.) Burret ssp. bataua in Bolivia.

1995:3 Norberg, Ylva: Morphological variation in the reduced, free floating Fucus

vesiculosus, in the Baltic Proper.

1995:4 Hylander, Kristoffer & Hylander, Eva: Mount Zuquala - an upland forest of

Ethiopia. Floristic inventory and analysis of the state of conservation.

1996:1 Eriksson, Åsa: Plant species composition and diversity in semi-natural grasslands -

with special emphasis on effects of mycorrhiza.

1996:2 Kalvas, Arja: Morphological variation and reproduction in Fucus vesiculosus L.

populations.

1996:3 Andersson, Regina: Fågelspridda frukter kemiska och morfologiska egenskaper i

relation till fåglarnas val av frukter.

1996:4 Lindgren, Åsa: Restpopulationer, nykolonisation och diversitet hos växter i

naturbetesmarker i sörmländsk skogsbygd.

1996:5 Kiviniemi, Katariina: The ecological and evolutionary significance of the early life

cycle stages in plants, with special emphasis on seed dispersal.

1996:7 Franzén, Daniel: Fältskiktsförändringar i ädellövskog på Fagerön, Uppland,

beroende på igenväxning av gran och skogsavverkning.

1997:1 Wicksell, Maria: Flowering synchronization in the Ericaceae and the Empetraceae.

1997:2 Bolmgren, Kjell: A study of asynchrony in phenology - with a little help from

Frangula alnus.

1997:3 Kiviniemi, Katariina: A study of seed dispersal and recruitment of plants in a

fragmented habitat.

1997:4 Jakobsson, Anna: Fecundity and abundance - a comparative study of grassland

species.

1997:5 Löfgren, Per: Population dynamics and the influence of disturbance in the Carline

Thistle, Carlina vulgaris.

1998:1 Mattsson, Birgitta: The stress concept, exemplified by low salinity and other stress

factors in aquatic systems.

Page 24: Plants & Ecology

23

1998:2 Forsslund, Annika & Koffman, Anna: Species diversity of lichens on decaying

wood - A comparison between old-growth and managed forest.

1998:3 Eriksson, Åsa: Recruitment processes, site history and abundance patterns of plants

in semi-natural grasslands.

1998:4 Fröborg, Heléne: Biotic interactions in the recruitment phase of forest field layer

plants.

1998:5 Löfgren, Anders: Spatial and temporal structure of genetic variation in plants.

1998:6 Holmén Bränn, Kristina: Limitations of recruitment in Trifolium repens.

1999:1 Mattsson, Birgitta: Salinity effects on different life cycle stages in Baltic and North

Sea Fucus vesiculosus L.

1999:2 Johannessen, Åse: Factors influencing vascular epiphyte composition in a lower

montane rain forest in Ecuador. An inventory with aspects of altitudinal distribution,

moisture, dispersal and pollination.

1999:3 Fröborg, Heléne: Seedling recruitment in forest field layer plants: seed production,

herbivory and local species dynamics.

1999:4 Franzén, Daniel: Processes determining plant species richness at different scales -

examplified by grassland studies.

1999:5 Malm, Torleif: Factors regulating distribution patterns of fucoid seaweeds. A

comparison between marine tidal and brackish atidal environments.

1999:6 Iversen, Therese: Flowering dynamics of the tropical tree Jacquinia nervosa.

1999:7 Isæus, Martin: Structuring factors for Fucus vesiculosus L. in Stockholm south

archipelago - a GIS application.

1999:8 Lannek, Joakim: Förändringar i vegetation och flora på öar i Norrtälje skärgård.

2000:1 Jakobsson, Anna: Explaining differences in geographic range size, with focus on

dispersal and speciation.

2000:2 Jakobsson, Anna: Comparative studies of colonisation ability and abundance in

semi-natural grassland and deciduous forest.

2000:3 Franzén, Daniel: Aspects of pattern, process and function of species richness in

Swedish seminatural grasslands.

2000:4 Öster, Mathias: The effects of habitat fragmentation on reproduction and population

structure in Ranunculus bulbosus.

2001:1 Lindborg, Regina: Projecting extinction risks in plants in a conservation context.

2001:2 Lindgren, Åsa: Herbivory effects at different levels of plant organisation; the

individual and the community.

2001:3 Lindborg, Regina: Forecasting the fate of plant species exposed to land use change.

2001:4 Bertilsson, Maria: Effects of habitat fragmentation on fitness components.

2001:5 Ryberg, Britta: Sustainability aspects on Oleoresin extraction from Dipterocarpus

alatus.

2001:6 Dahlgren, Stefan: Undersökning av fem havsvikar i Bergkvara skärgård, östra

egentliga Östersjön.

2001:7 Moen, Jon; Angerbjörn, Anders; Dinnetz, Patrik & Eriksson Ove: Biodiversitet i

fjällen ovan trädgränsen: Bakgrund och kunskapsläge.

2001:8 Vanhoenacker, Didrik: To be short or long. Floral and inflorescence traits of Bird`s

eye primrose Primula farinose, and interactions with pollinators and a seed predator.

2001:9 Wikström, Sofia: Plant invasions: are they possible to predict?

2001:10 von Zeipel, Hugo: Metapopulations and plant fitness in a titrophic system – seed

predation and population structure in Actaea spicata L. vary with population size.

2001:11 Forsén, Britt: Survival of Hordelymus europaéus and Bromus benekenii in a

deciduous forest under influence of forest management.

Page 25: Plants & Ecology

24

2001:12 Hedin, Elisabeth: Bedömningsgrunder för restaurering av lövängsrester i Norrtälje

kommun.

2002:1 Dahlgren, Stefan & Kautsky, Lena: Distribution and recent changes in benthic

macrovegetation in the Baltic Sea basins. – A literature review.

2002:2 Wikström, Sofia: Invasion history of Fucus evanescens C. Ag. in the Baltic Sea

region and effects on the native biota.

2002:3 Janson, Emma: The effect of fragment size and isolation on the abundance of Viola

tricolor in semi-natural grasslands.

2002:4 Bertilsson, Maria: Population persistance and individual fitness in Vicia pisiformis:

the effects of habitat quality, population size and isolation.

2002:5 Hedman, Irja: Hävdhistorik och artrikedom av kärlväxter i ängs- och hagmarker på

Singö, Fogdö och norra Väddö.

2002:6 Karlsson, Ann: Analys av florans förändring under de senaste hundra åren, ett

successionsförlopp i Norrtälje kommuns skärgård.

2002:7 Isæus, Martin: Factors affecting the large and small scale distribution of fucoids in

the Baltic Sea.

2003:1 Anagrius, Malin: Plant distribution patterns in an urban environment, Södermalm,

Stockholm.

2003:2 Persson, Christin: Artantal och abundans av lavar på askstammar – jämförelse

mellan betade och igenvuxna lövängsrester.

2003:3 Isæus, Martin: Wave impact on macroalgal communities.

2003:4 Jansson-Ask, Kristina: Betydelsen av pollen, resurser och ljustillgång för

reproduktiv framgång hos Storrams, Polygonatum multiflorum.

2003:5 Sundblad, Göran: Using GIS to simulate and examine effects of wave exposure on

submerged macrophyte vegetation.

2004:1 Strindell, Magnus: Abundansförändringar hos kärlväxter i ädellövskog – en

jämförelse av skötselåtgärder.

2004:2 Dahlgren, Johan P: Are metapopulation dynamics important for aquatic plants?

2004:3 Wahlstrand, Anna: Predicting the occurrence of Zostera marina in bays in the

Stockholm archipelago,northern Baltic proper.

2004:4 Råberg, Sonja: Competition from filamentous algae on Fucus vesiculosus –

negative effects and the implications on biodiversity of associated flora and fauna.

2004:5 Smaaland, John: Effects of phosphorous load by water run-off on submersed plant

communities in shallow bays in the Stockholm archipelago.

2004:6 Ramula Satu: Covariation among life history traits: implications for plant

population dynamics.

2004:7 Ramula, Satu: Population viability analysis for plants: Optimizing work effort and

the precision of estimates.

2004:8 Niklasson, Camilla: Effects of nutrient content and polybrominated phenols on the

reproduction of Idotea baltica and Gammarus ssp.

2004:9 Lönnberg, Karin: Flowering phenology and distribution in fleshy fruited plants.

2004:10 Almlöf, Anette: Miljöfaktorers inverkan på bladmossor i Fagersjöskogen, Farsta,

Stockholm.

2005:1 Hult, Anna: Factors affecting plant species composition on shores - A study made in

the Stockholm archipelago, Sweden.

2005:2 Vanhoenacker, Didrik: The evolutionary pollination ecology of Primula farinosa.

2005:3 von Zeipel, Hugo: The plant-animal interactions of Actea spicata in relation to

spatial context.

2005:4 Arvanitis, Leena T.: Butterfly seed predation.

Page 26: Plants & Ecology

25

2005:5 Öster, Mathias: Landscape effects on plant species diversity – a case study of

Antennaria dioica.

2005:6 Boalt, Elin: Ecosystem effects of large grazing herbivores: the role of nitrogen.

2005:7 Ohlson, Helena: The influence of landscape history, connectivity and area on

species diversity in semi-natural grasslands.

2005:8 Schmalholz, Martin: Patterns of variation in abundance and fecundity in the

endangered grassland annual Euphrasia rostkovia ssp. Fennica.

2005:9 Knutsson, Linda: Do ants select for larger seeds in Melampyrum nemorosum?

2006:1 Forslund, Helena: A comparison of resistance to herbivory between one exotic and

one native population of the brown alga Fucus evanescens.

2006:2 Nordqvist, Johanna: Effects of Ceratophyllum demersum L. on lake phytoplankton

composition.

2006:3 Lönnberg, Karin: Recruitment patterns, community assembly, and the evolution of

seed size.

2006:4 Mellbrand, Kajsa: Food webs across the waterline - Effects of marine subsidies on

coastal predators and ecosystems.

2006:5 Enskog, Maria: Effects of eutrophication and marine subsidies on terrestrial

invertebrates and plants.

2006:6 Dahlgren, Johan: Responses of forest herbs to the environment.

2006:7 Aggemyr, Elsa: The influence of landscape, field size and shape on plant species

diversity in grazed former arable fields.

2006:8 Hedlund, Kristina: Flodkräftor (Astacus astacus) i Bornsjön, en omnivors påverkan

på växter och snäckor.

2007:1 Eriksson, Ove: Naturbetesmarkernas växter- ekologi, artrikedom och

bevarandebiologi.

2007:2 Schmalholz, Martin: The occurrence and ecological role of refugia at different

spatial scales in a dynamic world.

2007:3 Vikström, Lina: Effects of local and regional variables on the flora in the former

semi-natural grasslands on Wäsby Golf club’s course.

2007:4 Hansen, Joakim: The role of submersed angiosperms and charophytes for aquatic

fauna communities.

2007:5 Johansson, Lena: Population dynamics of Gentianella campestris, effects of

grassland management, soil conditions and the history of the landscape

2007:6 von Euler, Tove: Sex related colour polymorphism in Antennaria dioica.

2007:7 Mellbrand, Kajsa: Bechcombers, landlubbers and able seemen: Effects of marine

subsidies on the roles of arthropod predators in coastal food webs.

2007:8 Hansen, Joakim: Distribution patterns of macroinvertebrates in vegetated, shallow,

soft-bottom bays of the Baltic Sea.

2007:9 Axemar, Hanna: An experimental study of plant habitat choices by

macroinvertebrates in brackish soft-bottom bays.

2007:10 Johnson, Samuel: The response of bryophytes to wildfire- to what extent do they

survive in-situ?

2007:11 Kolb, Gundula: The effects of cormorants on population dynamics and food web

structure on their nesting islands.

2007:12 Honkakangas, Jessica: Spring succession on shallow rocky shores in northern

Baltic proper.

2008:1 Gunnarsson, Karl: Påverkas Fucus radicans utbredning av Idotea baltica?

2008:2 Fjäder, Mathilda: Anlagda våtmarker i odlingslandskap- Hur påverkas

kärlväxternas diversitet?

Page 27: Plants & Ecology

26

2008:3 Schmalholz, Martin: Succession in boreal bryophyte communities – the role of

microtopography and post-harvest bottlenecks.

2008:4 Jokinen, Kirsi: Recolonization patterns of boreal forest vegetation following a

severe flash flood.

2008:5 Sagerman, Josefin: Effects of macrophyte morphology on the invertebrate fauna in

the Baltic Sea.

2009:1 Andersson, Petter: Quantitative aspects of plant-insect interaction in fragmented

landscapes – the role of insect search behaviour.

2009:2 Kolb, Gundula: The effects of cormorants on the plant-arthropod food web on their

nesting islands.

2009:3 Johansson, Veronika: Functional traits and remnant populations in abandoned

semi-natural grasslands.

2009: 4 König, Malin: Phenotypic selection on flowering phenology and herbivory in

Cardamine amara.

2009:5 Forslund, Helena: Grazing and the geographical range of seaweeds –

The introduced Fucus evanescens and the newly described Fucus radicans.

2009:6 von Euler, Tove: Local adaptation and life history differentiation in plant

populations.

2009:7 Tiderman, Dan: Sympatric speciation in Baltic Sea Fucus population- Is vegetative

reproduction the key for evolution of F.radicans?

2009:8 Marteinsdóttir, Bryndis: Asembly of plant communties in grasslands: an

overview.

2009:9 Herrström, Anna: Distribution and host plant selection of the Alcon blue

(Maculinea alcon).

2009:10 Norrman, Karolina: Long-term exclusion of mammalian herbivores affect plant

biomass in plant communities of the tundra in northern Norway.

Page 28: Plants & Ecology

27