25
PROPAGACION DE ERRORES Error de medicion Combinaciones lineales de las mediciones Incertidumbres para funciones de una medicion Incertidumbres para funciones de varias mediciones

Propagacion de Errores ( Clase 2)

Embed Size (px)

DESCRIPTION

estadistica

Citation preview

Page 1: Propagacion de Errores ( Clase 2)

PROPAGACION DE ERRORES

•Error de medicion •Combinaciones lineales de las mediciones•Incertidumbres para funciones de una medicion •Incertidumbres para funciones de varias mediciones

Page 2: Propagacion de Errores ( Clase 2)

PROPAGACIÓN DE ERRORES La medición es fundamental en un

trabajo de investigación . Cualquier procedimiento de medición

tiene errores . Por lo general los valores medidos son algo diferentes de los valores reales.

Cuando se realiza un calculo con mediciones , los errores en estas producen un error en el valor calculado. Decimos que el error se propaga de las mediciones al valor calculado.

Page 3: Propagacion de Errores ( Clase 2)

ERROR DE MEDICION Error : Es la diferencia entre un valor medido

y el valor real. Tipos de errores:

Error sistemático o sesgo: Representa la parte del error que es igual para cada medición .

Error aleatorio: Varia entre mediciones y en promedio es igual a cero en el largo plazo.

Cualquier medición se puede considerar como la suma del valor real mas las contribuciones de cada uno de los componentes del error:

Valor medido = valor real + sesgo + error aleatorio

Page 4: Propagacion de Errores ( Clase 2)

ASPECTOS DEL PROCESO DE MEDICIÓN : Su exactitud: esta la determina el sesgo ,que es la

diferencia entre la media de la medición y el valor real. Entre mas pequeño sea el sesgo , mas exacto será el proceso

de medición . Si la media es igual al valor real , el sesgo será igual a cero,

el proceso de medición se le llamara no sesgado. Su precisión : Es el grado con que tienden a coincidir las

mediciones repetidas de la misma cantidad . Si las mediciones repetidas resultan muy cercanas entre si todo

el tiempo , la precisión es alta. Si son muy dispersas , la precisión es baja.

La precisión se determina mediante la desviación estándar del proceso de medición. Entre mas pequeño sea el valor de sigma mas preciso será aquel.

Con frecuencia se refieren a sigma como incertidumbre aleatoria o incertidumbre estadística del proceso de medición .

Page 5: Propagacion de Errores ( Clase 2)

A TENER EN CUENTA: Un valor medido representa una

variable aleatoria con media y desviación estándar.

Sesgo = media - valor real La incertidumbre es la desviación

estándar Entre mas pequeño sea el sesgo, mas

exacto será el proceso de medición. Entre mas pequeña sea la incertidumbre

, mas preciso será el proceso de medición.

Page 6: Propagacion de Errores ( Clase 2)

EJEMPLOS: 1. Se sabe que en una muestra de laboratorio de

gas tiene una concentración de monóxido de carbono(CO) de 50 partes por millón (ppm). Se utiliza un espectrómetro para tomar cinco mediciones independientes de esta concentración . Las cinco mediciones , en ppm , son 51,47,53,53 y 48. Estime el sesgo y la incertidumbre en una medición.

Valor real = 50 ppm La media es 50,4 El sesgo = 50,4 – 50 = 0,4 ppm La desviación estándar = 2,8 ppm . Por

consiguiente la incertidumbre en cada medición es de 2,8 ppm.

Page 7: Propagacion de Errores ( Clase 2)

EJEMPLOS: 2. Se utiliza un espectrómetro diferente

para medir la concentración de CO en otra muestra de gas. La concentración real de esta muestra es desconocida . Se hacen cinco mediciones ( en ppm) . Estas son 62,63,61,62 y 59 .Estime la incertidumbre en una medición de este espectrómetro . Se puede estimar el sesgo ?

La incertidumbre es de 1,5 ppm . La media de la muestra es 61,4 ppm No se puede estimar el sesgo.

Page 8: Propagacion de Errores ( Clase 2)

COMBINACIONES LINEALES DE LAS MEDICIONES Se describen como afectan las

incertidumbres debido a las operaciones aritméticas ( suma y multiplicación).

Las mediciones son variables aleatorias y las incertidumbres son estándares de estos.

Si X es una medición y c es una constante , entonces :

En mediciones independientes , haremos:

XcX c

222

221 21 XXcX cc

Page 9: Propagacion de Errores ( Clase 2)

EJEMPLOS: 1. El radio de un circulo mide 3,0 0,1

cm. Estime la circunferencia y determine la incertidumbre en la estimación.

R= radio del circulo. El valor medido de R es 3,0 La incertidumbre es La cia esta dada por La incertidumbre en C es es una constante

La cia es 18,84 0,63 cm

1,0RR2

C2

63,0)1,0)(28,6(2

C

RC

Page 10: Propagacion de Errores ( Clase 2)

EJEMPLOS 2. Un topógrafo mide el perímetro de un

terreno rectangular . Toma medidas de dos lados adyacentes ,50,11 ± 0,05 m y 75,21 ± 0,08 m. estas mediciones son independientes Estime el perímetro del terreno y determine la incertidumbre en la estimación.

Sean X= 50,11 e Y=75,21 las dos mediciones. El perímetro es P= 2X+2Y = 250,64 m La incertidumbre en P es:

m

YXYXP

39,0)08,0(4)05,0(4

4422

2222

Page 11: Propagacion de Errores ( Clase 2)

MEDICIONES REPETIDAS Una de las mejores maneras de reducir

la incertidumbre es tomar varias mediciones independientes y determinar el promedio de ellas.

Si las X son mediciones independientes cada una con media e incertidumbre , entonces la media de la muestra es una medición con media

Y con incertidumbre

X

nX

X

Page 12: Propagacion de Errores ( Clase 2)

EJEMPLO: La masa de una roca se midió cinco

veces en una balanza cuya incertidumbre no se conoce . Las cinco mediciones ( en gramos) son 21,10 ; 21,05 ; 20,98 ; 21,12 ; 21,05 . Estime la masa de la roca y determine la incertidumbre en la estimación.

, La masa de la roca es de 21,06 ±

0,0543/√5= 21,06 ± 0,02

06,21X 0543,0s

Page 13: Propagacion de Errores ( Clase 2)

MEDICIONES REPETIDAS CON INCERTIDUMBRES DIFERENTES A veces al repetir mediciones se pueden

obtener incertidumbres diferentes. Esto puede ocurrir cuando las mediciones se hacen instrumentos diferentes. La mejor manera de combinar las mediciones en este caso es con un promedio ponderado, mas que con la media de la muestra.

Si X e Y son mediciones independientes de la misma cantidad, con incertidumbres

, respectivamente, entonces el promedio ponderado de X e Y con la incertidumbre mas pequeña esta dado por

yx y

22

2

22

2

1YX

Xmejor

YX

Ymejor CC

YCXC mejormejor ),1(

Page 14: Propagacion de Errores ( Clase 2)

EJEMPLOS Un ingeniero mide el periodo de un péndulo (en

segundos) de 2,0 ± 0,2 segundos. Se hizo otra medición independiente con un reloj mas preciso y el resultado es de 2,2 ± 0,1 segundos. El promedio de estas dos mediciones es 2,1 segundos. Determine la incertidumbre en esta cantidad.

Sea X la medición con el reloj menos preciso, por lo que X = 2,0 s, con incertidumbre

Sea Y la medición con el reloj mas preciso, por lo que Y= 2,2 s , con incertidumbre

El promedio es 0,5 X +0,5 Y = 2,10 y la incertidumbre en este promedio es :

2,0X

1,0Y

11,0

)1,0(41)2,0(

41

41

41

22

22

YXprom

Page 15: Propagacion de Errores ( Clase 2)

En el ejemplo anterior otro ingeniero sugiere a que Y es una medición mas precisa que X, podría ser mas preciso un promedio ponderado en el cual Y fuera mas pesado que X que el promedio no ponderado .

Específicamente , el ingeniero sugiere que al elegir una constante adecuada c entre 0 y 1 , el promedio ponderado cX+(1-c)Y podría tener una incertidumbre mas pequeña que el promedio no ponderado 0,5X+0,5 Y que se considero en el ejemplo anterior.

Expresando la incertidumbre en el promedio ponderado cX+(1-c)Y en función de c se encuentra que el valor de c que minimiza la incertidumbre .

Page 16: Propagacion de Errores ( Clase 2)

La incertidumbre en el promedio ponderado es :

Para encontrar el valor de c que minimiza a sigma haremos la derivada de la varianza con respecto a c y la igualamos a cero, esto es:

Despejando c, se obtiene c = 0,2

01,002,005,0

)1(01,0)04,0(

)1(

2

22

2222

cc

cc

cc YX

002,010,02

cdcd

Page 17: Propagacion de Errores ( Clase 2)

Por tanto , el promedio ponderado mas preciso es 0,2 X + 0,8 Y =2,16 .

La incertidumbre en esta estimación es:

Observe que esta es menor que la incertidumbre de 0,11 s que se encontró para el promedio no ponderado .

s

YXmejor

09,0)1,0()8,0()2,0()2,0(

)8,0()2,0(2222

2222

Page 18: Propagacion de Errores ( Clase 2)

COMBINACIONES LINEALES DE MEDICIONES DEPENDIENTES Si son mediciones y

son constantes , entonces :

Ejemplo: Un topógrafo esta midiendo el perímetro de un terreno rectangular. Mide dos lados adyacentes de 50,11 ± 0,05 m y 75,21 ± 0,08 m . Estas mediciones no son necesariamente independientes. Determine con una estimación conservadora la incertidumbre del perímetro del terreno.

nXX ,...,1 ncc ,.....,1

nnn XnXXcXc cc ...111 1...

Page 19: Propagacion de Errores ( Clase 2)

Sean las dos mediciones. El perímetro esta dado por Luego :

La incertidumbre en el perímetro no es mayor que 0,26 m .

21 XyX

21 22 XXP

m

XX

XXP

26,0)08,0(2)05,0(2

2221

21 22

Page 20: Propagacion de Errores ( Clase 2)

INCERTIDUMBRES PARA FUNCIONES DE UNA MEDICION Si X es una medida cuya incertidumbre

es pequeña y si U es una función de X , entonces

Ejemplo: El radio R de un circulo mide 5,00 ± 0,01 cm. Estime el área del circulo y determine la incertidumbre.

El área de un circulo es . La estimación del área es La derivada de A con respecto a R es : La incertidumbre en A es :

Se estima el área del circulo de 78,5 ± 0,3 cm2

X

XU dXdU

2RA 22 5,78)00,5( cmA R2

231,0)01,0)(10(

cm

dRdA

RA

Page 21: Propagacion de Errores ( Clase 2)

INCERTIDUMBRES PARA FUNCIONES DE VARIAS MEDICIONES Si son mediciones

independientes cuyas incertidumbres son pequeñas y si es una función de entonces :

Esta ecuación representa la formula de propagación de errores multivariada.

Es valida solo cuando las mediciones con independientes.

nXX ,...,1

nXXX ,...,,21

),...,,( 21 nXXXUU nXXX ,...,, 21

2

2

2

2

2

2

2

1

...21 nX

n

XXU XU

XU

XU

Page 22: Propagacion de Errores ( Clase 2)

EJEMPLO Suponga que la masa de una roca se mide

de m =674,0 ±1,0 g y el volumen de la roca

se mide de V =261,0 ± 0,1 ml. Estime la densidad de la roca y determine la incertidumbre en el calculo de la estimación.

La estimación de la densidad estará dada por :

Luego D = 2,582 g/ml Las derivadas parciales de D son :

VmD

2

2

1

/0099,0

0038,01

mlgVm

VD

mlVm

D

Page 23: Propagacion de Errores ( Clase 2)

La incertidumbre en D es , por tanto,

La densidad de la roca es 2,582 ± 0,004 g/ml

mlg

VD

mD

VmD

/0040,0)1,0()0099,0()0,1()0038,0( 2222

2

2

2

2

Page 24: Propagacion de Errores ( Clase 2)

EJEMPLO 2 Dos resistores con resistencias R1 y R2

están conectados en paralelo. La resistencia combinada R esta dada por . Si R1 mide 100±10 y R2 20± 1 , estime R y determine la incertidumbre en la estimación

La estimación de R es :

Las derivadas parciales de R son :

21

21

RRRRR

67,1620100)20)(100(R

694,0

0278,0

2

21

1

2

2

21

2

1

RRR

RR

RRR

RR

Page 25: Propagacion de Errores ( Clase 2)

Por tanto ,

La resistencia combinada es 16,67 ± 0,75

75,0)1()694,0()10()0278,0( 2222

2

2

2

2

2

121 RRR R

RRR