234
 ABL700 series reference manual

Radiometer ABL 700 Serie

Embed Size (px)

Citation preview

Page 1: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 1/234

 

ABL700 series reference manual

Page 2: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 2/234

Page 3: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 3/234

ABL700

series

reference

manual 

Page 4: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 4/234

 

Page 5: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 5/234

 

Note to the users of the EML105, ABL5xx, ABL SYSTEM 6xx,

ABL7xx Series, ABL800 FLEX and ABL800 BASIC analyzers

This note to users outlines a change in the operator’s and reference manual for your

EML105, ABL5xx, ABL SYSTEM 6xx, ABL7xx Series, and/or ABL800 FLEX and

ABL800 BASIC analyzer.

Operator’s manual:

Limitations of use and known interfering substances:

CAUTION - Known interfering substances 

Substance InterferenceClO4

 –  (drugs) For ClO4

 –, interference on cCa2+ (1.25 mmol/L

level) has been detected:

cCa2+ (1.25 mmol/L level): 0.20*.

* Depending on the pH level 

Reference manual:

Change/Description

Interference on For ClO4 – , interference on cCa2+ (1.25 mmol/L level) has been

detected. The interference results for ClO4 –

are as follows: 

Interference on… 

Substance Test Conc.  cK+ 

(4 mmol/L

level) 

 cNa+

(150 mmol/L

level) 

 cCa2+

 (1.25 mmol/L

level) 

cCl 

(110 mmol/L

level) 

ClO4 –   1.5 mmol/L - - 0.20* 8-30

* Depending on the pH level

A "-" indicates that interference has not been measured on the respective parameter.

The manual will be updated with the above information as part of the next manual update.

Please place this note to the users in the binder of your manual.

© 2009 Radiometer Medical ApS. All Rights Reserved.

995-521. 200912A.

Introduction

Brief overview

of the change

Technical

documentation

Instructions to

user

Page 6: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 6/234

 

Page 7: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 7/234

 

Note to users of the ABL700 Series analyzers

The manuals for the ABL700 Series analyzers must be upgraded with regard to the

information on cleaning solution.

The procedure for adding cleaning additive has been changed for the above-

mentioned analyzers and from now on the following instructions must be followed:

1. Remove the foil from the DosiCapZip and unscrew it (Figs. 1+2).

2. Turn the DosiCapZip upside down and screw it onto the container again

(Figs. 3+4).

TCAUTION T: T If the contents of the DosiCapZip or the container have

been spilt by accident, both the container and the DosiCapZip should be

discarded to prevent incorrect concentrations in the solution. T

3. Invert the container at least 20 times to dissolve the additive (Fig. 5). 

4. Place the container horizontally so that the solution may enter the

DosiCapZip and leave it for 3 minutes (Fig. 6).

5. Invert the container again at least 20 times to fully dissolve the additive

(Fig. 7).

6. Unscrew the lid from the new solution container.

7. Remove the used solution container by holding it on the sides and

 pulling.

8. Scan the barcode of the new solution, using the barcode reader.

9. Place the new solution container in position on the analyzer and push it

firmly onto the connector as far as possible.

10. For the ABL700 Series analyzers, sw. 3.836: Press Restart to restart the

analyzer. 

For the ABL700 Series analyzers, sw. 6.00: Press Restart and Accept to

restart the analyzer.

Mandatory

upgrade of the

manual

Cleaning

solution with

cleaning

additive -

installation

© Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2008. All Rights Reserved.

994-702. 200810A.

Page 8: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 8/234

 

Item Code No. Type

Cleaning Solution 175 mL 944-123 S7375T 

Use: For cleaning the measuring system of the ABL700 Series analyzers.

Contains: Salts, buffer, anticoagulant, preservatives, surfactants and enzyme.

Safety Data Sheet may be obtained from your local distributor.Storage: At 2-10 °C.

Stability in use: The Cleaning Solution with the Cleaning Additive is stable for 2

months in use.

Analyzer: Perform cleaning every 8th hour.

T CAUTION – Risk of personal injury

TDo not breathe dust (S22). Avoid contact with skin (S24). Irritating to eyes and

skin (R36/38). Wear suitable gloves (S37). May cause sensitization by inhalation

and skin contact (R42/43). In case of accident or if you feel unwell, seek medical

advice immediately (show the label where possible) (S45).

Due to new cleaning solutions, information about Cleaning solution S7370 and

Cleaning additive S5370 is no longer valid.

Below is a list of the sections in the manual that must be ignored.

ABL700 Series reference manual:

Chapter 7: Solutions and gas mixtures: 

S7370 Cleaning Solution and

S5370 Cleaning additive: 

Text no longer relevant.

See instruction about the new Cleaning

Solution S7375 above instead.

Index: Cleaning Additive references no longer

relevant. 

The manuals for the ABL700 Series analyzers will be updated with the above

information when reprinted.

This update kit includes a note to the user with the changes and a new date of issue

 page of the manual. Please place the note to the user in the binder of the ABL700

Series reference manual and replace the date of issue page with the new

corresponding page, then discard the old page.

Cleaning

solution with

cleaning

additive –

general

information

Texts no longer

valid in the

manuals

Technical

documentation

Instructions to

user

Page 9: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 9/234

 

Contents

1. Introduction

2. Electrodes

3. The Optical System

4. User-defined Corrections

5. Performance Characteristics

6. Parameters

7. Solutions

8. Interfacing Facilities

Index

Date of Issue

Reference

Manual

ABL700 Series

Page 10: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 10/234

SYSTEM PERFORMANCE AND WARRANTY DISCLAIM

Radiometer cannot provide or verify instrument performance characteristics and acceptwarranty claims or product liability claims if the recommended procedures are not carried out,if accessories other than those recommended by Radiometer are used, or if instrumentrepairs are not carried out by authorized service representatives.

The instructions given in the Operator’s Manual for the ABL700 Series must be observed inorder to ensure proper instrument performance, and to avoid electrical hazards.

TRADEMARKSABL™, BMS™, FLM™, CMT™, Deep Picture™, QUALICHECK™ and RADIOMETER™ are

trademarks of Radiometer Medical ApS, Denmark.

ABL is registered in the USA.

QUALICHECK is registered in the USA and in some other countries.

COPYRIGHT

The contents of this document may not be reproduced in any form or communicated to anythird party without the prior written consent of Radiometer Medical ApS.

While every effort is made to ensure the correctness of the information provided in thisdocument Radiometer Medical ApS assumes no responsibility for errors or omissions whichnevertheless may occur.

This document is subjected to change without notice.

©Radiometer Medical ApS, DK-2700 Brønshøj, Denmark, 2006. All Rights Reserved.

Page 11: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 11/234

 ABL700 Series Reference Manual Contents

Contents

1. Introduction .............................................................................................. 1-1

ABL700 Series Documentation .................................................................. 1-2

Warnings/Cautions and Notes .................................................................... 1-3

2. Electrodes .................................................................................................. 2-1

General Construction .................................................................................. 2-2

General Measuring Principles..................................................................... 2-3

Calibration .................................................................................................. 2-7

Electrode Measuring Time and Updatings ............................................... 2-14

Reference Electrode .................................................................................. 2-15

 pH Electrode ............................................................................................. 2-16

 pCO2 Electrode ......................................................................................... 2-23

 pO2 Electrode............................................................................................ 2-32

Electrolyte Electrodes ............................................................................... 2-42

Metabolite Electrodes ............................................................................... 2-54

References................................................................................................. 2-64

3. The Optical System ................................................................................... 3-1

Measuring Principle.................................................................................... 3-2

Correcting for Interferences........................................................................ 3-7

Calibration .................................................................................................. 3-9

Measurement and Corrections ..................................................................3-10

References................................................................................................. 3-13

4. User-Defined Corrections ......................................................................... 4-1

General Information.................................................................................... 4-2

Correction Factors for Oximetry Parameters and Bilirubin........................ 4-4

Electrolyte and Metabolite Parameters .......................................................4-8

5. Performance Characteristics.................................................................... 5-1

General Information....................................................................................5-2

Definition of Terms and Test Conditions ................................................... 5-3

Reference Methods for the ABL700 Series................................................5-8

ABL735/30/25/20/15/10/05 Performance Test Results - Macromodes.... 5-10

ABL735/30/25/20/15/10/05 Performance Test Results - Micromodes .... 5-19

ABL700 Performance Test Results ..........................................................5-30

ABL735/30/25/20/15/10/05/00 Expired Air Mode .................................. 5-32

ABL735/30/25/20/15/10/05/00 Capillary - pH Only Mode ..................... 5-35

Page 12: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 12/234

Contents ABL700 Series Reference Manual

ABL735/30 Performance Test Results - Bilirubin.................................... 5-36

Interference Tests...................................................................................... 5-42

References................................................................................................. 5-50

6. Parameters ................................................................................................. 6-1

General Information....................................................................................6-2

Acid-base Parameters.................................................................................. 6-6

Oximetry Parameters .................................................................................. 6-8

Oxygen Parameters ..................................................................................... 6-9

Bilirubin.................................................................................................... 6-13

Electrolyte Parameters .............................................................................. 6-14

Metabolite Parameters .............................................................................. 6-15

Units and Ranges for Measured Parameters ............................................. 6-16

Units and Ranges for Input Parameters .................................................... 6-19

Units and Ranges for Derived Parameters ................................................6-20

List of Equations....................................................................................... 6-25

Oxyhemoglobin Dissociation Curve (ODC).............................................6-41

Conversion of Units .................................................................................. 6-46

Default Values .......................................................................................... 6-48

Altitude Correction ................................................................................... 6-49

References................................................................................................. 6-50

7. Solutions and Gas Mixtures ..................................................................... 7-1

General Information....................................................................................7-2

S1720 and S1730 Calibration Solutions..................................................... 7-3

S4970 Rinse Solution ................................................................................. 7-4

S7370 Cleaning Solution and S5370 Cleaning Additive............................ 7-5

S7770 tHb Calibration Solution..................................................................7-6

Gas Mixtures (Gas 1 and Gas 2) ................................................................. 7-7

Electrolyte Solutions................................................................................... 7-8

S5362 Hypochlorite Solution .....................................................................7-9

Certificates of Traceability .......................................................................7-10

8. Interfacing Facilities ................................................................................. 8-1

Connecting a Mouse ................................................................................... 8-2

Connecting an Alphanumeric Keyboard..................................................... 8-3

Connecting the Bar Code Reader................................................................ 8-4

Connecting a Network ................................................................................ 8-6

Index

Date of Issue

ii 

Page 13: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 13/234

 ABL700 Series Reference Manual 1. Introduction

1. Introduction

This section gives an introduction to the documentation that accompanies your

ABL700 Series analyzer. It describes how this particular manual is organized and

explains the different notices that appear in it.

This chapter contains the following topics.

ABL700 Series Documentation ....................................................................... 1-2

Warnings/Cautions and Notes.......................................................................... 1-3

Overview

Contents

1-1

Page 14: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 14/234

1. Introduction ABL700 Series Reference Manual

 

ABL700 Series Documentation

ABL700 Series

Analyzers

The documentation that accompanies the ABL700 Series analyzers covers the

series in general - each possible electrode combination is not considered

individually.

Documentation The table below describes the documentation that comes with each analyzer.

Documentation Description

The Operator’s

Manual

Contains all the information required for everyday

operation of the analyzer.

Describes the functions of the analyzer and how to set it up

according to customer needs and requirements.

Explains error messages and gives troubleshooting procedures.

Contains ordering information

The Reference

Manual

Gives detailed information about the operating principles

of the analyzer.

Describes the measuring and calibrating principles.

Lists all the parameters.

Gives the equations from which the derived parameters are

calculated.

Gives information about how the performance of theanalyzer is tested.

On-line Help  Summarizes the information found in the Operator’s

Manual.

Gives hands-on help at the analyzer.

Design of

Manual

Depending on the set up of your analyzer, the entire Reference Manual may not be

applicable to it. However the manual is designed in such a way that it is easy to

disregard or remove the sections that are not relevant to your instrument.

1-2 

Page 15: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 15/234

 ABL700 Series Reference Manual 1. Introduction

Warnings/Cautions and Notes

Definitions The following table indicates the type of information given in warnings, cautions,

and notes:

Notice Definition

WARNING Warnings alert users to potentially serious outcomes to

themselves or to the patient (such as death, injury, or serious

adverse events).

 PRECAUTION  Precautions alert users to exercise the special care necessary

for safe and effective use of the device. They may include

actions to be taken to avoid effects situations on patients or

users that may not be potentially life threatening or result in

serious injury , but about which the user should be aware.

Precautions may also alert the user to adverse effects on the

device caused by use or misuse, and the care required toavoid such effects.

 NOTE  Notes give practical information.

All WARNING/CAUTION  notices that appear in this manual, are listed below.List of

WARNING/

CAUTION  

Notices

• S5370 Cleaning Additive: May cause sensitization by inhalation and skin

contact). Do not breathe dust. Avoid contact with skin. Wear suitable gloves.

 In case of accident or if you feel unwell, seek medical advice immediately

(show the label where possible). 

• Gas Mixtures: Not for drug use. High pressure gas. Do not puncture. Do notstore near heat or open flame - exposure to temperatures above 52 C

(125 F) may cause contents to vent or cause bursting.

 Not for inhalation. Avoid breathing gas - mixtures containing carbon dioxide

can increase respiration and heart rate. Gas mixtures containing less than

19.5 % oxygen can cause rapid suffocation.

Store with adequate ventilation. Avoid contact with oil and grease.

Only use with equipment rated for cylinder pressure.

Use in accordance with Safety Data Sheet.

o

o

 

1-3

Page 16: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 16/234

 

Page 17: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 17/234

2. Electrodes

This chapter describes the construction, measuring principle and calibration

 process for each of the electrodes in the ABL700 Series analyzers.

General sections covering the background theory used for measurements and

calibrations are also presented here.

This chapter contains the following topics.

General Construction ....................................................................................... 2-2

General Measuring Principles .......................................................................... 2-3

Calibration........................................................................................................ 2-7

Electrode Measuring Time and Updatings....................................................... 2-14

Reference Electrode ......................................................................................... 2-15

 pH Electrode .................................................................................................... 2-16

 pCO2 Electrode................................................................................................. 2-24

 pO2 Electrode ................................................................................................... 2-33

Electrolyte Electrodes ...................................................................................... 2-43

Metabolite Electrodes....................................................................................... 2-55

References ........................................................................................................ 2-65

Introduction

Contents

Page 18: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 18/234

2. Electrodes ABL700 Series Reference Manual 

General Construction

An Electrode In this manual and other Radiometer literature, the term electrode refers to the

whole sensor unit, i.e. both the electrode and the electrode jacket. Radiometer

electrodes are cordless, thereby limiting the level of noise picked up during the

measuring process. The electrical signals from the electrodes are amplified by

 preamplifiers placed in each module.

A generalized diagram of a Radiometer electrode is given below.

Electrolyte solution

Color-coded ring

Electrical contact

Membrane

Electrode jacket

The main electrode parts are described below.

Part Description

Electrical contact Provides electrical contact between the electrode and the

analyzer.

Color-coded ring Marks each electrode for easy recognition.

Electrode jacket Holds the electrolyte solution and membrane, and protects

the electrode.

Membrane A thin sheet-like material to separate the sample from the

electrode, that differentiates between the substances

allowed to pass through it towards the electrode.

Electrolyte

solution

A conducting solution to provide an electric contact

 between the electrode and the sample (also known as a

salt-bridge solution).

More specific descriptions of the electrodes are found under the appropriate

electrode titles in this chapter.

2-2 

Page 19: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 19/234

 ABL700 Series Reference Manual 2. Electrodes

General Measuring Principles

Introduction There are two different measuring principles employed for electrodes in the

ABL700 Series.

• Potentiometry: The potential of an electrode chain is recorded using a

voltmeter, and related to the concentration of the sample (the Nernst equation).

• Amperometry: The magnitude of an electrical current flowing through an

electrode chain, which is in turn proportional to the concentration of the

substance being oxidized or reduced at an electrode in the chain.

These two measuring principles are described in detail on the following pages.

Potentiometric

Method

An electrode chain describes an electrical circuit consisting of a sample, electrode,

reference electrode, voltmeter, membranes, and electrolyte solutions.

SampleElectrolyte

solutionElectrolyte

solutionReferenceelectrode   Electrode

V

Membrane   Membrane

Voltmeter 

 

Every element in the electrode chain contributes a voltage to the total potential

drop through the chain. Thus:

• When immersed in the appropriate electrolyte solution, both electrodes have

separate potentials.

• The membrane junctions between the sample and electrolyte solutions also have

separate potentials.

The complete electrode chain potential therefore, is the sum of these separate potentials and is the quantity measured by the voltmeter.

 E = E – E total sample Ref

where the final unknown potential ( E sample) can be calculated knowing the total

electrode chain potential ( E total) and the reference potential ( E  Ref  that is constant

 between two subsequent calibrations).

Continued on next page

2-3

Page 20: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 20/234

2. Electrodes ABL700 Series Reference Manual 

General Measuring Principles, Continued

 

Having measured the unknown potential ( E sample), the Nernst equation is then

applied to determine the activity (ax) of the species under study:

Potentiometric

Method

(continued) E E 

na

sample = +

0

2 3R 

Flog

. x

 

where:

E 0   = standard electrode potential

R = gas constant (8.3143 JK −1mol−1)

T   = absolute temperature (310 K (37oC ))

n = charge on the ion

F = Faraday constant (96487 C mol−1)

 xa   = activity of x 

The Nernst equation is rearranged to express the activity as a function of the potential E sample. Having measured E sample the activity can be calculated since allother quantities are already known. Finally the analyzer converts activity toconcentration.

Strictly speaking, in potentiometry the potential of an electrode chain or themagnitude of current flowing through an electrical chain is related to the activity ofa substance, and not its concentration.

Activity expresses the ‘effective concentration’ of a species, taking non-ideality ofthe medium into account.

Activity and concentration are related by the following equation:

ax = γ cx

where:

ax = the activity of the species x

γ  = the activity coefficient of species x under the measurement conditions

(for ideal systems γ = 1)

cx = the concentration of species x (mmol/L)

 NOTE: To be exact, activity is related to the molality of species x, i.e., the numberof mmoles per kg of solvent. However molality is converted to concentration

(molarity). 

ABL700 Series analyzers automatically convert activities into concentrations [1].The term concentration is therefore used in explanations of the measuring principles for each of the electrodes further on in this chapter.

The potentiometric measuring principle is applied in the pH, pCO2, and electrolyteelectrodes. It is slightly different for the pCO2 electrode, however, since the Nernstequation is not directly applied.

Continued on next page

2-4 

Page 21: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 21/234

 ABL700 Series Reference Manual 2. Electrodes

General Measuring Principles, Continued

 

Amperometric

Method

The electrode chain in amperometric measurements consists of the sample, the twoelectrodes (anode and cathode), an amperemeter, a voltage source, the membranes,and the electrolyte solutions.

 Amperemeter

 Applied voltage

 Anode Cathode

Electrolyte solution

Membrane

Sample 

Part Function

Cathode Negative electrode where a reduction reaction occurs andelectrons are consumed.

Anode Positive electrode where an oxidation reaction occurs andelectrons are released.

Electrolyte

solution

Provides electrical contact between the anode and cathode.

Membrane Allows the appropriate molecules to pass through from thesample.

Sample Contacts the membrane.

Applied voltage Applies the necessary potential for the reduction or oxidationreaction under study.

Amperemeter Measures the current flowing through the circuit.

To simplify the description of the measuring process in an amperometric electrode,

we make the following assumptions:

• there is a species A in the sample which is reduced at the cathode to A .

• there is a species X in the electrolyte which is oxidized at the anode to X+.

Continued on next page

2-5

Page 22: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 22/234

2. Electrodes ABL700 Series Reference Manual 

General Measuring Principles, Continued

The membrane is selective to the species A, allowing no other species but it to passthrough from the sample into the electrolyte solution.

Amperometric

Method

(continued) As an appropriate potential is applied across the electrodes, the species A isreduced at the cathode according to the following reaction:

A + e−  →  A

− 

The reduction of A produces a flow of electrons, i.e. an electrical current.

To complete the electrical circuit an oxidation reaction where electrons arereleased is necessary. Therefore species X is oxidized according to the followingreaction:

X →  X+  + e− 

The magnitude of the current flowing through the circuit is proportional to theconcentration of the species being reduced, in this case species A. The analyzerthereby automatically calculates the concentration of A in the sample.

The amperometric measuring principle is applied in the pO2, glucose, and lactateelectrodes.

2-6 

Page 23: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 23/234

 ABL700 Series Reference Manual 2. Electrodes

Calibration

Actual Electrode

Condition

The electrodes are active elements and must be calibrated regularly as the signalsfrom the electrodes change with, e.g. age or deposits on the membrane.

Calibration relates the electrode signals during the calibration sequence to thevalues of the calibrating solutions and must be performed at regular intervals sothat the accuracy can be constantly refined after inevitable minor changes in theelectrodes’ behavior.

Actual electrode condition is described by status/zero point and sensitivity andcompared with theoretical conditions for an "ideal" electrode. In addition to statusand sensitivity, an electrode condition is described by drift.

Calibration Line The calibration line expresses the relationship between the potential (or current)measured at an electrode, and the concentration of the species specific to the

electrode. The calibration line forms the basis of the scale used by the analyzer toconvert electrode chain potentials to concentrations. Each electrode has a differentcalibration line.

The pH electrode is used as an example to illustrate how this line is derived fromtwo calibration solutions of known pH.

• Cal 1 solution has a pH of 7.398 that gives potential reading of 100 mV.

• Cal 2 solution has a pH of 6.802 that gives a potential reading of 64 mV.

These two values are plotted on a graph.

The relationship between potential and pH is linear so a line can be drawn between

the two points, as shown below:

Calibration line

pH

Measuredpotential(mV)

 

100

 

64

6.802pH of Cal 2 sol. 7.398pH of Cal 1 sol.

 

97

7.346pH of sample  

The calibration line now forms the scale used to convert the potential measured atthe pH electrode during sample analysis to an actual pH value.

Continued on next page

2-7

Page 24: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 24/234

Page 25: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 25/234

 ABL700 Series Reference Manual 2. Electrodes

Calibration, Continued 

Sensitivity Electrode sensitivity expresses how a real electrode measures compared with thespecified values of the calibration material; it illustrates the slope of the calibration linederived from a 2-point calibration as a percentage (or fraction) of the slope of thetheoretical calibration line, as determined by the Nernst equation of the ion in question.

Calculating the sensitivity is a way of monitoring the deviation of the electrodesensitivity from the theoretical value.

Calculation of the sensitivity is shown, using the pH electrode as an example.

A theoretical calibration line for the pH electrode with a slope of −61.5 mV/pH isdrawn:

Theoretical calibration line

pH

Measuredpotential(mV)

 112.4

 75.5

6.8 7.4  

The calibration line from a 2-point calibration is superimposed on the same graph:

Theoretical calibration line

Slope= −61.5 mV/pHSensitivity = 100 %

pH

Measuredpotential(mV)

 112.4

 75.5

6.8 7.4

2-point calibration line

Slope = −58.4 mV/pHSensitivity = 95 %

 

The sensitivity of the electrode is calculated as the ratio between the slope of the 2- point calibration line and that of the theoretical line, expressed as a percentage orfraction.

If the theoretical calibration line is assumed to have a sensitivity of 100 %, the 2- point calibration line shown in the example will have a sensitivity ofapproximately 95 %.

Continued on next page

2-9

Page 26: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 26/234

2. Electrodes ABL700 Series Reference Manual 

Calibration, Continued 

Sensitivity 

(continued) The sensitivity limits for the calibration are set for each electrode. If the sensitivity

of any electrode falls outside the allowed limits, the message Calibration Sensitivityout of range appears in the Calibration Messages, with the particular electrodespecified.

Status The electrode status is a measure of zero point of a complete electrode chain.Status of a real electrode reflects deviations from the conditions of a theoreticalelectrode, and define the position of the calibration line.

Calculating the status value of an electrode is a way of monitoring the position ofthe calibration line despite the fact that only a 1-point calibration has been carriedout. The calculation of the status is shown, using the pH electrode as an example.

A calibration line with the same slope as the theoretical calibration line (−61.5mV/pH) is drawn through this point. This theoretical calibration line is used sinceno 2-point calibration is performed which would otherwise give an actualcalibration line.

Theoretical calibration

line with a slope = 61.5mV/pH drawn throughthe point from a 1-pointcalibration.

pH

Measuredpotential(mV)

ECal 1

pHCal 1  

A pH of 7.400, the nominal pH of Calibration Solution 1 (pHCal 1 nom) is chosen. Itscorresponding potential ( E Cal 1 nom) is read off the theoretical calibration line thatwas drawn through the 1-point calibration point.

Theoretical calibrationline drawn through the 1-point calibration point. 

pH 

Measuredpotential

(mV) 

ECal 1 

pHCal 1

Theoretical calibration line for thetheoretical pH electrode with known

potential of −112.4 mV at a pH =7.400. 

ECal 1 nom

ECal 1 nom(theo) 

E=−112.4 mV 

pHCal 1 nom

(7.400)pHStatus

∆E

∆pH

Continued on next page

2-10 

Page 27: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 27/234

 ABL700 Series Reference Manual 2. Electrodes

Calibration, Continued 

Status 

(continued) 

A line from pHCal 1 nom is extrapolated up to the theoretical calibration line, and thecorresponding potential ( E Cal 1 nom(theo)) read off the theoretical calibration line.

The difference between E Cal 1 nom and E Cal 1 nom(theo) which corresponds to ∆E on thegraph, represents the potential that should theoretically be obtained for a solution

with pH = 7.400. This potential difference (∆E) thus describes the deviation of theactual pH reference electrode system from a theoretical electrode system.

Similarly ∆ pH describes the deviation in pH values that would be produced between measurements with an actual electrode system and measurements with atheoretical electrode system.

The status of the pH electrode, pH(Status), is then calculated as:

 pH(Status) = 7.4 +  E E Cal 1 nom Cal 1 nom(theo)

61.5−  

The status limits of the calibration are set for each electrode. If the status for any

electrode falls outside the allowed limits, the message Calibration status out of

limits appears in the Calibration Messages, with the particular electrode specified.

Calibration

Materials

The following calibration materials are used:

Calibration Material Used for...

Calibration Solutions 1 and 2: the exact composition ofthe calibration solutions is given in the bar code on the

 bottle label, which can be read into the analyzer using the

 bar code reader, or entered manually via the keyboard.

Calibration of the pH,and electrolyte

electrodes

Calibration Solution 1: Calibration of the

metabolite electrodes

and optical system

Gas 1 and Gas 2: each gas has a precise composition

essential for determining the accuracy of the analyzer in

each pCO2 and pO2 measurement.

Calibration of the

 pCO2 and pO2 

electrodes

tHb Calibration Solution: Calibration of theoptical system

The Chemical Reference Laboratory at Radiometer is responsible for the accuracy

of the calibrating solutions and gases.

Traceability certificates for individual solutions are presented in Chapter 7  of this

manual.

Continued on next page

2-11

Page 28: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 28/234

2. Electrodes ABL700 Series Reference Manual 

Calibration, Continued 

Drift Drift is defined as the difference measured by the electrodes during last and

 previous calibrations, and is a measure of the electrode stability.

Drift 1 is obtained on Calibration Solution 1 and/or Gas 1 and is calculated as

follows, using the pH electrode as an example:

Calibration line from last2-point calibration

pH

Measuredpotential(mV)

pHCalibration Solution 1

pHCalibration Solution 2

1st Drift 1 value

2nd

 Drift 1 value2-point calibration

1st 1-point calibration

2nd

 1-point calibration

 

Drift 2 is obtained after 2-point calibration. The pH electrode is used as an

example and the calibration schedule is set so that each 2-point calibration is

separated by two 1-point calibrations.

Calibration line from 1s

 2-point calibration

pH

Measuredpotential(mV)

pHCalibration Solution 1

pHCalibration Solution 2

1st 1-point calibration

2nd

 1-point calibration

Slope of 1s 2-point calibration line

Calibration line from 2nd

 2-point calibration

Drift 2

 

Drift tolerances express the extent to which drift values for an electrode canfluctuate before the electrode is deemed unstable and thus incapable of providing

reliable calibrations.

The drift tolerances for each electrode are set in the analyzer’s Setup programs.

Radiometer recommends the use of the default drift tolerances, as too narrow drift

tolerances will cause electrode drift errors even for normal electrode fluctuations.

If the drift tolerances are too wide, significant measurement errors will result

without warning.

Continued on next page

2-12 

Page 29: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 29/234

 ABL700 Series Reference Manual 2. Electrodes

Calibration, Continued 

Drift (continued)  If the drift values for any electrode fall outside the drift tolerances, the message

Calibration drift out of range appears in the Calibration Messages, with the

 particular electrode specified.

 No drift values are reported for startup calibrations as there are no previous

calibrations available for comparison.

2-13

Page 30: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 30/234

Page 31: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 31/234

 ABL700 Series Reference Manual 2. Electrodes

Reference Electrode

Electrode

Description

The reference electrode is used in the measurement of pH and electrolyte

 parameters and is located in the pH/Blood Gas module.

The reference electrode maintains a stable, fixed potential against which other

 potential differences can be measured. The potential is not altered by sample

composition.

A fixed potential is maintained at the reference electrode by the following

equilibrium reactions:

AgCl ⇔ Ag + Cl+   −

Ag + e ⇔ Ag+   −

These reactions are possible because the electrode is made from a Ag rod coated

with Ag to provide the Ag/Ag+ equilibrium and determine the reference potential.

The electrolyte solution acts as a salt-bridge

solution that maintains an electrical contact

 between the coated Ag wire and the sample.

The solution is 4 M sodium formate

(HCOONa), adjusted to pH 5.5 with

hydrochloric acid.

The chloride concentration in the electrolyte

solution is adjusted in accordance with the

chloride concentration in the rinse solution,

to reduce Cl− exchange across the

membrane, thereby obtaining a more stable

 potential.

The electrode is encased in the electrode

 jacket: The rubber ring seals the electrode in

the jacket to prevent evaporation or leakage

of the electrolyte solution.

Electrode contact 

Electrolyte

 Ag rod coated with Ag

3-layer membrane

Rubber ring 

The membrane consists of three separate membranes:

Membrane Function

Inner To limit diffusion through the membrane and stabilizes the wholemembrane system.

Middle To prevent protein interference.

Outer To reduce the interchange of sample or rinse solution and

HCOONa solution.

Packaging The E1001 reference electrode comes in a box with an insert explaining the

 preparation of the electrode and its use.

2-15

Page 32: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 32/234

2. Electrodes ABL700 Series Reference Manual 

pH Electrode

Description The pH electrode (E777) is a pH-sensitive glass electrode. The pH-sensitive glass

membrane is located at the tip and seals the inner buffer solution with a constant

and known pH.

The air bubble allows for expansion

of the inner buffer solution when the

electrode is thermostatted to 37oC.

The potential difference across the

glass membrane is due to a change

in the charge balance at the

membrane.

The glass membrane is sensitive to

H+ ions. The metal ions in the glass

are exchanged with protons on eitherside of the membrane, from the inner

 buffer solution on one side and the

sample on the other.

A difference in the ion exchange on either side of the membrane occurs if the H+ 

concentration (and therefore pH) is unequal on both sides. The number of positive

and negative ions is no longer equal, so the potential difference across the

membrane changes. If the H+ concentrations on either side of the membrane are

equal, the potential difference will theoretically be 0 mV.

 Air bubble 

Glassmembrane

 

Electrode Chain

Potentials

The total potential across the electrode chain is the sum of the potential differences

at each element in the chain:

Element Potential Symbol

Ag/AgCl electrode /electrolyte

solution. (Reference electrode)

Known and constant when the

Ag/AgCl wire is immersed in

the electrolyte solution.

Eref 

Membrane junction between the

electrolyte solution in the

reference electrode and the

sample.

Known and constant.

Independent of sample

composition.

EMJ

 pH-sensitive glass membrane between the sample and the pH

electrode.

Unknown. Dependent onsample composition.

ESample

Ag/AgCl electrode/inner buffer

solution (pH electrode)

Known and constant when the

Ag/AgCl wire is immersed in

the inner buffer solution.

EE

Total potential Measured by the voltmeter. Etot

 

Continued on next page

2-16 

Page 33: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 33/234

Page 34: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 34/234

2. Electrodes ABL700 Series Reference Manual 

pH Electrode, Continued 

Status

(continued) pH(Cal1,nom) = Nominal pH of Cal 1 solution (pH = 7.4)

 pH(Cal1) = Specific pH of Cal 1 solution

The status of the pH electrode should fall between a pH of 6.7 and 8.1.

Drift 1 Drift 1 is calculated from the following equation:

[ ] prev) pH(Cal1, pH(Cal1) prev)Sens(pH,61.5-

Cal1prev)E(pH,Cal1)E(pH,1(pH)Drift −−

×−

=  

where:

E(pH,Cal1) = Potential of the pH electrode chain from a calibration

measurement on Cal 1 solution

E(pH,Cal1prev) = Potential of the pH electrode chain from the previous

calibration measurement on Cal 1 solution

−61.5 mV/pH = Theoretical sensitivity of the pH electrode at 37oC

E(pH,Cal1) = Potential of the pH electrode chain from a calibration on

Cal 1 solution

Sens(pH,prev)

fraction= Sensitivity of the pH electrode from the previous 2-point

calibration

 pH(Cal1) = pH of Cal 1 solution as specified in the bar code

 pH(Cal1,prev) = pH of Cal 1 solution in the previous calibration

measurement

 NOTE: Under normal circumstances, pH(Cal1)− pH(Cal1,prev) = 0. However in

instances where the Cal 1 solution container has been replaced between two

consecutive calibrations, pH(Cal1)− pH(Cal1,prev) ≠ 0.

The default drift tolerances set by Radiometer for Drift 1 are ± 0.020.

Drift 2 Drift 2 is calculated from the following equation:

[ ]Drift 2(pH)E(pH,Cal2) E(pH,Cal1prev)

- 61.5 Sens(pH,prev)  pH(Cal2) pH(Cal1,prev)=

  −×

  − −  

where:

E(pH,Cal2) = Potential of the pH electrode chain from a calibration on

Cal 2 solution

E(pH,Cal1prev) = Potential of the pH electrode chain from the previous

calibration on Cal 1 solution

Continued on next page

2-18 

Page 35: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 35/234

 ABL700 Series Reference Manual 2. Electrodes

pH Electrode, Continued 

Drift 2

(continued)−61.5 mV/pH = Theoretical sensitivity of the pH electrode at 37 oC

Sens(pH,prev)

fraction

= Sensitivity of the pH electrode from the previous 2-point

calibration

 pH(Cal2) = pH of Cal 2 solution

 pH(Cal1,prev) = pH of Cal 1 solution used in the previous calibration

The default drift tolerances set by Radiometer for Drift 2 are ± 0.020.

Measurement The sample pH is calculated as follows:

 pH(sample) =E(pH,sample) E(pH,Cal1)

61.5 Sens(pH)

 pH(Cal1)−

− ×

  +  

where:

Parameter Description

E(pH,sample) Potential of the pH electrode chain from a measurement

on the sample.

E(pH,Cal1) Potential of the pH electrode chain from a calibration on

Cal 1 solution.

−61.5 mV/pH Theoretical sensitivity of the pH electrode at 37oC.

Sens(pH) Relative sensitivity of the pH electrode chain.

 pH(Cal) pH of Cal 1 solution.

 pH is measured in the following syringe and capillary modes:

Analyzer Syringe Modes Capillary Modes

ABL735/725/715 195 µL

95 µL

85 µL

195 µL

95 µL

55 µL

35-85 µL

ABL730/720/710 85 µL 85 µL

55 µL

35-85 µL

ABL705 165 µL

95 µL

85 µL

165 µL

95 µL

55 µL

35-85 µL

Continued on next page

2-19

Page 36: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 36/234

2. Electrodes ABL700 Series Reference Manual 

pH Electrode, Continued 

Measurement

(continued)Analyzer Syringe Modes Capillary Modes

ABL700 85 µL 55 µL

35-85 µL

Corrections The measured pH value is then corrected for systematic deviations from the

reference method using the following equation:

 pH(sample,corr.) = A0  × pH(sample) + A1  Equation A 

where:

 pH(sample) = uncorrected pH value of the sample

 pH(sample,corr.) = corrected pH value of the sample.

A0 = instrument-dependent correction factor

A1 = instrument-dependent interception constant

 NOTE: The 195 µ  L is used as the reference measuring mode for those ABL700

Series analyzers which do not have it. It is designated as "195 µ  L (ref.)" in the

correction tables.

Correction ABL735/725/15 - Syringe modes: equals to….

195 µL 95 µL 85 µL

A0 0.9964 0.9964 0.9964

A1 0.0164 0.0164 0.0164

For all syringe modes, the measured pH value is corrected using Equation A.

ABL735/725/15 - Capillary modes: equals to….

195 µL 95 µL 55 µL

A0 0.9964 0.9964 1.01379

A1 0.0164 0.0164 −0.1030

For the 195 µL, 95 µL and 85 µL modes, the measured pH value is corrected using

Equation A. For the 55 µL mode, the measured pH value is first corrected using

Equation A and the constants for the 195 µL mode. The obtained result is then used

in Equation A as pH(sample) together with the constants for the 55 µL mode toobtain pH(sample,corr). 

Continued on next page

2-20 

Page 37: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 37/234

 ABL700 Series Reference Manual 2. Electrodes

pH Electrode, Continued 

Correction ABL730/720/710 - Syringe modes: equals to…

85 µL 

A0 0.9964

A1 0.0164

For the 85 µL mode, the measured pH value is corrected using Equation A.

ABL730/720/710 - Capillary modes: equals to…

195 µL (ref.*) 85 µL 55 µL

A0 0.9964 1.0047 1.01379

A1 0.0164 −0.0316 −0.1030

For the 85 µL and 55 µL modes the measured pH value is first corrected using

equation A and the constants for the 195 µL mode. The obtained result is then used in

Equation A as pH(sample) together with the constants for the 85 µL and 55 µLmodes to obtain pH(sample,corr). 

Corrections

(continued) 

Correction ABL705 - Syringe modes: equals to…

195 µL (ref.) 165 µL 95 µL 85 µL

A0 0.9964  0.9964  0.9964  0.9964 

A1 0.0164  0.0164  0.0164  0.0164 

For the 165 µL, 95 µL and 85 µL modes the measured pH value is corrected usingequation A.

ABL705 - Capillary modes: equals to…

195 µL (ref.) 165 µL 95 µL 55 µL

A0 0.9964  0.9964  0.9964  1.0161 

A1 0.0164  0.0164  0.0164  −0.1181 

For the 165 µL and 95 µL modes the measured pH value is corrected using equation

A. For the 55 µL mode, the measured pH value is first corrected using Equation A

and the constants for the 195 µL mode. The obtained result is then used in EquationA as pH(sample) together with the constants for the 55 µL mode to obtain pH(sample,corr). 

Continued on next page

2-21

Page 38: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 38/234

2. Electrodes ABL700 Series Reference Manual 

pH Electrode, Continued 

Correction ABL700 - Syringe modes: equals to…

85 µL 

A0 0.9964

A1 0.0164

For the 85 µL mode, the measured pH value is first corrected using Equation A. 

ABL700 - Capillary modes: equals to…

195 µL (ref.) 55 µL

A0 0.9964 1.0161

A1 0.0164 −0.1181

For the 55 µL mode, the measured pH value is first corrected using Equation A

together with the constants for the 195 µL mode. The obtained result is then used in

Equation A as pH(sample) together with the constants for the 55 µL mode to obtain pH(sample,corr). 

Corrections

(continued) 

All ABL700 Series analysers (software 3.83 and higher) Capillary -pH only

mode:

Correction Capillary – pH only mode: equals to…

85 µL  55 µL  35 µL 

A0  1.015 1.02 1.03

A1   −0.115 −0.153 −0.227

The measured pH value is first corrected using Equation A and the constants for the 195

µL mode. The obtained result is then used in Equation A as pH(sample) together with

the constants for either the 85 µL, 55 µL or 35 µL modes to obtain pH(sample,corr). 

See Chapter 5, Performance Specifications for more information on reference

methods.

Stability

Criteria

The following stability criterion must be met to obtain a stable electrode response

during 1- and 2-point calibration:

 pH(limit)i).upd pH(sample,last).upd pH(sample,   ≤−  

Continued on next page

2-22 

Page 39: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 39/234

 ABL700 Series Reference Manual 2. Electrodes

pH Electrode, Continued 

Stability

Criteria

(continued) 

The following stability criterion must be met to obtain a stable electrode response

during measurement:

 pH(limit)i).upd pH(sample,last).upd pH(sample,   ≤−  

where:

 pH(sample,upd.last) = pH value from the last updating with a measurement

on calibration solution or sample. (The last updating

is number 30).

 pH(sample,upd.i) = pH value for a given updating with a measurement

on calibration solution or sample. (The relationship

must be fulfilled for at least one of the updatingnumbers 20 or 21).

 pH(limit) = pH limiting value for the stability criterion (0.005).

2-23

Page 40: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 40/234

2. Electrodes ABL700 Series Reference Manual 

pCO2 Electrode

The pCO2 electrode (E788) is a combined pH and Ag/AgCl reference electrode

mounted in a plastic jacket, which is filled with a bicarbonate electrolyte.

Basic

Description

The jacket is covered by a 20

µm silicone membrane

moulded on a 50 µm nylon net.

The net both reinforces the

silicone membrane and serves

as a spacer in order to trap a

layer of the electrolyte between

the membrane and the glass tip

of the electrode. The electrolyte

also contains glycerol to

 prevent collection of air

 bubbles in the electrode jacketthus improving electrode

stability.

Electrolyte

 Air bubble

 Ag/AgCl reference band

 Ag wire

Membrane

The membrane allows any uncharged molecules of CO2, O2, N2 to pass through it.

Charged ions such as H+ will not pass. Consequently, dissolved CO2 from the

sample will diffuse into the thin layer of bicarbonate electrolyte until the

equilibrium is reached.

This produces carbonic acid:

H2O + CO

2  ⇔  H

2CO

3

Carbonic acid dissociates according to the following equilibrium reaction:

H CO H H CO2 3 2 3

⇔ ++ −  

The release of H+ ions changes the H

+ concentration, and therefore the pH of the

solution on one side of the pH-sensitive glass membrane.

The concentration gradient of H+ ions on the other side of the membrane affects

the potential difference across the glass membrane. This change in potential across

the glass membrane is measured by the voltmeter.

Nernst Equation The Nernst equation is used to convert the potential reading into a pH value:

mV)( pH5.610glass   ×−= E  E   

where:

 E glass = potential difference across the glass membrane

 E 0 = standard electrode potential

61.5 mV/pH = theoretical sensitivity of the pH electrode at 37 oC

Continued on next page

2-24 

Page 41: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 41/234

 ABL700 Series Reference Manual 2. Electrodes

pCO2 Electrode, Continued 

Nernst Equation

(continued) 

The pH value is related to the partial pressure of CO2 in the sample by the

following equation:

2CO2

-

3a

CO

HCOlog+ pK = pH

α × p

where:

 pK a  = −log K a, the equilibrium constant for the dissociation of carbonic acid in

water

α CO2= solubility coefficient for CO2 in water

The bicarbonate concentration [ ]HCO3

- is so large compared to [ that it can be

considered constant. At constant temperatures

]H+

CO2

 is also constant. So the

equation can be simplified to:

 pH = K' - log CO2 p

where:

K' is a constant incorporating the equilibrium constant for carbonic acid (K a), the

 bicarbonate concentration, and the solubility coefficient CO2.

2

3

CO

HCOH   −+ ×=

ccK a  is the equilibrium constant for carbonic acid.

 pCO2 of the sample is then calculated from the equation above.

The pCO2 electrode is calibrated on two gases with known CO2 content.Sensitivity

Gas 1 contains 5.61 % CO2 and Gas 2 contains 11.22 % CO2.

The exact composition of the calibration gases is contained in their bar codes.

The partial pressures of CO2 in the gas mixtures Gas 1 and Gas 2 are calculated

from the following equations:

( ) p F B pCO CO2 2 Gas 1 2

H O kPa( ) ( )Gas Gas1 1= × −  

( ) p F B pCO CO2 2 Gas 2 2

H O kPa( ) ( )Gas Gas2 2= × −  

where:

 pCO2(Gas1),

 pCO2(Gas2)

= Pressure of CO2 in Gas 1 or Gas 2 respectively

 BGas 1 or 2   = Pressure inside the measuring chamber during a

measurement on Gas 1 or Gas 2 respectively

 pH O2   = Water vapor pressure (6.2571 kPa at 37 oC)

Continued on next page

2-25

Page 42: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 42/234

2. Electrodes ABL700 Series Reference Manual 

pCO2 Electrode, Continued 

Sensitivity

(continued)F CO2(Gas1),

F CO2(Gas2)

= Fraction of CO2 in Gas 1 or Gas 2 respectively

The relative sensitivity of the pCO2 electrode is calculated as follows:

Sens( COE(CO ,Gas2) E(CO ,Gas1)

Sens( CO , theo) logCO (Gas2)

CO (Gas1)

22 2

22

2

 p

 p p

 p

) =  −

× 

where:

E(CO2,Gas2) = Potential of the pCO2 electrode from a measurement on

Gas 2

E(CO2,Gas1) = Potential of the pCO2 electrode from a measurement on

Gas 1

Sens( pCO2,theo) = Theoretical (absolute) sensitivity of the pCO2 electrode

at 37 oC

 pCO2(Gas1) = Partial pressure of CO2 in Gas 1

 pCO2(Gas2) = Partial pressure of CO2 in Gas 2

The sensitivity of the pCO2 electrode should fall between 0.85 -1.00

or 85 - 100 %.

The status of the pCO2 electrode is calculated as follows:Status

kPa10(Gas1)CO)COStatus(theo),COSens(

Gas1),(COEGas1),E(CO

222

202

 p p p

×=  

where:

 pCO2(Gas1) = Partial pressure of CO2 in Gas 1 (see partial pressure 

above)

E(CO2,Gas1) = Potential of the pCO2 electrode from a measurement on

Gas 1

E0(CO2,Gas1) = Standard potential of the pCO2 electrode with Gas 1

Sens( pCO2,theo) = Theoretical (absolute) sensitivity of the pCO2 electrode

at 37oC

The status of the pCO2 electrode should fall between 6.2-260 mmHg /(0.83-34.66

kPa).

Continued on next page

2-26 

Page 43: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 43/234

 ABL700 Series Reference Manual 2. Electrodes

pCO2 Electrode, Continued 

Drift Drift 1 is calculated as follows:

kPa) prev(Gas1,CO10(Gas1)CO)CO1(Drift 2

theo),COSens( prev),COSens(

 prev)Gas1,,E(COGas1),E(CO

2222

22

 p p p p p −×=   ×

 

Drift 2 is calculated as follows:

kPa) prev(Gas2,CO10(Gas2)CO)CO2(Drift 2

theo),COSens( prev),COSens(

 prev)Gas1,,E(COGas2),E(CO

2222

22

 p p p p p −×=   ×

 

where:

 pCO2(Gas1,prev),

 pCO2(Gas2,prev)= Partial pressure of CO2 from the previous measurement on

Gas 1 and Gas 2, respectively

E(CO2,Gas1),

E(CO2,Gas2)= Potential of the pCO2 electrode from a measurement on

Gas 1 and Gas 2, respectively

E(CO2,Gas1,prev) = Potential of the pCO2 electrode from the previous

measurement on Gas 1

Sens( pCO2,prev) = Relative sensitivity of the pCO2 electrode from the

 previous 2-point calibration

Sens( pCO2,theo) = Theoretical sensitivity (absolute) of the pCO2 electrode

at 37oC

 pCO2(Gas1), pCO2(Gas2)

= Partial pressure of CO2 in Gas 1 and in Gas 2, respectively

The default drift tolerances set by Radopmeter are as follows:

• for Drift 1 are ± 0.33 kPa (2.5 mmHg)

• for Drift 2 are ± 0.67 kPa (5.0 mmHg)

The pCO2 value for a sample is calculated from the following equations:Measurement

theo),COSens( prev),COSens(Gas1)E(COupdi)sample,E(CO

2222

22

10)gas(CO)updsample,(CO  p p pi p

  × −×=  

δ  = − p pCO (sample,upd30) CO (sample,upd12 2

)

[ ] predict

CO (sample, upd6) CO (sample, upd30 CO (sample, upd18

CO (sample, upd6 CO (sample, upd30) CO (sample, upd18)

2 2 2

2 2 2

=  × −

+ − ×

 p p

 p p p

) )

)

 p2

2

 

Continued on next page

2-27

Page 44: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 44/234

2. Electrodes ABL700 Series Reference Manual 

pCO2 Electrode, Continued 

Measurement

(continued) 

where:

 pCO2(sample,upd.i) = uncorrected pCO2 value in the sample calculatedfrom E(CO2 sample,updi) for updating number “i”.

E(CO2 sample,upd.i) = potential of the pCO2 electrode from updating

number i with a measurement on the sample.

E(CO2,Gas1) = potential of the pCO2 electrode from a measurement

on Gas 1.

Sens(CO2,prev) = relative sensitivity of the pCO2 electrode

determined from the last calibration on Gas 1 and

Gas 2.

Sens(CO2,theo) = theoretical sensitivity of the pCO2 electrode (= 61.5

mV) at 37o

C. pCO2 (Gas 1) =  partial pressure of CO2 in Gas 1 known from the

last calibration.

δ =  difference between pCO2 (sample) from the first

and last updatings.

 predict = extrapolated value for pCO2.

For δ < 1.33 kPa,  pCO2(sample) = pCO2(sample,upd30)

For  1.33 kPa < δ < 2.66 kPa

 p  pCO (sample)  predict CO (sample,upd30)22

=   × − + × −( . ) ( ..

)δ δ 133 2 66133

 

For  δ ≥ 2.66 kPa,  pCO2(sample) = predict.

 pCO2  is measured in the following syringe and capillary modes:

Analyzer Syringe Modes Capillary Modes

ABL735/725/715 195 µL, 95 µL

85 µL, Expired air

195 µL, 95 µL, 55 µL

ABL730/720/710 85 µL, Expired air 85 µL, 55 µL

ABL705 165 µL, 95 µL

85 µL, Expired air

165 µL, 95 µL, 55 µL

ABL700 85 µL, Expired air 55 µL

Continued on next page

2-28 

Page 45: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 45/234

 ABL700 Series Reference Manual 2. Electrodes

pCO2 Electrode, Continued 

The pCO2 measured on a sample is then corrected for systematic deviations from

the reference method using the following equations:Corrections -

Blood Samples

 pCO2(sample,corr) = A3 × pCO2(sample)3 + A2 × pCO2(sample)

2 +

+ A1 × pCO2(sample) + A0 × (B −  pH2O) Equation A 

and

 pCO2(sample,corr) = B1 × pCO2(sample) + B0  Equation B 

where:  pCO2(sample) = uncorrected value of pCO2 in the sample.

B = barometric pressure during the measurement

 pH2O = partial pressure of saturated water vapor (6.2571 kPa)

B1 =  instrument-dependent correction factor

B0 = instrument-dependent interception constant

 NOTE: The 195 µ  L is used as the reference measuring mode for those ABL700

Series analyzers which do not have it. It is designated as "195 µ  L (ref.)" in the

correction tables.

ABL735/725/715 – Syringe mode:

A3 A2 A1 A0 B1(95 µL) B0(95 µL)

-0.0000002 0.0051 1.1126 -0.003573 0.992 0.0089

Equation A is used to correct pCO2 value measured on a sample in 195 µL and 85 µL

modes. For the 95 µL mode, the measured pCO2 value is first corrected using Equation A.The obtained result is then used in Equation B to obtain the corrected pCO2 value. 

ABL735/725/715 – Capillary mode:

A3 A2 A1 A0 B1(55 µL) B0(55 µL)

-0.0000002 0.0051 1.1126 -0.003573 1.0937 −0.1463

Equation A is used to correct pCO2 value measured on a sample in 195 µL and 95 µL

modes. For the 55 µL mode, the measured pCO2 value is first corrected using Equation A.The obtained result is then used in Equation B to obtain the corrected pCO2 value. 

Continued on next page

2-29

Page 46: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 46/234

2. Electrodes ABL700 Series Reference Manual 

pCO2 Electrode, Continued 

Corrections –

Blood Samples

(continued) 

ABL730/720/710 – Syringe mode:

A3 A2 A1 A0

-0.0000002 0.0051 1.1126 −0.00356

For the 85 µL mode, Equation A is used to correct the pCO2 value measured on the sample. 

ABL730/720/710 – Capillary mode:

A3 A2 A1 A0 B1(55

µL)

B0(55 µL) B1(85 µL) B0(85

µL)

-0.0000002 0.0051 1.1126 -0.003573 1.0937 -0.1463 0.997 0.0743

For the 55 and 85 µL mode, the measured pCO2 value is first corrected using Equation A.The obtained result is then used in Equation B to obtain the corrected pCO2 value. 

ABL705 – Syringe mode:

A3 A2 A1 A0 B1(95 µL) B0(95 µL)

-0.0000002 0.0051 1.1126 −0.003573 0.992 0.0089

Equation A is used to correct pCO2 value measured on a sample in 165 µL and 85 µL

modes. For the 95 µL mode, the measured pCO2 value is first corrected using Equation A.The obtained result is then used in Equation B to obtain the corrected pCO2 value. 

ABL705 – Capillary mode:

A3 A2 A1 A0 B1(55 µL) B0(55 µL)

-0.0000002 0.0051 1.1126 −0.003573 1.0872 −0.0924

Equation A is used to correct pCO2 value measured on a sample in 165 µL and 95 µL

modes. For the 55 µL mode, the measured pCO2 value is first corrected using Equation A.The obtained result is then used in Equation B to obtain the corrected pCO2 value. 

ABL700 – Syringe mode:

A3 A2 A1 A0

-0.0000002 0.0051 1.1126 −0.003573

For the 85 µL mode, Equation A is used to correct the pCO2 value measured on the sample. 

ABL700 – Capillary mode:

A3 A2 A1 A0 B1(55 µL) B0(55 µL)

-0.0000002 0.0051 1.1126 −0.003573 1.0872 −0.0924

For the 55 µL mode, the measured pCO2 value is first corrected using Equation A. Theobtained result is then used in Equation B to obtain the corrected pCO2 value. 

Continued on next page

2-30 

Page 47: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 47/234

 ABL700 Series Reference Manual 2. Electrodes

pCO2 Electrode, Continued 

The pCO2 measured from the sample is then corrected for systematic deviations

from the reference method using the following equation:

Corrections -

Expired Air

Samples

)OH(A(sample)COAcorr)(sample,CO 2Gas1,2Gas0,2  p B p p   −×+×=  

where:

 pCO2(sample) = uncorrected  pCO2 value of a gas sample

A0,Gas = 1.0196 (instrument dependent correction factor)

A1,Gas = −0.00106 (instrument-dependent correction cut-off)

 B =   barometric pressure during the measurement

 pH2O =  6.2751 kPa (partial pressure of saturated water vapour)

Stability

Criteria

The following stability criterion must be met to obtain a stable electrode response

during calibration:

upd.i)(sample,OCupd.last)(sample,OC 22  p p   −  ≤  pCO2 (limit)

This criterion is valid for calibrations using Gas 1 and Gas 2 where:

Parameter  pCO2 value from the last updating number...

ABL7x5 ABL7x0

 pCO2(CalGas,upd.last) 92 62

 pCO2(CalGas,upd.i)  86 or 87 56 or 57

(the relationship must be fulfilled for at least one of

the updating numbers)

 pCO2(limit) value for the stability criterion is 0.40 kPa/3.0 mmHg.

Continued on next page

2-31

Page 48: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 48/234

2. Electrodes ABL700 Series Reference Manual 

pCO2 Electrode, Continued 

Stability

Criteria

(continued) 

The following stability criteria must be met to obtain a stable electrode response

during measurement:

δ= upd.i)(sample,OC)upd.30(sample,OC 22  p p   −  

For δ  Criterion

a. ≤1.33 kPa 40.0)upd.16(sample,OCupd.30)(sample,OC 22   ≤− p p  

 b. >1.33 kPa5.0

)1upd.(sample,OC)upd.16(sample,OC

)upd.16(sample,OCupd.30)(sample,OC1.0

22

22 <−

−≤−

 p p

 p p  

For b):

if the following criteria are fulfilled, then no result is reported:

0.1)1upd.(sample,OC)upd.16(sample,OC

)upd.16(sample,OCupd.30)(sample,OC

22

22 −<−

− p p

 p p 

5.0)1upd.(sample,OC)upd.16(sample,OC

)upd.16(sample,OCupd.30)(sample,OC

22

22 ≥−

− p p

 p p 

Expired air samples:

Measurement on an expired air sample is accepted if the following criterion isfulfilled:

⏐ pCO2 (sample,upd.30) −  pCO2 (sample,upd.24)⏐≤0.40 kPa (3.0 mmHg)

or

⏐ pCO2 (sample,upd.30) −  pCO2 (sample,upd.24)⏐≤0.04 ×  pCO2 (sample,upd.30).

Error message "Measurement unstable" (= pCO2 response fault during electrode

monitoring in Expired air mode) is displayed if the stability criterion is not

fulfilled.

2-32 

Page 49: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 49/234

 ABL700 Series Reference Manual 2. Electrodes

pO2 Electrode

The pO2 electrode (E799) is an amperometric electrode which consists of a silver

anode, platinum cathode and Ag/AgCl reference band, all protected by an

electrode jacket which is filled with electrolyte solution. At the tip of the electrode

 jacket an oxygen-permeable membrane protects the Pt cathode from protein

contamination and is covered on the inner side with Pt-black.

Basic

Description

The electrode chain is polarized

with constant voltage of -630 mV.

Oxygen from the sample diffuses

across the membrane into the

electrolyte and is reduced on the

cathode (electrons are consumed)

according to the followingequation:

O2 + 4H+  + 4e

−  →  2H2O

The H+ ions come from the

electrolyte solution.

This represents the complete

reduction of O2. Some of the O2 

however is only partially reduced

according to the following

equation:

O2  + 2H+

  + 2e−

  →  H2O2

 Ag anode

Pt cathode

 AgCl reference band

Membrane

Electrolyte

In the presence of Pt- black, H2O2 produced by the incomplete reduction of O2 at

the cathode is immediately decomposed:

2H2O2  →  2H2O + O2 

This oxygen is then also reduced at the cathode. The reduction of oxygen produces

a flow of electrons (an electrical current) the size of this current, I, proportional to

the amount of oxygen and measured by the amperemeter:

 I   = Sens( pO2) ×  pO2 + I o  pA

where:

Sens( pO2)= Sensitivity of the pO2 electrode

 pO2  = Partial pressure of O2 in the sample I o  = Zero current i.e. the current flowing through the circuit when

 pO2 = 0 kPa (mmH

To complete the electrical circuit, an oxidation reaction where electrons are

released is necessary. This reaction which occurs at the silver anode is the

conversion of Ag to Ag+:

Ag →  Ag+  + e−

In order to maintain a charge balance between the anode and cathode, 4 atoms of

Ag need to be oxidized for one molecule of O2 to be reduced.

Continued on next page

2-33

Page 50: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 50/234

2. Electrodes ABL700 Series Reference Manual 

pO2 Electrode, Continued 

The Ag+ ions are released into the electrolyte solution where they react with the

Cl− ions present, producing AgCl which is insoluble and forms a layer on the silver

rod:

Basic

Description

(continued)

Ag+  + Cl

−  →  AgCl

 Not all Ag+ ions can be removed from the solution. Some reach the cathode where

they are converted back to Ag and form a deposit of silver. This deposit must be

 periodically removed with the brush provided in the electrode box.

The pO2 electrode is calibrated on two gases with known O2 content.Sensitivity

Gas 1 contains 19.76 % O2 and Gas 2 contains 0.0 % O2.

The exact composition of the calibration gases is contained in their bar codes.

The sensitivity of the pO2 electrode, Sens( pO2), is calculated as follows:

 pA/kPa(gas2)O(gas1)O

gas2),I(Ogas1),I(O)OSens(

22

222

 p p p

−−

=  

where:

I(O2,gas1) = Current recorded at the pO2 electrode from a measurement on Gas 1

I(O2,gas2) = Current recorded at the pO2 electrode from a measurement on Gas 2

 pO2(gas1) = Partial pressure of O2 in Gas 1

 pO2(gas2) = Partial Pressure of O2 in Gas 2

The partial pressures of O2 in the gas mixtures Gas 1 and Gas 2 are calculated from

the following equation:

[ ]kPaOH)gas1()gas1(O)gas1(O 222  p BF  p   −×=  

[ ]kPaOH(gas2))(gas2O)(gas2O 222  p BF  p   −×=  

where:

F O2 (gas1),

F O2 (gas2)

= Fraction of O2 in Gas 1 or Gas 2, respectively

 B(gas1),

 B(gas1)= Pressure inside the measuring chamber during a measurement

on Gas 1 or Gas 2, respectively

 pH O2   = Water vapor pressure = 6.2571 kPa at 37oC.

The sensitivity of the pO2 electrode should fall between 5 - 40 pA/mmHg or 37.5 -

300 pA/kPa.

Continued on next page

2-34 

Page 51: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 51/234

Page 52: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 52/234

2. Electrodes ABL700 Series Reference Manual 

pO2 Electrode, Continued 

Drift (continued)Sens( pO2,prev) = Sensitivity of the pO2 electrode from the previous 2-point

calibration

 pO2(gas1),

 pO2(gas2)= Partial pressure of O2 in Gas 1 and Gas 2, respectively

The default drift tolerances set by Radiometer are ± 0.80 kPa (6.0 mmHg) for Drift

1 and Drift 2. The Drift tolerances can, however, be user-defined in the Setup

 program.

The pO2 value for a sample is calculated from the following equations:Measurement

12

22

2 K )OSens(

) prevgas2,,I(Oupd.i)sample,,I(O

updi)(sample,O   ×

=  p p  

Constant K 1 describes the gas/liquid relationship for the electrode.

This constant is defined as:

K 1+0 58370 21712Sens( O

3.662941

2= − + +⎛ 

⎝ ⎜

  ⎞

 ⎠⎟. . .

)01

 p 

δ  = − p pO (sample,upd30) O (sample,upd12 2

)

( )

)18upd.sample,(O2)30upd.sample,(O)upd.6sample,(O

)18upd.sample,(O)upd.30sample,(O)upd.6sample,(O predict

22˜2

2

22˜2

 p p p

 p p p

×−+

−×=

where:

I(O2,sample,updi) = Current recorded at the pO2 electrode from updating

number i with a measurement on the sample.

I(O2,gas2,prev) = Current recorded at the pO2 electrode from the

 previous measurement on Gas 2.

Sens( pO2) = Relative sensitivity of the pO2 electrode determined

from the last calibration on Gas 1 and Gas 2.

δ = Difference between pO2(sample) from the first and last

updatings.

 predict = Extrapolated value for pO2.

For  δ < 2.66 kPa,

 pO2(sample) = pO2(sample, upd.30)

For  2.66 kPa < δ < 5.32 kPa

 p p

O (sample) predict O (sample,upd30)

2

2=  × − + × −( . ) ( .

.

)δ δ 2 66 532

2 66 

For  δ≥5.32 kPa

 pO2(sample) = predict

Continued on next page

2-36 

Page 53: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 53/234

 ABL700 Series Reference Manual 2. Electrodes

pO2 Electrode, Continued 

The pO2 measured from the sample is then corrected for systematic deviations

from the reference method using the following equation:Corrections -

Blood Samples

(   ) p

d d e e eO (sample,corr)

O (sample,v1) O (sample,v1)

2

2 2

= − + − × + × + ×

1 1

2

2 3 4

24  p p

2where:

)398.100()((sample)Ov1)(sample,O2

2 (sample)O

2122  Bek k  p p pk 3 −××−+=   ×

 

Equation A 

and

d1 = e0 × pO2(sample, v1) + e1 Equation B 

k 1 = 0.02614 (correction constant)

k 2 = 0.02107 (correction constant)

k 3 = −0.00281(correction constant)

 pO2  is measured in the following syringe and capillary modes:

Analyzer Syringe Modes Capillary Modes

ABL735/725/715 195 µL, 95 µL

85 µL, Expired air

195 µL, 95 µL, 55 µL

ABL730/720/710 85 µL, Expired air 85 µL, 55 µL

ABL705 165 µL, 95 µL

85 µL, Expired air

165 µL, 95 µL, 55 µL

ABL700 85 µL, Expired air 55 µL

 NOTE: The 195 µ  L is used as the reference measuring mode for those ABL700

Series analyzers which do not have it. It is designated as "195 µ  L (ref.)" in the

correction tables.

Continued on next page

2-37

Page 54: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 54/234

2. Electrodes ABL700 Series Reference Manual 

pO2 Electrode, Continued 

Constant ABL735/725/715 - Syringe mode 

195 µL  95 µL  85 µL 

e0   −2.303 −2.303 −2.303

e1 5.96942 5.96942 5.96942

e2 0.83281 0.83281 0.83281

e3   −6.0731 −6.0731 −6.0731

e4 1.30565 1.30565 1.30565

Equations above are used to correct pO2 value measured on a sample 

ABL735/725/715 - Capillary mode 

195 µL  95 µL  55 µL 

e0   −2.303 −2.303 −2.13930

e1 5.96942 5.96942 6.11891

e2 0.83281 0.83281 −0.16485

e3   −6.0731 −6.0731 −5.54016

e4 1.30565 1.30565 1.11462

Equations above are used to correct pO2 value measured on a sample in 195

µL and 95 µL modes. For the 55 µL mode, the measured pO2 value is first

corrected using the equations and the constants for the 195 µL mode. Theobtained result is then used in Equations A and B, together with the

constants for 55 µL mode to obtain the corrected pO2 value for this mode. 

Corrections -

Blood Samples

(continued) 

Constant ABL730/720/710 - Syringe mode

85 µL

e0   −2.303

e1 5.96942

e2 0.83281

e3   −6.0731

e4 1.30565

Equations above are used to correct pO2 value measured on a sample. 

Continued on next page

2-38 

Page 55: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 55/234

 ABL700 Series Reference Manual 2. Electrodes

pO2 Electrode, Continued 

Constant ABL730/720/710 - Capillary mode 

195 µL (ref.)  85 µL  55 µL 

e0   −2.303 −2.303 −2.13930

e1 5.96942 5.96942 6.11891

e2 0.83281 0.83281 −0.16485

e3   −6.0731 −6.0731 −5.54016

e4 1.30565 1.30565 1.11462

Equations are used to correct pO2 value measured on a sample in 85 µL mode. For the 55

µL mode, the measured pO2 value is first corrected using the equations and the constants for

the 195 µL mode. The obtained result is then used in Equations A and B as pO2 (Sample,v1)

together with the constants for 55 µL mode to obtain the corrected pO2 value for this mode 

Corrections -

Blood Samples

(continued) 

Correction ABL705 - Syringe modes

195 µL (ref.) 165 µL 95 µL  85 µL

e0   −2.303 −2.303 −2.303 −2.303

e1 5.96942 5.96942 5.96942 5.96942

e2 0.83281 0.83281 0.83281 0.83281

e3   −6.0731 −6.0731 −6.0731 −6.0731

e4 1.30565 1.30565 1.30565 1.30565

Equations are used to correct pO2 value measured on a sample in 165 µL, 95 µL and 85 µL

modes.

Correction ABL705 - Capillary modes

195 µL (ref.) 165 µL 95 µL  55 µL

e0   −2.303 −2.303 −2.303 −2.16691

e1 5.96942 5.96942 5.96942 5.17310

e2 0.83281 0.83281 0.83281 0.85016

e3   −6.0731 −6.0731 −6.0731 −5.01679

e4 1.30565 1.30565 1.30565 1.15746

Equations are used to correct pO2 value measured on a sample in 165 µL and 95 µL modes.

For the 55 µL mode, the measured pO2 value is first corrected using the equations and the

constants for the 195 µL mode. The obtained result is then used in Equations A and B as

 pO2(Sample, v1) together with the constants for 55 µL mode to obtain the corrected pO2 

value for this mode.

Continued on next page

2-39

Page 56: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 56/234

2. Electrodes ABL700 Series Reference Manual 

pO2 Electrode, Continued 

Constant ABL700 - Syringe mode

85 µL

e0   −2.303

e1 5.96942

e2 0.83281

e3   −6.0731

e4 1.30565

Equations are used to correct pO2 value measured on a sample. 

Corrections -

Blood Samples

(continued) 

Constant ABL700 - Capillary mode

195 µL 55 µL

e0   −2.303 −2.16691

e1 5.96942 5.17310

e2 0.83281 0.85016

e3   −6.0731 −5.01679

e4 1.30565 1.15746

For the 55 µL mode, the corrected pO2 value in the sample is found by first

calculating pO2 (sample,corr.) for the 195 µL mode. The obtained result isthen used in Equations A and B as pO2 (sample, v1) together with the

constants for the 55 µL mode to obtain pO2 (sample,corr.) for this mode. 

Continued on next page

2-40 

Page 57: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 57/234

 ABL700 Series Reference Manual 2. Electrodes

pO2 Electrode, Continued 

The pO2 measured from the sample is then corrected for systematic deviations

from the reference method using the following equation:Corrections -

Expired Air

Samples

)OH(A(sample)OAcorr)(sample,O 21202  p B p p   −×+×=  

where:

 pO2(sample) = uncorrected  pO2 value of a gas sample

A0,Gas = 1.016 (instrument dependent correction factor)

A1,Gas = −0.004 (instrument-dependent correction cut-off)

 B  = barometric pressure during the measurement

 pH2O  = 6.2571 kPa (partial pressure of saturated water vapor)

When measuring on gas samples, the constant K 1 which describes the gas/liquid

relationship for the electrode, is equal 1.

Stability

Criteria

The following stability criterion must be met to obtain a stable electrode response

during calibration:

)i.upd(sample,Oupd.last)(sample,O 22  p p   −  ≤  pO2 (limit)

This criterion is valid for 1-point calibrations (Gas 2 contains no oxygen) where:

Parameter  pO2 value from the last updating number...

ABL7x5 ABL7x0

 pO2(Gas1,upd.last) 92 62

 pO2(Gas1,upd.i)  86 or 87 56 or 57

(the relationship must be fulfilled for at least one of

the updating numbers)

 pO2(limit) value for the stability criterion is 0.80 kPa/6.0 mmHg.

Continued on next page

2-41

Page 58: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 58/234

Page 59: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 59/234

 ABL700 Series Reference Manual 2. Electrodes

Electrolyte Electrodes

Basic

Description

The K electrode (E722) is an ion-

selective electrode whose sensing

element is a PVC membrane containing

a potassium-neutral ion carrier. The ion-

sensitive membrane is covered with a

cellophane membrane in order to

 protect it from the samples.

The electrolyte has a constant and

known concentration of potassium ions.

When a sample is brought in contact

with the electrode, a potential develops

across the PVC and cellophane

membranes. The potential depends on

the difference between the potassium(more precisely, activity) in the

electrolyte and the sample. If the cK + in

 both solutions is the same, the potential

across the electrode tip will be 0 V.

The Na electrode (E755) is an ion-

selective electrode whose sensing

element is a Na+-sensitive ceramic pin

is contained in the tip of the jacket. 

The electrolyte has a constant andknown concentration of sodium ions.

When a sample is brought in contact

with the electrode, a potential develops

across the ceramic pin. The potential

depends on the difference between the

sodium (more precisely, activity) in the

electrolyte and the sample. If the c Na+ 

in both solutions is the same, the

 potential across the electrode tip will be

0 V.

Cellophane membrane 

Electrolyte 

Ion-sensitive membrane

Electrolyte 

Nasicon pin 

Cellophane membrane 

Continued on next page

2-43

Page 60: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 60/234

2. Electrodes ABL700 Series Reference Manual 

Electrolyte Electrodes, Continued 

Basic

Description 

(continued) 

The Ca electrode (E733) is an ion-

selective electrode whose sensing

element is a PVC membrane containing

a calcium-neutral ion carrier. The ion-

sensitive membrane is covered with a

cellophane membrane in order to

 protect it from the samples.

The electrolyte has a constant and

known concentration of calcium ions.

When a sample is brought in contact

with the electrode, a potential develops

across the PVC and cellophane

membranes. The potential depends on

the difference between the calcium(more precisely, activity) in the

electrolyte and the sample. If the cCa2+ 

in both solutions is the same, the

 potential across the electrode tip will be

0 V.

The Cl electrode (E744) is an ion-

selective electrode whose sensing

element is a PVC membrane containing

a chloride ion carrier. The ion-sensitive

membrane is covered with a cellophane

membrane in order to protect it from thesamples.

The electrolyte has a constant and

known concentration of chloride ions.

When a sample is brought in contact

with the electrode, a potential develops

across the PVC and cellophane

membranes. The potential depends on

the difference between the chloride

(more precisely, activity) in the

electrolyte and the sample. If the cCl− in

 both solutions is the same, the potentialacross the electrode tip will be 0 V.  

Electrol te

Cellophane membrane

Ion-sensitive membrane

Cellophane membrane

Ion-sensitive membrane

Electrolyte

 

Continued on next page

2-44 

Page 61: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 61/234

 ABL700 Series Reference Manual 2. Electrodes

Electrolyte Electrodes, Continued 

Electrode Chain

Potential

The total potential across the electrode chain is a sum of the potential differences at

each of the elements in the chain, all but one of which is known and constant. This

is outlined in the following table.

Element Potential Symbol

Ag/AgCl electrode

/electrolyte solution.

(Reference electrode)

Known and constant when the

Ag/AgCl wire is immersed in the

electrolyte solution.

 E ref 

Membrane junction between

the electrolyte solution in the

reference electrode and the

sample.

Known and constant, independent

of sample composition.

 E MJ

Ion-sensitive membrane (or pin) junction separating the

sample and the electrode.

Unknown, dependent on samplecomposition.

 E Sample

Ag/AgCl electrode/inner

 buffer solution.

(Electrolyte electrode)

Known and constant when the

Ag/AgCl wire is immersed in the

electrolyte solution.

 E E

Total potential. Measured by the voltmeter.  E tot

 

The unknown potential difference across the ion-sensitive membrane or pin is then

the difference between the measured total potential and the sum of the known potentials:

( ) E E E E E Sample tot ref MJ E= m− + + V  

Nernst Equation The potential difference at the membrane (or pin) in the electrolyte electrodes can

 be expressed by the Nernst equation:

 E E T 

na

Sample 0 ion

2 3R 

Flog mV= + ×

where:

 E 0   = standard electrode potential

R = gas constant (8.3143 J×K −1mol−1

)

T   = absolute temperature (310.15 K at 37oC)

n  = charge on the ion (n = 1 for K + and Na

+, n = −1 for Cl−, n = 2 for Ca

2+)

F = Faraday constant (96487 Cmol−1)

aion   = activity of the specific ion

Continued on next page

2-45

Page 62: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 62/234

2. Electrodes ABL700 Series Reference Manual 

Electrolyte Electrodes, Continued 

Calibration The electrolyte electrodes are calibrated by determining the status and sensitivity

from 1-point and 2-point calibrations respectively. Performance of the electrode

from calibration to calibration is monitored by measuring the drift.

A 1-point calibration is performed using the calibration solution S1720 with the

following nominal electrolyte concentrations:

cK + 4.0 mmol/L

c Na+

145 mmol/L

cCa2+

1.25 mmol/L

cCl− 102 mmol/L

The precise concentration of each electrolyte ion is contained in the solution’s bar

code.

A 2-point calibration is performed using the calibration solutions S1720 given

above and S1730. Calibration Solution S1730 has the following nominal

electrolyte concentrations:

cK + 40.0 mmol/L

c Na+

20.0 mmol/L

cCa2+

5.0 mmol/L

cCl− 50.0 mmol/L

The precise concentration of each electrolyte ion is contained in the solution’s bar

codes.

Sensitivity The sensitivity of the electrolyte electrodes is calculated from the following

equations:

K electrode

Sens(K)E(K,Cal1) E(K,Cal2)

61.5 logK (Cal1)

K (Cal2

(fraction)+

=  −

×+

c

c )

 

Na electrode

Sens(Na)

E(Na,Cal1) E(Na,Cal2)

61.5 log Na (Cal1)

 N (Cal2

(fraction)+=

  −

×+

c

c a )

 

Ca electrode

Sens(Ca)E(Ca,Cal1) E(Ca,Cal2)

30 logCa (Cal1)

Ca (Cal2

(fraction)2+

2+

=  −

×.)

75c

c

 

Continued on next page

2-46 

Page 63: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 63/234

 ABL700 Series Reference Manual 2. Electrodes

Electrolyte Electrodes, Continued 

Sensitivity 

(continued) 

Cl electrode

Sens(Cl)E(Cl,Cal1) E(Cl,Cal2)

- 61.5 logCl (Cal1)

Cl (Cal2

(fraction)=  −

×−

c

c )

 

where:

E(K/Na/Ca/Cl,Cal1) = Potential of the respective electrolyte electrode

chain from a calibration on Cal 1 solution

E(K/Na/Ca/Cl,Cal2) = Potential of the respective electrolyte electrode

chain from a calibrration on Cal 2 solution

61.5 = Theoretical sensitivity of the K and Na electrodes at

37oC

30.75 = Theoretical sensitivity of the Ca electrode at 37 oC

−61.5 = Theoretical sensitivity of the Cl electrode at 37oC

cK +/c Na

+/cCa

2+/cCl

− 

(Cal1)

= Specified concentration of the respective electrolyte

in Cal 1 solution

cK +/c Na

+/cCa

2+/cCl− 

(Cal2) 

= Specified concentration of the respective electrolyte

in Cal 2 solution

The sensitivity limits of the electrolyte electrodes are as follows:

Electrode Sensitivity Limits

K 92 - 105 %

 Na 90 - 105 %

Ca 90 - 105 %

Cl 85 - 105 %

Status The status of each of the electrolyte electrode is calculated from the following

equations:

K electrode

Status(K)K (Cal1, nom)

K (Cal1)mmol / L

E(K,Cal1) E (K,Cal1)

61.5

0

=   ×−

+

+

10 2c

Na electrode

Status(Na) N (Cal1,nom)

 N (Cal1)mmol / L

E(Na,Cal1) E (Na,Cal1)

61.5

0

=  ×

−+

+

10 2c a

c a 

Continued on next page

2-47

Page 64: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 64/234

Page 65: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 65/234

 ABL700 Series Reference Manual 2. Electrodes

Electrolyte Electrodes, Continued 

Drift Drift 1 is the difference between two consecutive calibrations on Cal 1 solution

and is calculated for each of the electrolyte electrodes.

Drift 2 reflects the change in sensitivity between 2-point calibrations and is

calculated for each of the electrolyte electrodes.

The drift equations are given below.

K electrode

Drift 1(K) 10 K Cal1, prev K Cal1 mmol / L

E(K,Cal1) E(K,Cal1,prev)

61.5 Sens(K,prev) + += × −−

× c c( ) ( )

Drift 2(K) 10 K Cal1,prev K (Cal2 mmol / L

E(K,Cal2)-E(K,Cal1,prev)

61.5 Sens(K,prev) += × −× c c+

( ) )

Na electrode

Drift 1(Na) 10 Na Cal1,prev Na Cal1 mmol / L

E(Na,Cal1) E(Na,Cal1,prev)

61.5 Sens(Na,prev) + += × −−

× c c( ) ( )

Drift 2(Na) 10 Na Cal1,prev Na (Cal2 mmol / L

E(Na,Cal2)-E(Na,Cal1,prev)

61.5 Sens(Na,prev) += × −× c c+ ( ) )

Ca electrode

Drift 1(Ca) 10 Ca Cal1, prev Ca Cal1 mmol / L

E(Ca,Cal1) E(Ca,Cal1,prev)

30 Sens(K, prev) 2+ 2+= × −−

×. ( ) ( )75 c c  

Drift 2(Ca) 10 Ca Cal1, prev Ca (Cal2 mmol / L

E(Ca,Cal2)-E(Ca,Cal1,prev)

30 Sens(Ca, prev) 2+

= × −

×.

( ) )

75

c c

2+

 

Cl electrode

mmol/L)Cal1(Cl) prevCal1,(Cl101(Cl)Drift  prev)Sens(Cl,61.5-

 prev)Cal1,E(Cl,Cal1)E(Cl,

 

cc  

mmol/L)(Cal2Cl) prevCal1,(Cl102(Cl)Drift  prev)Sens(Cl,61.5-

 prev)Cal1,E(Cl,-Cal2)E(Cl,

 

cc  

where:

E(K/Na/Ca/Cl,Cal1),

E(K/Na/Ca/Cl,Cal2)

= Potential of the respective electrolyte electrode

chain from a calibration on Cal 1 and Cal2

solution, respectively

E(K/Na/Ca/Cl,Cal1,prev) = Potential of the respective electrolyte electrode

chain from the previous calibration on Cal 1

solution

61.5 = Theoretical sensitivity of the K and Na

electrodes at 37oC

Continued on next page

2-49

Page 66: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 66/234

2. Electrodes ABL700 Series Reference Manual 

Electrolyte Electrodes, Continued 

Drift (continued) 30.75 = Theoretical sensitivity of the Ca electrode at

37o

C

−61.5 = Theoretical sensitivity of the Cl electrode at

37oC

Sens(K/Na/Ca/Cl,prev) = Sensitivity of the respective electrolyte

electrode from the last 2-point calibration

cK +/c Na+/cCa2+/cCl−(Cal1,p

rev)

Concentration of the respective electrolyte in

Cal 1 solution in the previous calibration

cK +/c Na

+/cCa

2+/cCl

−(Cal1),

cK +/c Na

+/cCa

2+/cCl−(Cal2) 

Specified concentration of the respective

electrolyte in Cal 1 and Cal2 solution,

respectively

 NOTE:  If Cal 1 solution bottle has not been changed between two consecutive

calibrations, the cX(Cal1,prev) −  cX(Cal1) = 0, where X is the respective

electrolyte ion. 

The default drift tolerances set by Radiometer are as follows:

Electrode Drift 1 Tolerances Drift 2 Tolerances

K ± 0.2 mmol/L ± 1.5 mmol/L

 Na ± 3 mmol/L ± 1 mmol/L

Ca ± 0.05 mmol/L ± 0.2 mmol/L

Cl ± 2 mmol/L ± 3 mmol/L

Measurement The electrolyte concentration in a sample is calculated from the following

equation:

c cX(sample) X(Cal,prev) 10

E(X,sample)-E(X,Cal,prev)

Sens(theo) Sens(X,prev= ×   × )  

where:

E(X,sample) = Potential of the electrolyte electrode chain from a

measurement on the sample.E(X,Cal,prev) = Potential of the electrolyte electrode chain from the

 previous calibration on Cal 1 solution.

cX(Cal 1) =  Specific (true) concentration of the electrolyte ion in Cal 1

solution.

Sens (theo) = Theoretical sensitivity of the electrolyte electrode.

Sens(X,prev) = Relative sensitivity of the electrolyte electrode chain from

the last 2-point calibration.

Continued on next page

2-50 

Page 67: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 67/234

 ABL700 Series Reference Manual 2. Electrodes

Electrolyte Electrodes, Continued 

Corrections The measured electrolyte concentration is then corrected for systematic deviations

from the reference method by the following equations:

L)µ(1951L)µ(1950µL195 X(sample)Acorr)X(sample,  Acc   +×=   Equation A 

and

c cX(sample,corr) X(sample)95 L 0 (95 L) (95 L)

Aµ µ µ= × + A1

  Equation B

For the Cl electrode only, Equation A reads as:

( ) L)µ5(1913

-

L)µ(1950Lµ195

-

HCO0956.0(sample)ClAcorr)(sample,Cl  Accc   +×−×=  −

 

where:

cX(sample) = uncorrected value of the electrolyte ion in the sample

cHCO3−

  = bicarbonate concentration of 24.5 mmol/L.

A0 = instrument-dependent correction factor

A1 = instrument-dependent interception constant

Correction  ABL735/725/715 - Syringe modes 

Electrolyte Ion 195 µL 95 µL

A0 K +

0.984 1.0228

 Na+

0.9942 0.9750

Ca2+

1.00415 1.0174

Cl  − 1.247 0.991

A1   K + −0.060 −0.0268

 Na+ −2.6020 5.5365

Ca2+ −0.023 0.0155

Cl   − −30.756 0.887

For the 195 µL mode the measured electrolyte concentration is corrected usingEquation A.

For the 95 µL mode, the measured electrolyte concentration is first corrected using

Equation A and the constants for the 195 µL mode. cX(sample,corr)195 µL obtainedfrom this equation is then used in Equation B as cX(sample) to obtain the finalcorrected electrolyte concentration in the sample for this mode. 

Continued on next page

2-51

Page 68: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 68/234

2. Electrodes ABL700 Series Reference Manual 

Electrolyte Electrodes, Continued 

Correction  ABL735/725/715 - Capillary modes 

Electrolyte Ion 195 µL 95 µLA0 K 

+0.984 1.059

 Na+

0.9942 0.999

Ca2+

1.00415 1.097

Cl   − 1.247 0.991

A1   K + −0.060 −0.179

 Na+ −2.6020 3.190

Ca2+ −0.0230 −0.070

Cl   − −30.756 0.887

For the 195 µL mode the measured electrolyte concentration is corrected using

Equation A.

For the 95 µL mode, the measured electrolyte concentration is first corrected using

Equation A and the constants for the 195 µL mode. cX(sample,corr)195 µL obtainedfrom this equation is then used in Equation B as cX(sample) to obtain the finalcorrected electrolyte concentration in the sample for this mode. 

Corrections 

(continued) 

Correction ABL705 - Syringe modes 

Electrolyte

Ion195 µL 165 µL 95 µL

A0 K + 0.984 0.984 1.0228

 Na+ 0.9942 0.9942 0.975

Ca2+ 1.00415 1.00415 1.0174

Cl− 1.247 1.247 0.991

A1 K + −0.060 −0.060 −0.0268

 Na+ −2.6020 −2.6020 5.5365

Ca2+ −0.0230 −0.0230 0.0155

Cl− −30.756 −30.756 0.887

For the 165 µL mode the measured electrolyte concentration is corrected using EquationA.

For the 95 µL mode, the measured electrolyte concentration is first corrected using

Equation A and the constants for the 195 µL mode. cX(sample,corr)195 µL obtained fromthis equation is then used in Equation B as cX(sample) to obtain the final corrected

electrolyte concentration in the sample for this mode. 

Continued on next page

2-52 

Page 69: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 69/234

 ABL700 Series Reference Manual 2. Electrodes

Electrolyte Electrodes, Continued 

Correction ABL705 - Capillary modes 

ElectrolyteIon

195 µL 165 µL 95 µL

A0 K + 0.984 0.984 1.059

 Na+ 0.9942 0.9942 0.999

Ca2+ 1.00415 1.00415 1.097

Cl− 1.247 1.247 0.991

A1 K + −0.060 −0.060 −0.179

 Na+

Corrections 

(continued) 

−2.6020 −2.6020 3.190

Ca

2+

−0.0230 −0.0230 −0.070Cl

− −30.756 −30.756 0.887

For the 165 µL mode the measured electrolyte concentration is corrected using EquationA.

For the 95 µL mode, the measured electrolyte concentration is first corrected using

Equation A and the constants for the 195 µL mode. cX(sample,corr)195 µL obtained fromthis equation is then used in Equation B as cX(sample) to obtain the final corrected

electrolyte concentration in the sample for this mode 

See Chapter 5, Performance Specifications for more information on reference

methods.

Stability

Criteria

The following stability criterion must be met to obtain a stable electrode response

during calibration:

upd.last)X(sample,K )upd.iX(sample,upd.last)X(sample, ccc   ×≤−  

This criterion is valid for calibrations using Cal 1 and Cal 2 solutions where:

cX(Cal,upd.last) = Concentration of the electrolyte ion from the last updating

when measuring on calibration solution. (The last

updating is number 30).

cX(Cal,upd.i) = Concentration of the electrolyte ion for a given updating

when measuring on calibration solution. (The relationship

must be fulfilled for at least one of the updating numbers

18 or 19).

Continued on next page

2-53

Page 70: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 70/234

2. Electrodes ABL700 Series Reference Manual 

Electrolyte Electrodes, Continued 

Stability

Criteria

(continued) 

where (continued):

K = Constant for the stability criterion.

Electrolyte Ion Cal1 solution Cal2 solution

K + 0.01 0.01

 Na+

0.01 0.02

Ca2+

0.02 0.02

Cl− 0.022 0.022

The following stability criterion must be met to obtain a stable electrode response

during measurement:

( ) X(Rinse)X(Rinse)upd.last)X(sample,K 

)upd.iX(sample,upd.last)X(sample,

ccc

cc

+−×

≤− 

where:

cX(sample,upd.last) = Concentration of the electrolyte ion from the median

of the last 5 updatings (for Ca2+

: 3 last updatings)

when measuring on a sample. The last updating

number is 30 (or 10 for some micromodes).

cX(sample,upd.i) = Concentration of the electrolyte ion for a givenupdating when measuring on a sample. (The

relationship must be fulfilled for at least one of the

updating numbers shown below).

K +  Na+ Ca2+Cl

−  

22 22 26 22

23 23 27 23

In some micromodes, substract 20 from number

above.

K   Constant for the stability criterion; it equals to:

K + = 0.012; Na

+ = 0.012; Ca

2+ = 0.022; Cl− = 0.012

cXRinse   Constant that includes the concentration of the

electrolyte ion in rinse solution:

K + = 4.0; Na

+ = 130.0; Ca

2+ = 1.25; Cl− = 137.7

2-54 

Page 71: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 71/234

 ABL700 Series Reference Manual 2. Electrodes

Metaboli te Electrodes

Basic

Description

The glucose electrode (E7066) and the

lactate electrode (E7077) have similar

construction described below.

The electrode consists of a silver

cathode and a platinum anode. The

electrode is protected by an electrode

 jacket filled with electrolyte solution

and a multi-layer membrane mounted at

the tip.

The membrane consisting of three

layers:

1. outer membrane layer permeable to

glucose.

2. middle enzyme layer.

3. inner membrane layer permeable to

H2O2.

A polarization voltage of 675 mV is

applied to the electrode chain and the

current through the chain is measured

 by an amperemeter.

Glucose or lactate molecules are

transported across the outer membrane

of the multi-layer membrane.

The enzyme glucose oxidase or lactate

oxidase immobilized between the inner

and outer membrane layers converts the

glucose or lactate according to the

following reactions:

glucose + O2 → gluconic acid + H2O2 

lactate + O2 → pyruvate + H2O2 

O2 for this reaction is supplied by the

outer membrane layer and also by the

oxidation of H2O2 at the Pt anode.

The H2O2 produced by the enzyme

reaction is transported across the inner

membrane to the Pt anode.

 AgCl reference band

 Ag cathode 

Multi-layer membrane 

Electrolyte 

Multi-layer membrane 

Electrolyte 

 AgCl reference band

 Ag cathode

 

Continued on next page

2-55

Page 72: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 72/234

2. Electrodes ABL700 Series Reference Manual 

Metaboli te Electrodes, Continued 

Basic

Description

(continued) 

H2O → 2H+ + O2 + 2e

When a potential is applied to the electrode

chain, the oxidation of H2O2 produces an

electrical current proportional to the

amount of H2O2, which in turn is directly

related to the amount of glucose or lactate.

To complete the electrical circuit a

reduction reaction (where electrons are

consumed) at the cathode converts Ag+ 

(from AgCl) to Ag:

Ag+  + e−  →  Ag

In order to maintain a charge balance between the anode and the cathode, two Ag+ 

ions need to be reduced for one molecule of H2O2 to be oxidized.

Zero Current The zero current is a small background current measured at the electrode when no

glucose or lactate is present in a solution. As the rinse solution contains no glucose

or lactate, a baseline representing the zero current, I0 as a function of time (I0 =

f(t)), is obtained from continuous measurements on the rinse solution.

Rinse

Time

I(current)

xxxxxxxxxx

xxx

Extrapolated

base-line

N measurements of I0

on the rinse solution

 tfinaltmean

I0(t)

I0(t)

 

This I0 baseline is obtained as follows:

• At the end of a rinse, with the rinse solution in the measuring chamber, zerocurrent of the metabolite electrodes is measured periodically (the intervals

 between these measurements become longer if the analyzer is idle).

• The previous N (N = 8) measurements on the rinse solution – before a calibration or

a sample measurement starts - are used to obtain a baseline representing the time

function of I0.

Continued on next page

2-56 

Page 73: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 73/234

 ABL700 Series Reference Manual 2. Electrodes

Metaboli te Electrodes, Continued 

Zero Current

(continued) • The baseline is extrapolated throughout the whole electrode calibration or

sample measurement period, and represents the zero current time function.

• The I0 baseline is used to determine the sensitivity of the metabolite electrode.

The extrapolated final zero current value at the metabolite electrodes at the last

updating (illustrated by the I0 baseline) is determined as follows:

( )  pA(mean)IttI(final)I 0meanfinalslope10   +−××= A  

where:

 A1 = Empirical constant dependent on electrode and determined from

tests against the reference method

tfinal = Time of the last measurement updating on the calibration solutionor sample.

tmean = The mean time of the N zero current measurements on the rinse

solution:

sec N

t

t

 N

1n

n

mean

∑==  

where tn is the time of the nth measurement on the rinse solution.

I0(mean) = The zero current at the mean time (tmean):

 pA N

I

(mean)I

 N

1n

n0,

0

∑==  

where I0,n is the zero current at the nth measurement on the rinse

solution.

Islope = The slope or gradient of the I0 baseline

( )   ( )

( )

 pA/second

tt

(mean)IItt

I2 N

1=n meann

0n0,

 N

1=n

meann

slope

−×−=  

If Islope > 0.0, it is set to 0.0

The zero current of the metabolite electrodes should be less than 10000 pA.

Continued on next page

2-57

Page 74: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 74/234

2. Electrodes ABL700 Series Reference Manual 

Metaboli te Electrodes, Continued 

Sensitivity The sensitivities of the metabolite electrodes are calculated by measuring the

current on Calibration Solution 1 (Cal 1) and then correcting for the zero current

using the extrapolated I0 baseline.

Cal 1 has a nominal glucose concentration of 10 mmol/L and a nominal lactate

concentration of 4 mmol/L. The precise values are batch-individual and contained

in the bar codes of the Cal 1 bottles.

The diagram below, together with the table, describes in principle how the

sensitivities for the metabolite electrodes are obtained.

I0(final)

t

I

xxxxxxxxxxxxx

Start of Calibration

Extrapolatedbase-line

N measurements of I0

on rinse solutionEnd of 

Calibration

I(Cal 1,upd.2)

I(Cal 1)

•I(Cal 1,upd.1

I(Cal 1,upd.N)

Electrode updatings

 

The current at the metabolite electrodes with Cal 1 in the measuring chamber,

I(Cal 1), is measured 30 times at regular intervals. The current at the 15th updating

is used to determine sensitivity of the glucose electrode, and the current at the 30th 

updating is used to determine sensitivity of the lactate electrode.

The current due to the glucose or lactate presence in the sample is then calculated

as the difference between the current at the final updating (the 15th for the glucose

and the30th for the lactate electrode) and the zero current at that time point:

I(Cal 1) = I(Cal 1,final) − I0(final) 

The sensitivities of the electrodes are calculated as follows:

1)X(Cal

1)I(CalSens

c=  

Continued on next page

2-58 

Page 75: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 75/234

Page 76: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 76/234

2. Electrodes ABL700 Series Reference Manual 

Metaboli te Electrodes, Continued 

Measurement The glucose/lactate concentration in a sample is calculated from the following

equation:

Sens

(final)II(sample)X(sample) 0−

=c  

where:

I(sample) = Current of the metabolite electrode measured on the

sample.

I0(final) = Extrapolated final zero current value of the metabolite

electrode at the time of the last sample updating.

Sens = Relative sensitivity of the metabolite electrode.

Corrections The measured metabolite concentration is corrected for systematic deviations from

the reference method by the following equations:

L)(1951L)(1950L195 X(sample)Acorr)X(sample, µ µ µ   Acc   +×=   Equation A 

and

µL)1(95/35µL)0(95/35µL95 AX(sample)Acorr)X(sample,   +×= cc   Equation B 

where:

cX(sample) = uncorrected measured glucose/lactate concentration from a

sample

A0 =  instrument-dependent correction factor

A1 = instrument-dependent interception constant

Continued on next page

2-60 

Page 77: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 77/234

 ABL700 Series Reference Manual 2. Electrodes

Metaboli te Electrodes, Continued 

Correction  ABL735/725/715 - Syringe modes 

Metabolite 195 µL 95 µLA0 cGlu 0.93 1.0040

cLac 0.93 1.0082

A1 cGlu 0.1 −0.0171

cLac 0.0268 0.0017

For the 195 µL mode the measured metabolite concentration is corrected usingEquation A.

For the 95 µL mode, the measured metabolite concentration is first corrected using

Equation A and the constants for the 195 µL mode. cX(sample,corr)195 µL obtained

from this equation is then used in Equation B as cX(sample) to obtain the finalcorrected metabolite concentration in the sample for this mode. 

Correction ABL735/725/715 - Capillary modes 

Metabolite 195 µL 95 µL 35 µL

A0 cGlu 0.93 1.053 1.1438

cLac 0.93 1.044 1.1724

A1 cGlu 0.1 0.014 −0.0602

cLac 0.0268 −0.020 −0.0411

For the 195 µL mode the measured metabolite concentration is corrected usingEquation A.

For the 95 µL and 35 µL modes, the measured metabolite concentration is firstcorrected using Equation A and the constants for the 195 µL mode. The obtained

cX(sample,corr)195 µL is then used in Equation B as cX(sample) to obtain the finalcorrected metabolite concentration in the sample for this mode.

Correction ABL705 - Syringe modes 

Metabolite 195 µL 165 µL 95 µL

A0 cGlu 0.93 0.896 1.0040

cLac 0.93 0.900 1.0082

A1 cGlu 0.1 0.1576 −0.0171

cLac 0.0268 0.0268 0.0017

For the 165 µL mode the measured metabolite concentration is corrected usingEquation A.

For the 95 µL mode, the measured metabolite concentration is first corrected using

Equation A and the constants for the 195 µL mode. cX(sample,corr)195 µL obtainedfrom this equation is then used in Equation B as cX(sample) to obtain the finalcorrected metabolite concentration in the sample for this mode. 

Corrections

(continued) 

Continued on next page

2-61

Page 78: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 78/234

2. Electrodes ABL700 Series Reference Manual 

Metaboli te Electrodes, Continued 

Correction ABL705 - Capillary modes 

Metabolite 195 µL 165 µL 95 µL 35 µL

A0 cGlu 0.93 0.896 1.053 1.1438

cLac 0.93 0.900 1.044 1.1724

A1 cGlu 0.1 0.1576 0.014 −0.0602

cLac 0.0268 0.0268 −0.020 −0.0411

For the 165 µL mode the measured metabolite concentration is corrected using EquationA.

For the 95 µL and 35 µL mode, the measured metabolite concentration is first corrected

using Equation A and the constants for the 195 µL mode. cX(sample,corr)195 µL obtained

from this equation is then used in Equation B as cX(sample) to obtain the final correctedmetabolite concentration in the sample for this mode. 

Corrections

(continued) 

See Chapter 5, Performance Characteristics for more information on reference

methods.

Stability

Criteria

The following stability criteria must be met to obtain a stable electrode response

during calibration:

I(Cal 1,upd.30) − I(Cal 1, upd.21) − 9 × Islope ≤ 0

Sd,zero < Sd,max

50

upd.21)1,I(Calupd.11)1,I(Cal

upd.11)1,I(Calupd.1)1,I(Callog

5.9≤

−−

−=τ   

All of the three criteria must be fulfilled for a calibration using Cal 1 solution

where:

I(Cal 1,upd.30)

I(Cal 1,upd.21)

I(Cal 1,upd.11)

I(Cal 1,upd.1)

= Electrode current at the 30th

/21st/11

th/1

st updating during

measurement on Cal 1 solution, respectively.

Sd,zero = Spreading of the zero point current updatings around the

regression line.

Sd,max = If Sens > 400 pA/mM, then = 0.025 × Sens,

otherwise = 10.0.

maxd,S

maxd,S

Continued on next page

2-62 

Page 79: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 79/234

 ABL700 Series Reference Manual 2. Electrodes

Metaboli te Electrodes, Continued 

Stability

Criteria

(continued)

τ  = Should be less than or equal to 50,

and

upd.21)1,I(Calupd.11)1,I(Cal

upd.11)1,I(Calupd.1)1,I(Callog

−−

 

should be negative or equal zero.

The following stability criterion must be met to obtain a stable electrode response

during measurement:

Sd,zero < Sd,max 

where:

Sd,zero = Spreading of the zero point current updatings around the

regression line.

Sd,max = If Sens > 400 pA/mM, then Sd,max = 0.025 × Sens, otherwise Sd,max = 10.0.

The (glucose or lactate) in the sample is cX(sample,corr).

If the corrected concentration of the metabolite, cX(sample,corr) > 1, the following

criteria must be fulfilled:

200.)30.(updIupd.30)I(sample,

I9upd.21)1,I(Calupd.30)1,I(Cal0

0

slope ≤−

×−−≤  

otherwise

14.0Sens

I9upd.21)I(sample,upd.30)I(sample, slope ≤×−−

 

where:

I(Cal 1,upd.30)

I(Cal 1,upd.21)

= Electrode current at the 30th/21st updating during

measurement on sample, respectively.

Continued on next page

2-63

Page 80: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 80/234

2. Electrodes ABL700 Series Reference Manual 

Metaboli te Electrodes, Continued 

Stability

Criteria

(continued) 

If all the criteria below are fulfilled, then the result of the measurement will be

marked with an interference error.

1upd.9)I(sample,-upd.16I(sample,

upd.23)I(sample,-upd.30)I(sample,≥  

I(sample,upd.16) > I(sample,upd.12)

I(sample,upd.12) > I(sample,upd.9)

cX(sample,corr)> 1.5 mmol/L

where:

I(sample,upd.30)I(sample,upd.23) 

I(sample,upd.16) 

I(sample,upd.12)

I(sample,upd.9)

= Electrode current at the 30th/23rd/16th/12th/9th updating during measurement on sample,

respectively.

cX(sample,corr) = Corrected concentration of glucose or lactate in

the sample.

2-64 

Page 81: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 81/234

 ABL700 Series Reference Manual 2. Electrodes

References

List of the references for Chapter 2, Electrodes: List of

References1. Linnet N. pH measurements in theory and practice. 1

st

 ed. Copenhagen:Radiometer Medical A/S, 1970.

2-65

Page 82: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 82/234

 

Page 83: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 83/234

3. The Optical System

This chapter describes the optical system in the ABL700 Series analyzer, its

construction, and the measuring method used.

This chapter contains the following topics.

Measuring Principle ......................................................................................... 3-2

Correcting for Interferences ............................................................................. 3-7

Calibration........................................................................................................ 3-9

Measurement and Corrections.......................................................................... 3-10

References ........................................................................................................ 3-13

Introduction

Contents

Page 84: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 84/234

3. The Optical System ABL700 Series Reference Manual 

Measuring Principle

Introduction The optical system of the ABL700 Series analyzer is designed to measure the

following parameters:

Parameter Description

ctHb  concentration of total hemoglobin

sO2 oxygen saturation

F O2Hb fraction of oxyhemoglobin 

F COHb  fraction of carboxyhemoglobin

F HHb  fraction of deoxyhemoglobin

F MetHb fraction of methemoglobin

F HbF fraction of fetal hemoglobin

ctBil  concentration of total bilirubin (the sum of unconjugated

and conjugated bilirubin) in plasma

 NOTE: ctBil can be measured on a whole blood or plasma sample. Plasma

samples provide the optimal measurement performance. To obtain optimal

accuracy when following a patient trend in ctBil , use the same aspiration mode

and the same analyzer.

 Hematocrit (Hct) is also available as a derived parameter. 

Optical System The optical system is based on a 128-wavelength spectrophotometer with a

measuring range of 478 - 672 nm. The spectrometer is connected via an optical

fiber to a combined hemolyzer and measuring chamber.

Sample in

Concave grating

Photodiode array

Slit

Optical fiber 

Hemolyzer 

Lens

Infrared filter 

Cuvette

Sample out

Spectrofotometer 

Lamp unit

 

Continued on next page

3-2 

Page 85: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 85/234

 ABL700 Series Reference Manual 3. The Optical System

Measuring Principle, Continued

 

Optical System

(continued)

The method used in the ABL700 Series analyzer's optical system is visible

absorption spectroscopy.

Step Description

1 The blood sample is transported to the cuvette positioned in the

hemolyzer unit. The temperature of the cuvette is regulated to 37oC.

2 1 µL of the sample is ultrasonically hemolyzed in the cuvette at a

frequency of about 30 kHz in order to rupture the walls of the red

 blood cells so that their content is mixed with the blood plasma,

giving an optically clear solution. There is no bilirubin in the red

 blood cells, so after hemolyzation the red blood cell intracellular fluid

dilutes the plasma bilirubin. The calculation discussed in

 Measurement and Corrections corrects for this dilution.To eliminate air bubbles in the sample and to enhance hemolyzation, an

over-pressure of one atmosphere is maintained throughout hemolyzation

and measurement.

3 Light from a 4 Watt halogen lamp is sent to the cuvette via an infra-

red filter and a biconvex lens.

The voltage across the halogen lamp is regulated by a thermostatted

 photodiode so that the amount of light sent to the cuvette has a constant

intensity.

4 The light transmitted through the cuvette is guided to the spectrometer via

an optical fiber.

5 The light passes through a slit that directs it towards a combined

mirror and concave grating.

6 The grating separates the light into 128 single wavelengths and the

mirror focuses the 128 light signals on a photodiode array.

7 The photodiode array has 128 diodes or pixels, one for each

wavelength, which convert the monochromatic light signals to

currents.

8 The currents and therefore the intensity of the light signals are

measured at each of the 128 diodes, which form the basis for the

absorption spectrum for a particular sample.

9 The spectrum is sent to the analyzer’s computer, where the

calculations of the oximetry parameter values are made.

Continued on next page

3-3

Page 86: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 86/234

3. The Optical System ABL700 Series Reference Manual 

Measuring Principle, Continued

 

Lambert-Beer’s

Law

Absorption spectroscopy is based on Lambert-Beer's law which states that the

measured absorbance for a single compound is directly proportional to the

concentration of the compound and the length of the light path through the sample

[ 1] :

 A cy y

λ λε= × ×y

l  

where:

 Ayλ    = absorbance of compound y at wavelength λ 

ελ

y   = extinction coefficient of compound y at wavelength λ (a constant,

characteristic of the compound)

cy   = concentration of compound y in sample

l  = length of light path

Absorbance The absorbance (A) of a compound is defined as the logarithm of the ratio of the

light intensity before and after transmission through the compound.

In practice it is the logarithm of the ratio of the light intensity transmitted through

water to the light intensity transmitted through the compound.

 A I 

 I =log 0  

where:

 I 0   = intensity of light transmitted through water ( I 0 is measured as the

intensity of light transmitted through the Cal 1 or Cal 2 solutions)

 I   = intensity of light transmitted through the compound

Total

Absorbance

For samples containing more than one optically active compound, the total

absorbance (Atotal) is the sum of the individual compounds’ absorbance, since

absorbance is an additive quantity.

For example, if a sample contains 6 compounds y1, y2, ….y6, the total absorbance

measured for that sample at wavelength λ1 is:

 A A A A A A Atotal y y y y y y1 2 3 4 5

λ λ λ λ λ λ  1 1 1 1 1 1 1= + + + + +6

λ 

  (   )= + + + + +l c c c c c c y y y y y y y y y y y y1 1 2 2 3 3 4 5 5 6 6  ε ε ε ε ε ε  

λ λ λ λ λ λ  1 1 1 1

4

1 1  

If there are Y compounds and measurements are taken at n wavelengths, a general

expression can be written for Atotal at the wavelength λn:

 A cn n

total y y

y

Yλ λ 

ε = ×=

∑1

l×  

where:

λn = the individual wavelengths.

Continued on next page

3-4 

Page 87: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 87/234

 ABL700 Series Reference Manual 3. The Optical System

Measuring Principle, Continued

 

Continuous

SpectrumA total

λn can be depicted graphically as a function of wavelength, and if the

differences between the wavelengths are small enough, a continuous spectrum is produced.

 EXAMPLES:

The figure below shows three spectra; pure O2Hb, pure HHb in a low

concentration, a spectrum of 92 % oxygenated hemoglobin obtained by adding the

spectra of O2Hb and HHb. The additivity of absorption and the continuity of the

spectra can clearly be seen.

480 500 520 540 560 580 600 620 640 660 680

O2Hb (9.2 mmol/L)

HHb (0.8 mmol/L)

92 % oxygenated hemoglobin (i.e., 92 % O2Hb + 8 % HHb)

Wavelength/nm

 Absorption

 

Example of the spectrum obtained from unconjugated bilirubin at concentration of

200 µL.

200umol/L Unconjug ated Bi l irubin in Plasma

0

0.02

0.04

0.06

0.08

0. 1

470 520 570 620 670

nm

      A      b

    s    o    r      b    a    n    c    e

 

The spectrum of conjugated bilirubin is slightly different.

Continued on next page

3-5

Page 88: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 88/234

3. The Optical System ABL700 Series Reference Manual 

Measuring Principle, Continued

 

Determining

Concentrations

In the spectrum taken of a sample, the absorption recorded at each wavelength

contains contributions from each of the compounds in the sample. The task then is

to determine the magnitude of that contribution and thereby the concentration of

each compound in the sample.

The concentrations are determined using the following equation:

c An n

n

y y total

=1

128

K =∑   λ λ 

 

where:

K y

nλ 

 

= a constant specific to compound y at wavelength λn.

Matrix ofConstants

The constants ( ) are determined using Multivariate Data Analysis [2] where

the spectra of the calibration compounds were considered together with thereference values of the calibration compounds. The essential interfering substanceswere also taken into account.

K ynλ

 

3-6 

Page 89: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 89/234

 ABL700 Series Reference Manual 3. The Optical System

Correcting for Interferences

HbF vs. HbA Fetal hemoglobin (HbF) does not have the same spectrum as adult hemoglobin(HbA) due to a slight variation in molecular structure. The presence of HbF in asample will interfere with the result if it is not corrected for.

It is thus important when measuring hemoglobin levels in premature neonates andneonates aged 0 to 3 months, as well as adults suffering from thalassemia, to take into

account this difference [3].

The ABL700 Series analyzer automatically corrects for HbF.

 NOTE: Hb types other than HbA and HbF interfere with hemoglobin

measurements and are not compensated for in the ABL700 Series analyzers. 

The diagram below shows the transition from fetal hemoglobin to adult

hemoglobin [4].

This graph is only schematic and cannot be used to determine F HbF.

Deviation of

Results

If the difference between the two types of hemoglobin is not accounted for inmeasurements on samples containing HbF, e.g. from premature neonates andneonates aged 0 to 3 months, then a deviation in the measurement will arise.

The deviation is most important for measurements of oxygen saturation (sO2) andthe fraction of carboxyhemoglobin (F COHb), since inaccurate measurements ofthese parameters can lead to incorrect diagnostic interpretation of the results, andconsequent risk of inappropriate treatment.

Detecting HbF The presence of HbF in a sample is detected from the difference spectrum betweenfetal and adult oxyhemoglobin. From the size of the difference spectrum theconcentration of fetal oxyhemoglobin, cO2HbF, can be measured.

The amount of cO2HbF exceeding a certain level indicates HbF interference. Theanalyzer automatically corrects for this interference by subtracting the differencespectrum of fetal oxyhemoglobin from the measured spectrum. It then makesfurther calculations, using cO2HbF to measure F HbF.

Correcting for

HbF

Continued on next page

3-7

Page 90: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 90/234

3. The Optical System ABL700 Series Reference Manual 

Correcting for Interferences, Continued

 

Most Likely

Interfering

Substances

Fetal hemoglobin and non-hemoglobin substances present in blood that absorblight within the same wavelength range used to measure the oximetry parametersand bilirubin, will interfere with the true spectra of the blood samples.

The optical system in the ABL700 Series analyzers compensates for the mostlikely interfering substances by repressing their spectra.

The interference from following substances an ABL700 Series analyzercompensates for when measuring the oximetry parameters:

Intralipids (turbidity)

Sulfhemoglobin, SHb

Repressing

Spectra

Repressing the spectra of the likely interfering substances is done in two ways

depending on the substance:

• Either the substance is taken account of in the calculation of the matrix ofconstants, K (see the section Measuring Principle in this chapter). This appliesto Intralipids and Sulfhemoglobin,

• Or the substance is detected, and the measured spectrum is correctedaccordingly. This applies to HbF.

Residual

Spectrum

A measured spectrum is compared to a model spectrum calculated from thedetermined concentrations. The difference between the two spectra is then calledthe residual spectrum. If the difference is too high a warning (Oxi spectrum

mismatch) is issued on all the oximetry module parameters ctHb, sO2, F O2Hb,F COHb, F MetHb, F HHb, F HbF and ctBil.

The same action is taken if one of the following conditions exist and F Hbderiv isdefined as one of the parameters sO2, F O2Hb, F COHb, F MetHb, F HHb:

• ctHb<−0.1mmol/L or ctHb>25mmol/L.

• F Hb(deriv)<-2% or F Hb(deriv)>102%.

•  Negative fraction of SHb<−2% is detected.

• Value of Turbidity<−0.5%.

3-8 

Page 91: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 91/234

 ABL700 Series Reference Manual 3. The Optical System

Calibration

The optical system is calibrated in 2 points as follows:Calibration

Materials

• on the S1720 or S1730 Calibration Solution used for zero point calibration;• on S7770 tHb Calibrating Solution with known ctHb and ctBil values

in order to determine the zero point, , and the cuvette path length, l. I 0

 

Zero Point The zero point, , is the current (or intensity) measured by the photodiode array

on one of the transparent calibration solutions present in the cuvette. During a zero point calibration ctHb and ctBil are zero point calibrated.

 I 0

 I 0 is measured automatically during every calibration.

Cuvette

Pathlength

The cuvette path length (i.e. the length of light path) is determined from Lambert-Beer’s Law by measuring the absorbance of the colored dye present in the tHbCalibration Solution (S7770), which has a known equivalent hemoglobin and bilirubin concentration:

Beer’s Law:  A = ε × ctHb × l  or A = ε × ctBil × l 

where:

 A  = absorbance

ε  = extinction coefficient

ctHb = concentration of Hb

ctBil = concentration of total bilirubin

l  = length of lightpath

tHb/tBil

Calibration

Frequency

It is recommended that a tHb calibration is performed every three months.Bilirubin is also calibrated during a tHb calibration.

3-9

Page 92: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 92/234

3. The Optical System ABL700 Series Reference Manual 

Measurement and Corrections

Oximetry

parameters

The oximetry parameters are calculated as follows:

Parameter Equation

ctHb(meas) = cO2Hb + cCOHb + cHHb + cMetHb

sO2=

c

c

O Hb

eHb

2  

ceHb = cHHb + cO2Hb (effective hemoglobin)

F O2Hb =

c

c

O Hb

tHb

2  

F COHb  =

c

c

COHb

tHb  

F HHb  =c

c

HHb

tHb 

F MetHb  =c

c

MetHb

tHb 

F HbF =c

c

HbF

tHb 

where:

cO2Hb = concentration of oxyhemoglobin in the sample

cCOHb = concentration of carboxyhemoglobin in the sample

cHHb = concentration of deoxyhemoglobin in the sample

cMetHb  = concentration of methemoglobin in the sample

cHbF  = concentration of fetal hemoglobin in the sample

Bilirubin Bilirubin is calculated as follows:

Hct(calc)1

tBil(B)tBil(P)

=c

c  

where:

ctBil(P) = concentration of total bilirubin in plasma

ctBil(B) = concentration of diluted plasma bilirubin after sample

hemolyzation

Hct(calc) = calculated hematocrit (a fraction).

Continued on next page

3-10 

Page 93: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 93/234

 ABL700 Series Reference Manual 3. The Optical System

Measurement and Corrections, Continued

 

Bilirubin 

(continued) Hct(calc)

g / d L

tHb= ×0 0301.

c  

For further details on Hct(calc) please refer to Interference Tests and the

explanation of MCHC (Mean Corpuscular Hemoglobin Concentration) in chapter

5 in this manual.

Restrictions The following parameters will not be calculated:

Parameter Is not calculated if…

sO2, F COHb, F MetHb,

F HHb

ceHb = cHHb + cO2Hb< 0.75 mmol/L;

ctHb< 1 mmol/L

ctBil  ctHb > 15.5 mmol/L 

The following conditions are required to exclude HbF interference:

Parameter or Feature Requirement

ceHb > 3 mmol/L

F COHb < 15 %

F MetHb < 10 %

“HbF correction" has not

 been activated 

If ctHb < 5 mmol/L, cO2HbF should be more than 1

mmol/L.

If ctHb > 5 mmol/L, cO2HbF/ctHb should be more

than 0.2.

“HbF correction" has

 been activated 

 No lower limit value for cO2HbF is required, i.e.

even adult blood samples will be corrected for HbF.

It may be of value when analyzing blood samples

from newborns who received adult blood transfusion.

In these cases F HbF can be lower than 20 % and

significant deviations of oximetry parameters and

 bilirubin can occur.

HbF suppression has

 been activated

The F HbF value is displayed by the ABL735/730.

Message “HbF detected” is displayed on the other

analyzer versions with the oximetry module

installed.

sO2<50 % or

ctHb<5 mmol/L

Message “F HbF measurement is not possible” is

displayed by the ABL735/730 if a HbF suppression

has been activated.

Continued on next page

3-11

Page 94: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 94/234

Page 95: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 95/234

 ABL700 Series Reference Manual 3. The Optical System

References

The list of the references for Chapter 3, The Optical System: List of

References1. Ewing GW. Instrumental methods of chemical analysis. 5

th

 ed. McGraw-Hill,1985.

2. Martens H. Multivariate calibration: quantitative interpretation of non-selective

chemical data. Dr. Techn. Thesis, NTH Univ. of Trondheim, 1986.

3. Krzeminski A. Why correct for fetal hemoglobin in blood oximetry

measurements? Radiometer Publication Info. No. 1992-3. Copenhagen:

Radiometer Medical A/S, 1992.

4. Huehns ER, Beaven GH. Developmental changes in human hemoglobins. Clin

Dev Med 1971; 37: 175-203.

3-13

Page 96: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 96/234

 

Page 97: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 97/234

4. User-Defined Corrections

This chapter describes the basis of the user-defined corrections available for all the

 parameters that are measured in the ABL700 Series analyzers.

This chapter contains the following topics.

General Information ......................................................................................... 4-2

Correction Factors for Oximetry Parameters and Bilirubin ............................. 4-4

Electrolyte and Metabolite Parameters ............................................................ 4-8

Introduction

Contents

Page 98: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 98/234

4. User-Defined Corrections ABL700 Series Reference Manual 

4-2 

General Information

Purpose of Use User-defined corrections are most commonly implemented in situations where the

values measured for a particular parameter by two or more analyzers, deviate

consistently from each other.

 NOTE:  Since the performance of all ABL700 analyzers is tested as described in Chapter 5,

Performance Characteristics, and each instrument is assumed to operate

accurately and optimally, the unnecessary correction of parameter values by the

user can lead to inaccurate measurements being reported. 

User-Defined

Corrections

User-defined corrections are based on a linear correlation between the measured

values (without user-defined corrections) and the displayed values (with user-

defined corrections).

The correction factors for each measured parameter are the slope and the offset of

the correction line. With user-defined corrections it is possible to change the values

of either one or both of these correction factors, depending on the parameter type.

Corrected value = Slope × Uncorrected value + Offset

The diagram below is a schematic representation of the relationship between

correction lines without and with user-defined correction.

Continued on next page

Displayed (corrected)parameter value 

Measured(uncorrected)parameter value

Correction line withuser correction

Slope = 1 

Correction line withoutuser correction 

Offset

Page 99: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 99/234

 ABL700 Series Reference Manual 4. User-Defined Corrections

General Information, Continued

 

Entering

User-Defined

Corrections

In the ABL700 Series analyzers the slope and the offset for each parameter are

configured via the Parameters Setup screen under General Setup. User corrected

values are marked with a “*” after the result.

 NOTE: The user-defined corrections will also be applied to measurements on QC

solution.

For detailed instructions on how to enter user-defined corrections, refer to the

section Parameter Setup in Chapter 5 of the Operator’s Manual.

4-3

Page 100: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 100/234

Page 101: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 101/234

 ABL700 Series Reference Manual 4. User-Defined Corrections

Correction Factors for Oximetry Parameters and Bilirubin,Continued

 

 sO2  The following recommendations apply to sO2 :

Item Description

Units Fraction

Sample Set ctHb of gas equilibrated SAT0 and SAT100 samples to ≈ 

15 g/dL (9.3 mmol/L) and pH ≈ 7.4

Slope  0.900 - 1.100

Offset ± 0.050

 FCOHb The following recommendations apply to F COHb:

Item Description

Units Fraction

Sample The zero point (F COHb ≈ 0) is saturated to approximately

SAT100, and ctHb is set to ≈ 15 g/dL (9.3 mmol/L) and pH ≈ 

7.4.

Offset ± 0.050

The following recommendations apply to F MetHb: FMetHb

Item Description

Units Fraction

Sample The zero point (F MetHb ≈ 0) is saturated to approximately

SAT100, and ctHb is set to ≈ 15 g/dL (9.3 mmol/L) and pH ≈ 

7.4.

Offset ± 0.050

Continued on next page

4-5

Page 102: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 102/234

4. User-Defined Corrections ABL700 Series Reference Manual 

Correction Factors for Oximetry Parameters and Bilirubin,Continued

 

 FHbF The following recommendations apply to F HbF:

Item Description

Units Fraction

Sample Radiometer recommends that ctHb in the adult samples (with

F HbF = 0) and fetal samples (with high F HbF) is set to ≈ 15

g/dL (9.3 mmol/L), sO2 ≈ 100 %, and pH ≈ 7.4.

The “Correction for HbF levels less than 20 %” function

should be enabled in order to have the F HbF value displayed

for the adult sample.

Averaging repeated measurements on blood from different

donors gives an optimized accuracy of the correction.

Averaging repeated measurements on blood from the same

donor also improves the accuracy.

Slope 0.800 - 1.200

Offset ± 0.20

The following recommendations apply to ctBil: ctBil

Item Description

Units µmol/L

Sample Radiometer recommends that human plasma or serum is used

with pH ≈ 7.4 (the analyzer reading). Zero point sample could

 be adult sample (ctBil ≈ 0 µmol/L) and maximum point could

 be an unconjugated bilirubin sample with ctBil ≈ 300 - 400

µmol/L.

Averaging repeated measurements on samples from different

donors gives an optimized accuracy of the correction.

Averaging repeated measurements on samples from the same

donor also improves the accuracy.

Commercial bilirubin standards can interfere with bilirubin

measurement because they may have an absorbance spectrum

different from that of human plasma.

Slope 0.5 - 1.5

Offset ± 100

Continued on next page

4-6 

Page 103: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 103/234

 ABL700 Series Reference Manual 4. User-Defined Corrections

Correction Factors for Oximetry Parameters and Bilirubin,Continued

 

 FO2Hb and

 FHHbThe units for F O

2Hb and F HHb are [Fraction].

After the user-defined corrections of the parameters sO2, F COHb and F MetHb

have been carried out, F O2Hb and F HHb are automatically calculated using the

formulae stated below, since the sum of the fractions F COHb, F MetHb, F O2Hb

and F HHb as defined must be equal to 1.0:

 FO Hb:2

F O2Hb = (1 − F COHb − F MetHb) × sO2

 

 FHHb:

F HHb = (1 − F COHb − F MetHb) × (1 − sO2)

4-7

Page 104: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 104/234

4. User-Defined Corrections ABL700 Series Reference Manual 

Electrolyte and Metaboli te Parameters

Introduction This topic describes user-defined corrections for the electrolyte and metabolite

 parameters.

Preparatory

Action

Prior to entering corrections for the electrolyte and metabolite parameters, the user

must obtain the reference values for the chosen parameters using the method

accepted in his/her laboratory.

It should be noted that in order to define corrections:

• Measurements should be taken on the ABL700 analyzer without user-defined

corrections, and on the reference analyzer.

• A series of measurements that cover the entire measuring range should be

 performed.

• The measurements should be made simultaneously on the ABL700 and reference

analyzers, and samples must be handled correctly.

• The slope and the offset must be calculated. The user may, for example, make a

linear correlation between the values measured on the ABL700 and the reference

analyzers, using the ABL700 as an independent variable.

• If the measurements are carried out on samples with values within the normal

reference range, then the user may change the offset and leave the slope

unchanged.

• The user must verify the corrections that are entered.

Details of these procedures may be found in the section Testing Against a Reference Method  in Chapter 5.

Correcting the

Slope

The following corrections to the slope are possible within the stated limits:

Parameter Slope (mmol/L)

cK +

0.750 - 1.250

c Na+ 0.850 - 1.150

cCa2+ 0.800 - 1.200

cCl− 0.850 - 1.150

cGlu 0.750 - 1.250

cLac 0.750 - 1.250

Continued on next page

4-8 

Page 105: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 105/234

 ABL700 Series Reference Manual 4. User-Defined Corrections

Electrolyte and Metaboli te Parameters, Continued

 

Correcting the

Offset

The following corrections to the offset are possible within the stated limits:

Parameter Offset (mmol/L)

cK +

± 0.3

c Na+

± 5

cCa2+ ± 0.05

cCl− ± 5

cGlu ± 0.5

cLac ± 0.5

Calculating

Correction

Constants

The correction constants are determined in mmol/L according to:

Y = A X + B

where:

X = Measured (uncorrected) parameter value

Y = Displayed (corrected) parameter value

A = Slope

B = Offset

Resetting

Corrections to

Default Values

The Radiometer default values for the electrolyte and metabolite parameters must

 be reset manually by the user to 1.000 for each parameter via the Parameters

Setup screen.

4-9

Page 106: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 106/234

 

Page 107: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 107/234

Page 108: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 108/234

Page 109: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 109/234

 ABL700 Series Reference Manual 5. Performance Characteristics

Definition of Terms and Test Condit ions

Imprecision

Parameters

Repeated measurements using one analyzer on samples assumed to be identical

will not necessarily yield identical results. The degree of variation in the results is

a measure of the precision of the analyzer.

The following table describes the parameters used to characterize precision during

the performance tests on the ABL700 Series of analyzers.

Parameter Description

S0 Repeatability

This is a standard deviation obtained from repeated

measurements within a short interval of time using:

• The same instrument and location

• The same measurement procedure

• Identical portions of the same sample

• One operator per instrument

S0 for each level is pooled for all test instruments and test

days.

SD Day-to-day variation

This is a standard deviation obtained from repeated

measurements over all test days.

Includes contributions from differences in calibration states ofthe analyzers throughout the test days.

SABL Uncertainty of bias on a random instrument

SABL is used for repeated determinations on one sample. This

standard deviation include the inter-instrument variations,

sample variations, and uncertainties from standard solutions

and reference methods. 

SX Uncertainty of bias on a random instrument for a single

measurement

Sx is a standard deviation which includes SABL, SD and S0 . 

Continued on next page

5-3

Page 110: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 110/234

5. Performance Characteristics ABL700 Series Reference Manual 

Definition of Terms and Test Conditions, Continued

 

Bias The bias of a quantity is defined as the mean difference between the measured

value on a group of test instruments and the estimated true value (as assayed by the

reference method):

Bias = Xanalyzer  − XREF.

 

The method of testing the analyzers against a reference method is described below.

Stage Description

1. A blood sample from a normal healthy adult is taken.

2. The blood sample is treated to give high and low level concentrations of

the parameter under study.

3. Simultaneous measurements of the specific parameter are taken on the

 blood sample, using the reference method and the uncorrected

analyzer.

The two sets of measurements are plotted on the same axis, as shown

in the following example:

Trueconcentration

Uncorrected

measurementstaken on ABL700

Series Analyzer 

Measurements taken by

the Reference Method

Measuredconcentration

 

This example shows how measurements at 3 different levels of a

 parameter may systematically differ using the uncorrected ABL700analyzer and the reference method.

4. A comparison of the plots from the two sets of measurements is made.

The systematic deviations of the ABL700 Series measurements from

the reference method are corrected by the following equation:

mn k X(Sample)k corr)X(Sample,   += cc  

Continued on next page

5-4 

Page 111: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 111/234

 ABL700 Series Reference Manual 5. Performance Characteristics

Definition of Terms and Test Conditions, Continued

 

Bias (continued)Stage Description

where: 

cX(Sample,corr) = Parameter value measured on analyzer

corrected for systematic deviations from the

reference method

k n and k m = Correction constants determined by com-

 parison with the parameter value measured

using the reference method

cX(Sample) = Parameter value measured on the analyzer

(uncorrected)

5. The correction constants in the above equation are determined, bringing the results from the ABL700 Series measurements in line

with the reference method results.

The measured value of the sample will deviate from the true value by

a maximum of: Bias ± 2 × SX

 

Test

MeasurementsFor the test measurements against the reference method the 195 µL capillary

measuring mode (C195) on the analyzer is used, with all the parameters enabled.

The other measuring modes are tested on the ABL725 against the C195, after the

correction constants have been determined.

Test Description

Reference To verify that the correction constants have been accurately

determined, 10 new analyzers with all parameters available are

tested in C195 mode against the reference methods.

Each parameter is tested on 3 - 6 levels over at least 3 days, with

5 repetitions on each day.

(5 new analyzers with all parameters available were tested against

the reference methods for ctBil and F HbF.)

Bias for each parameter in the C195 measuring mode against the

reference methods is determined.

Verification 6 - 10 new analyzers are tested over at least 2 days for all levels.

Bias for the given mode is calculated as difference compared with

the C195 µL mode.

Bias against the reference method is determined as follows:

Bias = bias against C195 + C195 bias against reference method.

Continued on next page

5-5

Page 112: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 112/234

5. Performance Characteristics ABL700 Series Reference Manual 

Definition of Terms and Test Conditions, Continued

 

Test

Measurements

(continued)

Test Description

Verification

(cont.)

The following parameters: sO2, F COHb, F MetHb and F O2Hb, are

measured directly against the reference built in the analyzer, and

these parameters are independent of the reference method.

Reduced

verification

6 - 10 new analyzers are used over at least 1 day for selected

levels.

Bias for the tested mode is calculated as follows:

Bias = bias against C195 + C195 bias against reference method.

Modes which are not tested are described as "N/A".

Simple

verification

6-10 analyzers are tested at one extreme level over 1 day. Bias is

not determined; bias values for the modes with similar wet section programs are used.

The measuring modes were tested as follows:

Test Analyzer/mode

Reference ABL735/25/15 C195

Verification ABL735/25/15 S195, S95, S85, C95, C55, C35 MET,

C35 OXI, Expired air

ABL730/20/10 C85, Expired air

ABL705 S85, Expired air

ABL700 S85, C55, Expired air

Reduced verification ABL730/20/10 S85

Simple verification ABL730/20/10 C55, C35 OXI

ABL705 S165, S95, C165, C95, C55, C35 MET 

Test Conditions The following test conditions are maintained:

Item Description

Blood samples The blood samples are heparinized blood samples from

healthy, voluntary donors.

The blood is prepared to obtain the different concentration

levels of each measured parameter.

Continued on next page

5-6 

Page 113: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 113/234

Page 114: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 114/234

Page 115: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 115/234

Page 116: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 116/234

5. Performance Characteristics ABL700 Series Reference Manual 

Reference Methods for the ABL700 Series, Continued

 

Overview of

Reference

Methods 

(continued) 

Parameter Reference Method

Oximetry The reference method established for the oximetry parameters uses

modified ABL520 analyzers as the field reference instruments. The

ABL520 analyzers have been validated and their performance

specifications determined according to primary reference methods.

The modified ABL520 analyzers are used in accordance with

IFCC’s recommendations for traceability of reference methods.

The reference methods used for the oximetry parameters on the

ABL520 analyzers are those presented below.

ctHb  HiCN method recommended by NCCLS [7].

sO2 Tonometry: whole blood is tonometered with a gas mixturecontaining 94.4 % O2 and 5.6 % CO2.

F HHb The standard is blood (ctHb = 13 - 15 g/dL) treated with dithionite.

F COHb Gas chromatography. The standards are carbon monoxide mixtures

with atmospheric air, whose purity is validated in accordance with

 NIST SRM 1678 (50 ppm CO in N2).

F MetHb Spectrometry, modified Evelyn-Malloy method [8].

F HbF  Alkali denaturation method [10]. Corresponds to NCCLS guideline

[11].

ctBil  Hitachi 717 wet chemistry analyzer. Uses Boeringer-Mannheim

reagency kit, DPD method [12]. The Hitachi is used as a linear

sensor and is periodically calibrated on 4 levels of NIST SRM916a

unconjugated bilirubin standard material.

5-10 

Page 117: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 117/234

 ABL700 Series Reference Manual 5. Performance Characteristics

 ABL735/30/25/20/15/10/05 Performance Test Results -Macromodes

Tested Modes The following macromodes have been tested for pH/blood gases:

Sample from… ABL735/725/715 ABL730/720/710 ABL705

Syringe 195 µL 85 µL 165 µL

Capillary 195 µL 165 µL

The following macromodes have been tested for electrolytes and metabolites:

Sample from… ABL735/725/715 ABL705

Syringe 195 µL 165 µL

Capillary 195 µL 165 µL

The following macromodes have been tested for oximetry parameters:

Sample from… ABL735/725/715 ABL730/20/10

Syringe 195 µL 85 µL

Capillary 195 µL

pHBias

ABL735/25/15 ABL730/20/10 ABL705

pH S195 C195 S85 S165 C165

7.0 0.003 0.0041 0.003 0.003 0.003

7.4 −0.002 −0.0011  N/A −0.002 −0.002

7.7 0.003 0.0033 0.003 0.003 0.003

pH S0 SD SABL SX

7.0 0.0035 0.0025 0.0063 0.0077

7.4 0.0020 0.0015 0.0080 0.0084

7.7 0.0030 0.0015 0.0104 0.0110

Continued on next page

5-11

Page 118: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 118/234

5. Performance Characteristics ABL700 Series Reference Manual 

 ABL735/30/25/20/15/10/05 Performance Test Results -Macromodes, Continued

Bias

ABL735/25/15 ABL730/20/10 ABL705

 pCO2  S195 C195 S85 S165 C165

15 −0.18 −0.08 −0.39 −0.18 −0.18

40 0.15 0.05 N/A 0.15 0.15

60 0.75 0.46 N/A 0.75 0.75

80 0.21 −0.07 0.22 0.21 0.21

150 N/A 1.51 3.00 N/A N/A

 pCO2 (mmHg)

 pCO2  S0 SD SABL SX

15 0.25 0.35 0.8 0.9

40 0.40 0.30 0.5 0.7

60 0.50 0.35 1.7 1.8

80 0.70 1.15 2.0 2.4

150 1.80 2.20 3.1 4.2

 pO2 (mmHg) Bias

ABL735/25/15 ABL730/20/10 ABL705

 pO2  S195 C195 S85 S165 C165

15 N/A 0.57 1.02 N/A N/A

50 0.37 0.33 N/A 0.37 0.37

150 −1.14 −1.39 −0.77 −1.14 −1.14

250 0.65 −0.52  N/A 0.65 0.65

530 1.75 2.91 −7.37 1.75 1.75

 pO2  S0 SD SABL SX

15 0.40 0.25 0.58 0.75

50 0.45 0.40 0.60 0.85

150 0.90 0.75 0.94 1.50

250 3 2 3.03 4.71

530 7 7 15.03 18.0

Continued on next page

5-12 

Page 119: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 119/234

 ABL700 Series Reference Manual 5. Performance Characteristics

 ABL735/30/25/20/15/10/05 Performance Test Results -Macromodes, Continued 

Bias

ABL735/25/15 ABL705 cCl–

S195 C195 S165 C165

85 1.2 1.4 1.2 1.2

105 −0.9 −0.5 −0.9 −0.9

140 0.9 1.0 0.9 0.9

 cCl–

(mmol/L)

 cCl–

S0 SD SABL SX

85 0.5 0.7 1.15 1.5

105 0.5 0.7 1.10 1.4

140 0.5 1.0 1.59 2.0

 cCa2+

(mmol/L)Bias

ABL735/25/15 ABL705

 cCa2+

S195 C195 S165 C165

0.5 0.002 0.005 0.002 0.002

1.25 −0.005 −0.008 −0.005 −0.005

2.5 0.007 0.003 0.007 0.007

 cCa2+

S0 SD SABL SX

0.5 0.008 0.007 0.010 0.015

1.25 0.008 0.006 0.011 0.015

2.5 0.010 0.010 0.034 0.037

Continued on next page

5-13

Page 120: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 120/234

5. Performance Characteristics ABL700 Series Reference Manual 

 ABL735/30/25/20/15/10/05 Performance Test Results -Macromodes, Continued 

 cK+

 (mmol/L) Bias

ABL735/25/15 ABL705

 cK+

S195 C195 S165 C165

2 −0.024 0.010 −0.024 −0.024

4 0.008 0.020 0.008 0.008

8 −0.004 0.010 −0.004 −0.004

 cK+ S0 SD SABL SX

2 0.04 0.020 0.09 0.10

4 0.04 0.025 0.10 0.12

8 0.05 0.025 0.11 0.13

 cNa+ (mmol/L)

Bias

ABL735/25/15 ABL705 cNa

+S195 C195 S165 C165

120 −0.07 0.13 −0.07 −0.07

140 −0.27 −0.22 −0.27 −0.27

180 0.17 0.07 0.17 0.17

 cNa+

S0 SD SABL SX

120 0.4 0.50 0.99 1.2

140 0.4 0.50 0.97 1.2

180 0.5 0.40 1.25 1.4

Continued on next page

5-14 

Page 121: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 121/234

 ABL700 Series Reference Manual 5. Performance Characteristics

 ABL735/30/25/20/15/10/05 Performance Test Results -Macromodes, Continued 

 cGlu (mmol/L) Bias

ABL735/25/15 ABL705

 cGlu S195 C195 S165 C165

2 0.02* 0.01 0.02 0.02

5 0.02* 0.00 0.02 0.02

15 −0.6* −0.7 −0.6 −0.6

 cGlu S0 SD SABL SX

2 0.10 0.07 0.13 0.18

5 0.10 0.08 0.20 0.24

15 0.40 0.25 0.44 0.65

 cLac (mmol/L)Bias

ABL735/25/15 ABL705 cLac S195 C195 S165 C165

0.3 −0.03* −0.03 −0.03 −0.03

2 −0.12* −0.12 −0.12 −0.12

10 −1.0* −1.1 −1.0 −1.0

 cLac S0 SD SABL SX

0.3 0.10 0.08 0.12 0.18

2 0.10 0.08 0.13 0.19

10 0.20 0.15 0.37 0.45

* Bias has been measured on the serum pool.

Continued on next page

5-15

Page 122: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 122/234

5. Performance Characteristics ABL700 Series Reference Manual 

 ABL735/30/25/20/15/10/05 Performance Test Results -Macromodes, Continued 

 ctHb  sO2 (%) Bias

(g/dL) ABL735/25/15 ABL730/20/10

S195 C195 S85

15 0 0.12 0.18 0.08

7 100 −0.08 0.03 N/A

15 100 0.22 0.26 0.09

25 100 0.90 0.82 N/A

 ctHb (g/dL)

 ctHb (g/dL)  sO2 (%) S0 SD SABL SX

15 0 0.15 0.10 0.35 0.40

7 100 0.10 0.10 0.30 0.35

15 100 0.15 0.10 0.35 0.40

25 100 0.15 0.10 0.50 0.55

Bias

 sO2 (%) ABL735/25/15 ABL730/20/10

 ctHb (g/dL)  sO2 (%) S195 C195 S85

15 0 0.00 0.05 −0.02

7 100 0.01 0.22 N/A

15 100 0.01 −0.08 0.00

25 100 0.00 −0.29  N/A

 sO2 (%)

 ctHb (g/dL)  sO2 (%) S0 SD SABL SX

15 0 0.05 0.05 0.25 0.30

7 100 0.10 0.10 0.25 0.30

15 100 0.05 0.10 0.25 0.30

25 100 0.05 0.10 0.30 0.35

Continued on next page

5-16 

Page 123: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 123/234

Page 124: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 124/234

5. Performance Characteristics ABL700 Series Reference Manual 

 ABL735/30/25/20/15/10/05 Performance Test Results -Macromodes, Continued 

Bias

 FMetHb ABL735/25 ABL730/20

 ctHb (g/dL)  sO2 (%)  FMetHb (%) S195 C195 S85

15 100 0 0.01 −0.03 0.06

15 100 20 N/A 0.10 N/A

 FMetHb (%)

 ctHb (g/dL)  sO2 (%)  FMetHb (%) S0 SD SABL SX

15 100 0 0.10 0.10 0.25 0.30

15 100 20 0.05 0.10 0.35 0.40

Bias

 FHHb ABL735/25 ABL730/20

 FHHb (%)  ctHb (g/dL) S195 C195 S85

0 15 -0.01 0.08 −0.05

 FHHb (%)

 FHHb (%)  ctHb (g/dL) S0 SD SABL SX

0 15 0.05 0.10 0.30 0.35

 FHbF (%) Adult blood:

Bias

 FHbF ABL735 ABL730

 FHbF (%)  ctHb (g/dL) S195 C195 S85

0 10 3.3 3.3 3.3

0 15 5.5 5.5 5.5

0 20 5.6 5.6 5.6

 FHbF (%)  ctHb (g/dL) sO2 (%) S0 SD SABL SX

0 10 100 4 4 5 8

0 15 100 2 3 7 8

0 20 100 2 2 10 11

NOTES: a, b. 

Continued on next page

5-18 

Page 125: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 125/234

 ABL700 Series Reference Manual 5. Performance Characteristics

 ABL735/30/25/20/15/10/05 Performance Test Results -Macromodes, Continued 

 FHbF (%)(continued)

Fetal blood:

Bias

 FHbF ABL735 ABL730

 FHbF (%)  ctHb (g/dL) S195 C195 S85

80 10 5.9 5.9 5.9

80 15 3.3 3.3 3.3

80 20 2.6 2.6 2.6

 FHbF (%)  ctHb (g/dL)  sO2 (%) S0 SD SABL SX

80 10 100 4 5 5 9

80 15 100 3 3 6 8

80 20 100 2 3 6 7

NOTES: a, b. 

Contribution to

Imprecision

Specifications

from S7770

The following corrections should be geometrically added to SABL and SX for the

analyzer's wavelength calibrated with the S7770:

Parameter Mode Level Correction

(percentage

point)

Macromode All 0ctHb

Micromode All 0

sO2  All sO2 (100 %) 0.23

F O2Hb All F O2Hb (100 %) 0.15

F COHb All F COHb (20 % and 0 %) 0.40

F HHb All F HHb (0 %) 0.23

5-19

Page 126: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 126/234

5. Performance Characteristics ABL700 Series Reference Manual 

 ABL735/30/25/20/15/10/05 Performance Test Results -Micromodes

Tested Modes The following micromodes have been tested for the pH/blood gas:

Sample from… ABL735/25/15 ABL730/20/10 ABL705

Syringe 95 µL; 85 µL 95 µL, 85 µL

Capillary 95 µL; 55 µL 85 µL; 55 µL 95 µL; 55 µL

The following micromodes have been tested for the electrolytes and metabolites:

Sample from… ABL735/25/15 ABL705

Syringe 95 µL 95 µL

Capillary 95 µL; 35 µL MET 95 µL; 35 µL MET

The following micromodes have been tested for the oximetry parameters:

Sample from… ABL735/25/15 ABL730/20/10

Syringe 95 µL; 85 µL

Capillary 95 µL; 55 µL; 35 µL OXI 85 µL; 55 µL; 35 µL OXI

Bias

ABL735/25/15pH

S95 C95 S85 C55

7.0 0.002 0.004 0.004 0.005

7.4 −0.002 −0.002 −0.002 −0.003

7.7 0.003 0.003 0.003 0.001

pH

Bias

ABL730/20/10 ABL705pH

C85 C55 S95 C95 S85 C55

7.0 0.003 0.005 0.002 0.004 0.005 0.003

7.4 0.000 −0.003 −0.002 −0.002 0.000 −0.001

7.7 0.005 0.001 0.003 0.003 0.005 0.004

Continued on next page

5-20 

Page 127: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 127/234

 ABL700 Series Reference Manual 5. Performance Characteristics

 ABL735/30/25/20/15/10/05 Performance Test Results -Micromodes, Continued 

pH S0 SD SABL SX

7.0 0.0050 0.0040 0.0077 0.0100

7.4 0.0030 0.0023 0.0082 0.0090

7.7 0.0050 0.0023 0.0118 0.0130

pH (continued) 

Bias

ABL735/25/15 pCO2 

S95 C95 S85 C5515 −0.01 −0.56 −0.08 −1.05

40 0.33 0.04 0.04 −0.04

60 1.09 0.41 0.38 0.71

80 0.69 −0.38 −0.23 −0.31

150 3.34 1.28 1.28 0.21

 pCO2 (mmHg)

Bias

ABL730/20/10 ABL705 pCO2 

C85 C55 S95 C95 S85 C55

15 −0.27 −1.05 −0.20 −0.56 0.04 −0.79

40 −0.18 −0.04 −0.08 0.04 0.02 −0.06

60 N/A 0.71 0.51 0.41 0.47 0.33

80 −0.48 −0.31 −0.05 −0.38 −0.26 −0.48

150 0.66 0.21 2.04 1.28 0.24 0.44

Continued on next page

5-21

Page 128: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 128/234

5. Performance Characteristics ABL700 Series Reference Manual 

 ABL735/30/25/20/15/10/05 Performance Test Results -Micromodes, Continued 

 pCO2  S0 SD SABL SX

15 0.4 0.6 1.1 1.4

40 0.6 0.45 0.7 1.1

60 0.75 0.75 2.5 2.7

80 1.05 1.3 3.3 3.6

150 2.7 3.0 5.1 6.3

 pCO2 (mmHg)(continued) 

BiasABL735/25/15 pO2 

S95 C95 S85 C55

15 0.35 0.65 0.55 1.16

50 0.16 0.86 0.36 −1.39

150 −1.14 −0.67 −0.58 −1.45

250 0.63 −0.92 −0.30 −0.32

530 13.25 −5.51 4.38 2.94

 pO2 (mmHg)

Bias

ABL730/20/10 ABL705 pO2 

C85 C55 S95 C95 S85 C55

15 0.85 1.16 0.35 0.65 0.25 1.26

50 N/A −1.39 0.16 0.86 −0.14 −1.10

150 −0.67 −1.45 −1.14 −0.67 −1.79 0.06

250 −2.25 −0.32 0.63 −0.92 −0.81 −1.18

530 −10.66 2.94 13.25 −5.51 9.43 −4.42

Continued on next page

5-22 

Page 129: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 129/234

 ABL700 Series Reference Manual 5. Performance Characteristics

 ABL735/30/25/20/15/10/05 Performance Test Results -Micromodes, Continued 

 pO2  S0 SD SABL SX

15 0.7 0.4 1.50 1.71

50 0.7 0.6 1.05 1.40

150 1.4 1.1 1.60 2.40

250 4.5 3.0 4.44 7.00

530 10.5 10.5 14.03 20.5

 pO2 (mmHg)(continued) 

 cCl–(mmol/L)

Bias

ABL735/25/15 ABL705 cCl–

S95 C95 S95 C95

85 1.1 1.5 1.1 1.5

105 −1.0 −0.5 −1.0 −0.5

140 0.7 1.0 0.7 1.0

 cCl– S0 SD SABL SX

85 0.8 1.1 1.55 2.1

105 0.8 1.1 1.44 2.0

140 0.8 1.5 2.10 2.7

 cCa2+ (mmol/L)Bias

ABL735/25/15 ABL705 cCa2+

  S95 C95 S95 C95

0.5 0.001 0.005 0.001 0.005

1.25 −0.011 −0.007 −0.011 −0.0072.5 −0.004 0.003 −0.004 0.003

 cCa2+

S0 SD SABL SX

0.5 0.012 0.011 0.020 0.026

1.25 0.012 0.011 0.015 0.023

2.5 0.015 0.023 0.041 0.050

Continued on next page

5-23

Page 130: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 130/234

Page 131: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 131/234

 ABL700 Series Reference Manual 5. Performance Characteristics

 ABL735/30/25/20/15/10/05 Performance Test Results -Micromodes, Continued 

Bias cGlu (mmol/L)

ABL735/25/15 ABL705 cGlu

S95 C95 C35 S95 C95 C35

2 0.01 N/A 0.01 0.01 N/A 0.01

5 0.01 N/A −0.04 0.01 N/A −0.04

15 −0.7  N/A −0.7 −0.7  N/A −0.7

 cGlu S0 SD SABL SX

2 0.15 0.01 0.13 0.2

5 0.15 0.01 0.27 0.3

15 0.60 0.38 0.59 1.0

Bias cLac (mmol/L)

ABL735/25/15 ABL705 cLac

S95 C95 C35 S95 C95 C35

0.3 N/A −0.03 −0.03  N/A −0.03−0.03

2 N/A N/A−0.10 −0.17 −0.10 −0.17

10 −1.0  N/A −1.0 −1.0  N/A −1.0

 cLac S0 SD SABL SX

0.3 0.15 0.01 0.16 0.22

2 0.15 0.01 0.17 0.23

10 0.30 0.23 0.60 0.71

Continued on next page

5-25

Page 132: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 132/234

5. Performance Characteristics ABL700 Series Reference Manual 

 ABL735/30/25/20/15/10/05 Performance Test Results -Micromodes, Continued 

Bias ctHb

ABL735/25/15 ABL730/20/10

 ctHb

(g/dL)

 sO2 

(%)

S95 C95 S85 C55 C35 C85 C55 C35

15 0 0.26 −0.08 0.20 0.08 0.10 N/A 0.08 0.10

7 100 −0.09 0.05 N/A 0.14 0.09 N/A 0.14 0.09

15 100 0.26 0.08 0.25 0.23 0.18 −0.07 0.23 0.18

25 100 0.64 −0.32  N/A −0.42 −0.02  N/A −0.42 −0.02

 ctHb (g/dL)

 ctHb (g/dL)  sO2 (%) S0 SD SABL SX

15 0 0.20 0.10 0.45 0.55

7 100 0.20 0.10 0.35 0.45

15 100 0.20 0.10 0.50 0.55

25 100 0.30 0.20 0.60 0.70

Bias

 sO2  ABL735/25/15 ABL730/20/10

 ctHb

(g/dL)

 sO2 

(%)

S95 C95 S85 C55 C35 C85 C55 C35

15 0 −0.04 −0.02 -0.02 -0.03 -0.03 N/A −0.03 −0.03

7 100 −0.10 −0.19  N/A -0.22 -0.10 N/A −0.22 −0.10

15 100 −0.10 −0.16 0.00 -0.16 -0.10 -0.05 −0.16 −0.10

25 100 −0.10 −0.17  N/A -0.14 -0.09 N/A −0.14 −0.09

 sO2 (%)

 ctHb (g/dL)  sO2 (%) S0 SD SABL SX

15 0 0.05 0.05 0.25 0.30

7 100 0.10 0.10 0.25 0.30

15 100 0.05 0.10 0.25 0.30

25 100 0.05 0.10 0.30 0.35

Continued on next page

5-26 

Page 133: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 133/234

 ABL700 Series Reference Manual 5. Performance Characteristics

 ABL735/30/25/20/15/10/05 Performance Test Results -Micromodes, Continued 

Bias FO2Hb

ABL735/25

 ctHb (g/dL)  FO2Hb (%) S95 C95 S85 C55 C35

15 0 −0.04 −0.02 −0.02 −0.03 −0.03

7 100 −0.47 −0.39  N/A −0.48 −0.18

15 100 −0.33 −0.40 −0.15 −0.39 −0.31

25 100 −0.29 −0.46  N/A −0.36 −0.33

 FO2Hb (%)

Bias FO2Hb

ABL730/20

 ctHb (g/dL)  FO2Hb (%) C85 C55 C35

15 0 N/A −0.03 −0.03

7 100 N/A −0.48 −0.18

15 100 −0.16 −0.39 −0.31

25 100 N/A −0.36 −0.33

 ctHb (g/dL)  FO2Hb (%) S0 SD SABL SX

15 0 0.05 0.05 0.25 0.30

7 100 0.25 0.20 0.50 0.60

15 100 0.15 0.15 0.45 0.50

25 100 0.10 0.10 0.40 0.45

Bias FCOHb

ABL735/25

 ctHb

(g/dL)

 sO2 

(%)

 FCOHb

(%)

S95 C95 S85 C55 C35

15 100 0 0.10 0.10 0.12 0.08 0.08

7 100 20 N/A N/A N/A N/A N/A

15 100 20 N/A N/A N/A N/A N/A

25 100 20 N/A N/A N/A N/A N/A

 FCOHb (%)

Continued on next page

5-27

Page 134: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 134/234

Page 135: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 135/234

 ABL700 Series Reference Manual 5. Performance Characteristics

 ABL735/30/25/20/15/10/05 Performance Test Results -Micromodes, Continued 

 ctHb (g/dL) sO2 (%)  FMetHb(%) S0 SD SABL SX

15 100 0 0.10 0.10 0.25 0.30

15 100 20 0.05 0.10 0.35 0.40

 FMetHb (%)(continued) 

Bias FHHb

ABL735/25 ABL730/20

 ctHb

(g/dL)

 FHHb

(%)

S95 C95 S85 C55 C35 C85 C55 C35

15 0 0.09 N/A N/A 0.15 0.10 N/A N/A 0.10

 FHHb (%)

 ctHb (g/dL)  FHHb (%) S0 SD SABL SX

15 0 0.05 0.10 0.30 0.35

Adult blood: FHbF (%)

Bias FHbF

ABL735 ABL730

 ctHb

(g/dL)

 FHbF

(%)

S95 C95 S85 C55 C35 C85 C55 C35

10 0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

15 0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5

20 0 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6

 ctHb (g/dL)  FHbF (%)  sO2 (%) S0 SD SABL SX

10 4 4 5 8

15 2 3 5 7

20

0 100

2 2 10 11

NOTES: a, b.

Continued on next page

5-29

Page 136: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 136/234

Page 137: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 137/234

Page 138: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 138/234

5. Performance Characteristics ABL700 Series Reference Manual 

 ABL700 Performance Test Results, Continued 

 pCO2  S0 SD SABL SX

15 0.40 0.53 0.88 1.10

40 0.60 0.45 0.51 0.91

60 0.75 0.45 0.82 1.20

80 1.10 0.60 0.71 1.44

150 1.50 1.60 3.23 3.91

 pCO2 (mmHg)

(continued)

 pO2 (mmHg)Bias pO2 

S85 C55

15 0.92 1.26

50 0.13 −1.10

150 −1.31 0.06

250 0.63 −1.18

530 5.72 −4.42

 pO2  S0 SD SABL SX

15 0.7 0.4 1.14 1.4

50 0.7 0.6 0.87 1.3

150 1.4 1.1 1.30 2.2

250 4.5 3.0 4.44 7.0

530 10.5 10.5 14.0 20.5

5-32 

Page 139: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 139/234

 ABL700 Series Reference Manual 5. Performance Characteristics

 ABL735/30/25/20/15/10/05/00 Expired Air Mode

 NOTE:  The solutions used in the performance tests are those recommended by

 Radiometer. Performances using other solutions cannot be verified.

The performance tests are performed under conditions where the analyzers are not

influenced by electromagnetic fields 

Bias pCO2 

ABL735/30/25/20/15/10/05/00

15 0.2

40 −0.2

60 −0.4

80 −0.2

150 1.6

 pCO2 (mmHg)

 pCO2  S0 SD SABL SX

15 0.25 0.35 0.59 0.73

40 0.40 0.30 0.43 0.66

60 0.50 0.35 0.79 1.00

80 0.70 0.40 1.10 1.44

150 1.00 1.10 3.07 3.41

Bias pO2 

ABL735/30/25/20/15/10/05/00

15 0.8

40 0.4

130 −0.4

230 −0.9

570 4.2

 pO2 (mmHg)

Continued on next page

5-33

Page 140: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 140/234

5. Performance Characteristics ABL700 Series Reference Manual 

 ABL735/30/25/20/15/10/05/00 Expired Air Mode, Continued 

 pO2  S0 SD SABL SX

15 0.3 0.3 1.2 1.3

40 0.3 0.3 1.0 1.1

130 0.3 0.3 0.7 0.8

230 2 2 3 4

570 5 5 13 15

 pO2 (mmHg)

(continued) 

5-34 

Page 141: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 141/234

Page 142: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 142/234

5. Performance Characteristics ABL700 Series Reference Manual 

 ABL735/30 Performance Test Results - Bi lirubin

Field Test

Results

The ABL735/30 performance specifications for bilirubin were made as a field test

the purpose of which was to optimize bilirubin algorithm for neonatal blood

samples.

For neonatal use: The bilirubin method has been evaluated on whole blood

and plasma. The allowed analytical error is ± 10 % to

satisfy average clinical requirements for bilirubin

measurement [1,2,3,4,5]. This requirement is fulfilled for

 plasma. For whole blood the analytical error is slightly

higher. The clinicians and clinical chemists have evaluated

 bilirubin measurement on whole blood, the conclusion

 being that the ABL735/30 has satisfactory performance

and can substitute other bilirubin measuring methods.

For adult use:  Adult samples within reference range: 

The uncertainty in the bilirubin measurement on whole

 blood can, in some cases, exceed the level required to

measure normal bilirubin levels for children older than 3

months and adults (bilirubin reference range 4-22 µmol/L).

In these cases it is recommended to measure bilirubin on

 plasma or serum.

 Adult samples with an increased bilirubin level: 

Adult field tests were typically performed on samples with

80 % of the total bilirubin in the conjugated form. For these

highly conjugated samples the field tests showed a negative

 bias of 7 % on both plasma and whole blood samples.

The patient samples represented typical variations in ctBil, ctHb, sO2, pH and

MCHC values.

A Hitachi calibrated with NIST SRM 916a standards was used as a reference. ctBil

was measured in µmol/L. Each field test place had its own ABL735.

Continued on next page

5-36 

Page 143: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 143/234

Page 144: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 144/234

Page 145: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 145/234

 ABL700 Series Reference Manual 5. Performance Characteristics

 ABL735/30 Performance Test Results - Bi lirubin, Continued 

Imprecision

Parameters

The following parameters are used to describe performance of the ABL735/30

analyzers for bilirubin measurements.

S0: Repeatability. Measurement short time interval variation on the same

sample.

SD: Day-to-day variation

ST: Patient-to-patient variation

SI: ABL-to-ABL instrumental variation

SABL: ABL uncertainty. Variation including ST, SI and reference uncertainty

SX: Reproducibility. Total variation including S0, SD and SABL

 

The above field test regression statistics Syx include variations from S0, SD and ST.

Performance

Test Results for

Bilirubin

Macromodes: 195 µL and 85 µL from syringe and capillary: 

 ctBil

(µmol/L)

 ctHb

(g/dL)

 sO2 (%) S0 SD ST SI SABL SX

≈0 Plasma 1.1 1.4 2.2 0.4 2.3 2.9

≈0 10 100 1.9 3.1 4.0 3.2 5.1 6.3

≈0 15 100 2.3 2.9 7.4 5.5 9.2 9.9

≈0 20 100 3.4 2.6 10.9 13.0 17.0 17.5

≈200 Plasma 1.3 1.7 3.1 4.7 7.4 7.7

≈200 10 100 2.4 4.4 5.8 6.6 10.1 11.3

≈200 15 100 2.6 3.7 8.5 9.3 13.6 14.4

≈200 20 100 4.2 5.0 12.1 15.4 20.4 21.4

≈400 Plasma 1.7 2.5 4.8 9.3 12.0 12.3

≈400 10 100 3.5 6.8 9.3 12.0 16.5 18.2

≈400 15 100 3.4 5.3 11.4 15.9 20.8 21.7

≈400 20 100 6.0 8.8 15.0 21.0 27.1 29.2

Notes: a, b, c

Continued on next page

5-39

Page 146: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 146/234

5. Performance Characteristics ABL700 Series Reference Manual 

 ABL735/30 Performance Test Results - Bi lirubin, Continued 

Performance

Test Results for

Bilirubin

(continued) 

Micromodes: 95 µL (syringe and capillary), 55 µL (capillary) and 35 µL

(capillary): 

 ctBil

mol/L)

 ctHb

(g/dL)

 sO2 

(%)

S0 SD ST SI SABL SX

≈0 Plasma 1.1 1.4 2.2 0.4 2.3 2.9

≈0 10 100 1.9 3.1 4.0 3.2 5.1 6.3

≈0 15 100 2.3 2.9 7.4 5.5 9.2 9.9

≈0 20 100 3.4 2.6 10.9 13.0 17.0 17.5

≈200 Plasma 2.0 1.7 2.9 3.9 6.8 7.3

≈200 10 100 3.7 3.9 6.0 5.6 9.6 11.0

≈200 15 100 4.4 4.2 9.3 7.9 13.2 14.6

≈200 20 100 5.6 5.9 13.0 16.3 21.6 23.1

≈400 Plasma 3.5 2.5 4.3 7.8 10.6 11.4

≈400 10 100 6.7 5.7 9.9 9.6 15.2 17.6

≈400 15 100 7.9 6.7 13.5 12.5 19.7 22.3

≈400 20 100 9.5 10.9 17.8 23.6 30.7 33.9

Notes: a, b, c

NOTES:

a. Adult/fetal blood, pH = 7.4 ± 0.1, normal MCHC and albumin variation,

Spiked with unconjugated bilirubin.

 b. ctBil specification at level 200 µmol/L is interpolated from the measured

specifications at 0 and 400 µmol/L.

c. The performance specifications apply to measurements performed using

CLINITUBES with clot catchers and mixing wire from Radiometer.

References 1. Fraser CG. The application of theoretical goals based on biological variation

data in proficiency testing. Arch Pathol Lab Med 1988; 112: 402-15.

2. Ehrmeyer SS, Laessig RH, Leinweber JE, Oryall JJ. 1990 Medicare/CLIA

final rules for proficiency testing: minimum intralaboratory performance

characteristics (CV and bias) needed to pass. Clin Chem 1990; 36, 10: 1736-

40.

Continued on next page

5-40 

Page 147: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 147/234

 ABL700 Series Reference Manual 5. Performance Characteristics

 ABL735/30 Performance Test Results - Bi lirubin, Continued 

References

(continued) 

3. Fraser CG, Petersen PH, Ricos C, Haeckel R. Proposed quality specifications

for the imprecision and inaccuracy of analytical systems for clinical chemistry.

Eur J CLin Chem Clin Biochem 1992; 30: 311-17.

4.  Westgard JO, Seehafer JJ, Barry PL. Allowable imprecision for laboratory test

 based on clinical and analytical test outcome criteria. Clin Chem 1994; 40,

10: 1909-14.

5. Vanderline RE, Goodwine J, Koch D, Scheer D, Steindel S, Cembrowski G.

Guidelines for providing quality stat laboratory services. 1987 Laboratory

Quality Assurance Commitee.

5-41

Page 148: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 148/234

5. Performance Characteristics ABL700 Series Reference Manual 

Interference Tests

Introduction This section gives an outline of the interfering substances and the results of

interference tests on the ABL700 series analyzers.

pH/Blood Gas The following table gives the substances against which the pH and blood gas

electrodes (only pO2 electrode) were tested for interference, and the results of those

tests:

Substance Test Conc. Interference on pO2 Electrode

Halothane 3 % 5 % increased sensitivity

Intralipid (20 % solution) in a concentration greater than 4 % (the final Intralipid

level being 0.8 %) will give interference on pH measurements.

Electrolytes The following interference results are found on the electrolyte electrodes:

Interference on… 

Substance Test Conc.  cK+ 

(4 mmol/L

level) 

 cNa+

(150 mmol/L

level) 

 cCa2+

 (1.25 mmol/L

level) 

 cCl 

(110 mmol/L

level) 

Li+ 4 mmol/L 0 0 0

K +

12 mmol/L −1 −0.01

 Na

+

100 - 180mmol/L 0.1 to −0.1 

 NH4+ 1 mmol/L 0 0

Ca2+

5 mmol/L 0

Mg2+

5 mmol/L 0 0 0.05

Br − 10 mmol/L 41

F− 1 mmol/L 0

I− 3.0 mmol/L 30-90 mmol/L

ClO4

 – 

1.5 mmol/L 8-30 mmol/LHCO3

 – 25-50 mmol/L 0.1 mmol/L Cl−

 per mmol/LHCO3

 – 

Lactate 10 mmol/L 0

Acetyl-

salicylic acid

3.0 mmol/L 2

Continued on next page

5-42 

Page 149: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 149/234

 ABL700 Series Reference Manual 5. Performance Characteristics

Interference Tests, Continued 

Electrolytes 

(continued) Interference on… 

Substance Test Conc.  cK+ 

(4 mmol/L

level) 

 cNa+

(150

mmol/L

level) 

 cCa2+

 (1.25 mmol/L

level) 

 cCl 

(110 mmol/L

level) 

Ascorbic

acid

1.0

mmol/L

0

 pH ≤ 7.2 7.2 0 0 0.01 −1

 pH ≥ 7.6 7.6 0 0 −0.01 1

Sulphide will give erroneously high cCl− results.

Metabolites The following table gives the substances against which the metabolite electrodes

(Glucose, Lactate) were tested for interference, and the results of those tests:

Interference on …

Substance Test Conc.

(mmol/L)

 cGlucose (mmol/L)

(4mmol/L level) 

 cLactate (mmol/L)

(1.5 mmol/L level) 

Acetoacetic acid 2 <⎜0.1⎜  <⎜0.1⎜ 

Acetylsalicylic acid 3 <⎜0.1⎜  <⎜0.1⎜ 

Ascorbic acid 2 <⎜0.1⎜  <⎜0.1⎜ 

Bilirubin (conjugated) 0.46 <⎜0.1⎜  <⎜0.1⎜ 

Bilirubin (unconjugated) 0.34 <⎜0.1⎜  <⎜0.1⎜ 

Chlorpromazine HCl 0.2 <⎜0.1⎜  <⎜0.1⎜ 

Citrate 50 −0.37 0.19

Creatinine 3 <⎜0.1⎜  <⎜0.1⎜ 

D-glucose 67 <⎜0.1⎜ 

Dopamine HCl 1.0 <⎜0.1⎜  <⎜0.1⎜ EDTA 3 <⎜0.1⎜  <⎜0.1⎜ 

Ethanol 79 <⎜0.1⎜  <⎜0.1⎜ 

Fluoride 50 −0.36 <⎜0.1⎜ 

Galactose 3.3 up to 1.88*

Glucosamine 2 up to 1.06*

Continued on next page

5-43

Page 150: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 150/234

Page 151: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 151/234

Page 152: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 152/234

5. Performance Characteristics ABL700 Series Reference Manual 

Interference Tests, Continued

The process of HbF correction introduces additional noise compared to measure-

ment on adult samples. The following tables list the extra contribution which must

 be added geometrically to the imprecision specifications for adult samples in order

to obtain the imprecision specifications for fetal samples (also for adult samples if

function “Correction for HbF levels less than 20 %” is activated).

Contribution to

Imprecision

Specifications

from HbF

Correction

S S S  fetal adult HbF = +2 2 ; geometrical addition of imprecision

where Sfetal is the calculated fetal imprecision; Sadult is the corresponding adult

imprecision; SHbF  is the extra contribution from HbF correction which is listed in

the following tables.

HbF correction contribution to 10 g/dL SAT100 fetal sample:

S0 SD SABL SX

sO2 % 0.15 0.20 0.19 0.31

F HHb % 0.14 0.19 0.19 0.30

F O2Hb %  0.01 0.01 0.01 0.01

F COHb %  0.09 0.13 0.12 0.20

F MetHb %  0.05 0.06 0.06 0.10

HbF correction contribution to 15 g/dL SAT100 fetal sample:

S0 SD SABL SX

sO2 % 0.09 0.12 0.29 0.33

F HHb % 0.09 0.11 0.28 0.32

F O2Hb %  0.00 0.00 0.01 0.01

F COHb %  0.06 0.07 0.18 0.21

F MetHb %  0.03 0.04 0.09 0.11

HbF correction contribution to 20 g/dL SAT100 fetal sample:

S0 SD SABL SX

sO2 % 0.09 0.12 0.20 0.25

F HHb % 0.09 0.11 0.19 0.25

F O2Hb %  0.00 0.00 0.01 0.01

F COHb %  0.06 0.07 0.13 0.16

F MetHb %  0.03 0.04 0.06 0.08

Continued on next page

5-46 

Page 153: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 153/234

 ABL700 Series Reference Manual 5. Performance Characteristics

Interference Tests, Continued 

F HbF is sensitive to pH deviations from the nominal value of pH = 7.4. If pH is

converted into cH+ (hydrogen ion concentration), the relationship between the

changes in cH+ and F HbF is linear as seen from the following equation:

∆F HbF = −0.48 %/(nmol/L) × (cH+ − 40 nmol/L)

 FHbF

Sensitivity for

pH Changes 

 ctBil Sensitivity

for MCHCVariations

where pH = 7.4 corresponds to cH+ = 40 nmol/L.

 EXAMPLE:  pH = 7.25 corresponds to cH+ = 56 nmol/L. Then:

∆F HbF = −0.48 × (56 − 40) = −7.7 %.

MCHC (Mean Corpuscular Hemoglobin Concentration) is used to estimate

hematocrit, Hct, which is used in the ctBil measurement. MCHC is an average Hbconcentration in the red blood cell (RBC). If the RBC volume decreases, MCHC

increases. If a RBC has iron deficit, MCHC decreases.

Hct is determined from ctHb as follows:

HcttHb

MCHC=

A standard value of 332 g/L is assumed for MCHC which gives

Hct = ctHb x 0.0301 if the unit for ctHb is g/dL.

MCHC can, however, deviate from this standard value as illustrated in the

following table (see the next page).Erythrocytometric values given for “apparently healthy” white and black subjects

of different ages are taken from: “Geigy Scientific Tables, Physical Chemistry,

Composition of Blood, Hematology, Somametric Data”, CIBA-GEIGY, 1984; 3,

207.

Continued on next page

5-47

Page 154: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 154/234

Page 155: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 155/234

 ABL700 Series Reference Manual 5. Performance Characteristics

Interference Tests, Continued 

 ctBil Sensitivity

for MCHC

Variations 

(continued) 

∆c

c

tBil

tBil

0.58

1 0 350

= −

  × −

= +

.

.

58

180 071 And ∆ctBil = 0.071 x 400 = 28 µmol/L.

If the reference value for Hct is known, it is possible to correct the displayed ctBil

value, using the following equation:

c cc

tBil(corrected) tBil(displayedtHb(displayed)

Hct(reference)= ×

  − ×−

).1 0 0301

ctHb is measured in g/dL.

ctBil is slightly sensitive to pH deviations from the nominal value of pH = 7.4. ctBil Sensitivity

for pH ChangesThe following table shows the changes in ∆ctBil compared to the value at pH =

7.4.Sample Type  ctHb

g/dL

Nominal

ctBil

µmol/L

ctBil

(7.4→7.1)

µ

mol/L

ctBil

(7.4→7.9)

µ

mol/L

Adult/fetal plasma 0 0 3 0

Adult blood, sO2 = 100 % 15 0 0 −5

Fetal blood, sO2 = 100 % 15 0 −13 4

Adult/fetal plasma spiked with

unconjugated bilirubin

0 400 −2 −1

Adult/fetal plasma spiked with

conjugated bilirubin

0 400 9 −11

Adult blood spiked with un-

conjugated bilirubin, sO2 = 100 %

15 400 10 −26

Fetal blood spiked with un-

conjugated bilirubin, sO2 = 100 %

15 400 −4 −16

Adult blood spiked with conjugated

 bilirubin, sO2 = 100 %

15 400 14 −35

Fetal blood spiked with conjugated

 bilirubin, sO2 = 100 %

15 400 0 −26

5-49

Page 156: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 156/234

5. Performance Characteristics ABL700 Series Reference Manual 

References

List of

References

1. Kristensen HB, Salomon A, Kokholm G. International pH scales and

certification of pH.

2. Definition of pH scales, standard reference values, measurement of pH and

related terminology (Recommendations 1994). Pure and Appl Chem 1985;

57, 3: 531 - 42.

3. Burnett RW, Covington AK, Mas AHJ, Müller-Plathe O et al. J Clin Chem

Clin Biochem 1989; 27: 403 - 08.

4. Standardization of sodium and potassium ion-selective electrode systems

to the flame photometric method. Approved Standard, NCCLS Publication

C29A. Villanova, Pa,: NCCLS, 1995.

5. IFCC reference methods and materials for measurement pH, gases and

electrolytes in blood. Scand J Clin Lab Invest 1993; 53, Suppl 214: 84 -

94.

6. Glucose. NCCLS Publication RS1-A. Villanova, Pa: NCCLS, 1989.

7. Reference and selected procedures for the quantitative determination of

hemoglobin in blood. 2nd ed, Approved Satndard, NCCLS Publication

H15-2A. Villanova, Pa: NCCLS, 1994.

8. Evelyn K, Malloy H. Microdetermination of oxyhemoglobin,

methemoglobin and sulfhemoglobin in a single sample of blood.

Biological Chem 1938; 126: 655 - 62.

9. Evaluation of precision performance of clinical chemistry devices. NCCLS

Publication EP2-T, 2nd ed. Villanova, Pa: NCCLS, 1979; 2, 19: 555 - 98.10. Kristoffersen K. An improved method for the estimation of small

quantities of alkali-resistant hemoglobin in blood. Scand J Clin Lab Invest

1961; 13: 402.

11. Quantitative measurement of fetal hemoglobin using the alkali

denaturation method. Approved Guideline. NCCLS Publication H13-A

1989; 9, 18.

12. Wahlefeld AW et al. Bile pigments: Technical aspects, modification of

Malloy-Evelyn method for a simple, reliable determination of total

 bilirubin in serum. Scand J Clin Lab Invest 1972; 29, Suppl 126: Hitach,

Abstr 11.12.

5-50 

Page 157: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 157/234

 ABL700 Series Reference Manual 6. Parameters

6-1

6. 6. Parameters

This chapter defines all the measured, input, and derived parameters available with

the ABL700 Series analyzer. It gives the symbols, and units for each of the

 parameters, together with the equations used in deriving the parameters. It lists the

suggested reference ranges for the measured parameters.

This chapter contains the following topics.

General Information......................................................................................... 6-2

Acid-base Parameters....................................................................................... 6-6

Oximetry Parameters........................................................................................ 6-8

Oxygen Parameters .......................................................................................... 6-9

Bilirubin ........................................................................................................... 6-13

Electrolyte Parameters ..................................................................................... 6-14

Metabolite Parameters...................................................................................... 6-15

Units and Ranges for Measured Parameters .................................................... 6-16

Units and Ranges for Input Parameters............................................................ 6-19

Units for Derived Parameters........................................................................... 6-20

List of Equations .............................................................................................. 6-25

Oxyhemoglobin Dissociation Curve (ODC).................................................... 6-41

Conversion of Units ......................................................................................... 6-46

Default Values.................................................................................................. 6-48

Altitude Correction .......................................................................................... 6-49

References........................................................................................................ 6-50

Introduction

Contents

Page 158: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 158/234

6. Parameters ABL700 Series Reference Manual 

6-2 

General Information

The Deep Picture developed by Radiometer [1], expands traditional pH and blood

gas analysis by evaluating the capability of arterial blood to carry sufficient oxygen

to tissues and to release it. It simplifies interpretation by dividing the process into

steps:

Step Description

Oxygen

Uptake

Oxygen uptake in the lungs indicates whether the pulmonary gas

exchange is efficient enough to oxygenate arterial blood.

The uptake of oxygen in the lungs can be described by parameters

in combination, primarily the arterial oxygen tension ( pO2(a)),

fraction of O2 in dry inspired air ( F O2(I)), and shunt fraction of

 perfused blood (Qs

· /Q

·  t)

However other parameters may also be used, such as the

difference in alveolar air and arterial blood oxygen tension

( pO2(A-a)).

Oxygen

Transport

Oxygen transport reveals whether arterial blood contains sufficient

oxygen.

The oxygen concentration of arterial blood (ctO2(a)) also termed

oxygen content is determined by the concentration of total

hemoglobin (ctHb(a)), the fraction of oxygenated hemoglobin

(F O2Hb(a)), and the arterial oxygen tension ( pO2(a)).

Other parameters which should be known are the oxygen saturation

(sO2 (a)) and the fractions of dyshemoglobins (F COHb(a) andF MetHb(a)).

Oxygen

Release

Oxygen release describes the ability of arterial blood to release

oxygen to the tissues.

The release of oxygen from capillaries to tissues is determined by

the oxygen tension gradient between the two. This release of

oxygen is also influenced by the hemoglobin-oxygen affinity,

which is indicated by the oxygen tension at 50 % saturation,  p50.

The symbols for the parameters are based on the principles described by Wandrup [2].

When temperature symbols are not stated, the temperature is assumed to be 37 oC.

Each symbol consists of three parts, described below: 

Part Description Examples

Quantity  A symbol in italics

describing the quantity

 p for pressure

c for concentration

F  for fraction

V  for volume

Continued on next page

The Deep

PictureTM

 

Symbols

Page 159: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 159/234

Page 160: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 160/234

6. Parameters ABL700 Series Reference Manual 

6-4 

General Information, Continued 

User-defined critical limits can also be entered into the analyzer software. Refer to

Chapter 5, Reference Ranges and Critical Limits in the Operator’s Manual. 

Derived parameters are calculated according to the equations stated.

If… Then…

the required measured or input

values are unknown

default values are used, unless a measured

 parameter does not have a value or is outside

the measuring range.

all values are known the derived parameter is designated calculated  

and a ‘c’ is added to the result.

a default value is used the derived parameter is designated estimated  

and an ‘e’ is added to the result.

If one or more default values have been used in the calculation, the result may

deviate significantly from the true value. The deviation on “estimated” oxygen status

 parameters may become particularly significant if default values are used instead of

measured blood oximetry data.

In some cases however, the default value is not accepted as the input for the

calculation. This is because the actual values of the missing parameter may deviate

significantly from the default value, thus making the estimation clinically

inappropriate. If sO2 cannot be measured due to severe errors, it will be calculated.

Some of the listed parameters are measurable, depending on the analyzer

configuration. In these cases the equation given only applies if that parameter is

not  directly measured by the analyzer.

Unless otherwise stated, a parameter will be calculated or estimated irrespective of

the choice in the Patient Identification screen: ‘Arterial’, ‘Capillary’, ‘Venous’,

‘Mixed venous’, or ‘Not specified’. Some parameters however are defined for

arterial samples only; they will be calculated only for sample types entered as

‘Arterial’ or ‘Capillary’.

The symbol for system (blood (B) or plasma (P)) is not stated in the equations unless

it is important for the calculation.

The default values used in the ABL700 analyzer are listed at the end of this chapter

in the section Default Values Used .

All equations are based on SI units. If 'T' for patient temperature is not stated, the

calculation is based on a temperature of 37.0 °C.

The following SI units are used:

concentration in mmol/L

temperature in °C

Continued on next page

Critical Limits

Derived

Parameters

Measurable

Parameters

Sample Type

Default Values

Equations

Page 161: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 161/234

 ABL700 Series Reference Manual 6. Parameters

6-5

General Information, Continued 

 pressure in kPa

fractions (not %)

The following symbols are used in the equations:

log(x) = log10(x)

ln(x) = loge(x)

Equations

(continued) 

Page 162: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 162/234

Page 163: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 163/234

Page 164: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 164/234

6. Parameters ABL700 Series Reference Manual 

6-8 

Oximetry Parameters

All oximetry parameters are listed below. In the Type column the following

symbols are used:

• ms for measured parameters

• dv for derived parameters

The Eq. column gives the number of the equation used to calculate the parameter -

see List of Equations in this chapter.

Symbol Definition Type Eq.

ctHb Concentration of total hemoglobin in blood.

Total hemoglobin includes all types of

hemoglobin: deoxy-, oxy-, carboxy-, met-.

ms

F HHb Fraction of deoxyhemoglobin in total hemo-

globin in blood.

Deoxyhemoglobin is the part of total hemo-

globin which can bind oxygen forming oxy-

hemoglobin. It is also termed reduced hemo-

globin, RHb.

ms/dv 41

F O2Hb Fraction of oxyhemoglobin in total hemoglobin

in blood.

ms/dv 40

F COHb Fraction of carboxyhemoglobin in total hemo-

globin in blood.

ms

F MetHb Fraction of methemoglobin in total hemoglobin

in blood.

ms

sO2  Oxygen saturation, the ratio between the

concentrations of oxyhemoglobin and the

hemoglobin minus the dyshemoglobins.

ms/dv 39

F HbF Fraction of fetal hemoglobin in total hemoglobin

in blood *

ms 49

Hct  Hematocrit, the ratio between the volume of

erythrocytes and the volume of whole blood.

dv 13

* For limitations please refer to chapter 3 in this manual.

List of Oximetry

Parameters

Page 165: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 165/234

Page 166: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 166/234

6. Parameters ABL700 Series Reference Manual 

6-10 

Oxygen Parameters, Continued 

Symbol Definition Type Eq.

 p50(st)  Partial pressure (or tension) of oxygen at half

saturation (50 %) in blood at standard

conditions: temperature = 37oC

 pH = 7.40

 pCO2 = 5.33 kPa

F COHb, F MetHb, F HbF set to 0

 p50(st) may however vary due to variations in

2,3-DPG concentration or to the presence of

abnormal hemoglobins.

dv/in 21

 pO2(A−a) Difference in the partial pressure (or tension) of

oxygen in alveolar air and arterial blood.

Indicates the efficacy of the oxygenation process

in the lungs.

dv 22

 pO2(A−a,T )  Difference in the partial pressure (or tension) of

oxygen in alveolar air and arterial blood at

 patient temperature.

dv 23

 pO2(a/A)  Ratio of the partial pressure (or tension) of

oxygen in arterial blood and alveolar air.

Indicates the efficacy of the oxygenation process

in the lungs.

dv 24

 pO2(a/A,T )  Ratio of the partial pressure (or tension) of

oxygen in arterial blood and alveolar air at

 patient temperature.

dv 25

 pO2(x) or px  Oxygen extraction tension of arterial blood.

Reflects the integrated effects of changes in the

arterial pO2(a), ctO2, and p50 on the ability of

arterial blood to release O2  to the tissues [8].

dv 26

 pO2(x,T ) or

 px(T )

Oxygen extraction tension of arterial blood at

 patient temperature.

dv

ctO2(B)  Total oxygen concentration of blood.

Also termed O2 content.

dv 27

ctO2(a−v –  )  Oxygen concentration difference between

arterial and mixed venous blood.

dv 28

 BO2  Hemoglobin oxygen capacity; the maximum

concentration of oxygen bound to hemoglobin in

 blood saturated, so that all deoxyhemoglobin is

converted to oxyhemoglobin.

dv 29

Continued on next page

List of Oxygen

Parameters 

(continued) 

Page 167: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 167/234

Page 168: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 168/234

Page 169: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 169/234

 ABL700 Series Reference Manual 6. Parameters

6-13

Bilirubin

Bilirubin is measured by the ABL735 and ABL730 analyzers.

Symbol Definition Type Eq.

ctBil Concentration of total bilirubin in plasma.

Total bilirubin includes its two forms:

conjugated and unconjugated.

ms

Bilirubin

Page 170: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 170/234

6. Parameters ABL700 Series Reference Manual 

6-14 

Electrolyte Parameters

Electrolyte analysis establishes the patient’s electrolyte status by measuring plasma

concentrations of K +, Na+, Ca2+ and Cl  –  ions by means of ion-selective electrodes.

All the electrolyte parameters are listed below. In the Type column the following

symbols are used:

• ms for measured parameters

• dv for derived parameters

The Eq. column gives the number of the equation used to calculate the parameter -

see List of Equations in this chapter.

Symbol Definition Type Eq.

cK +  Concentration of potassium ions in plasma. ms

c Na+  Concentration of sodium ions in plasma. ms

cCa2+

  Concentration of calcium ions in plasma. ms

cCl –   Concentration of chloride ions in plasma. ms

cCa2+

(7.40)  Concentration of calcium ions in plasma at pH

7.40.

dv 45

Anion Gap,

K + 

Concentration difference between cK + + c Na

and cCl –  + cHCO3

 – .

dv 43

Anion Gap Concentration difference between c Na+ and

cCl – 

 + cHCO3

 – 

.

dv 44

List of

Electrolyte

Parameters

Page 171: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 171/234

Page 172: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 172/234

Page 173: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 173/234

 ABL700 Series Reference Manual 6. Parameters

6-17

Measured Parameters, Continued 

Unit Measuringrange

Reference range

for  adults' arterial blood at 37 °C

( Ref. 10 unless otherwise

stated) 

Sex

F O2Hb % 0 - 100 94 - 98 m,f

fraction 0.0 - 1.000 0.94 - 0.98

F COHb % 0 – 100 0.5 - 1.5 m,f

fraction 0.0 - 1.000 0.005 - 0.015

F MetHb % 0 – 100 0.0 - 1.5 m,f

fraction 0.0 - 1.000 0.000 - 0.015

cK +  mmol/L

meq/L

0.5 - 25.0 3.4 – 4.5 m,f

c Na+  mmol/L,

meq/L

7 - 350 136 - 146 m,f

cCa2+  mmol/L 0.20 - 9.99 1.15 - 1.29 m,f [12]

meq/L 0.40 - 19.8 2.30 - 2.58 m,f

mg/dL 0.8 – 40.04

cCl –

mmol/L,

meq/L

7 - 350 98 - 106 m,f

cGlucose mmol/L 0.0 - 24.9 3.89 - 5.83 m,f

25 - 60

mg/dL 0 - 1081 70 - 105 m,f

cLactate mmol/L 0.0 - 14.9 0.5 - 1.6 m,f

15 - 30

mg/dL 0 - 270 4.5 - 14.4 m,f

meq/L 0.0 - 14.9

15 - 30

Continued on next page

Table

(continued)

Page 174: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 174/234

Page 175: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 175/234

Page 176: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 176/234

Page 177: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 177/234

 ABL700 Series Reference Manual 6. Parameters

6-21

Units for Derived Parameters, Continued 

Symbol Unit ABL

70X

ABL

71X

ABL72X/73X Input parameter Sample type

ctCO2(B) Vol %,

mL/dL,

mmol/L

c c c ctHb 

 pH(st) - c c c

V CO2/V (dry air) % c c c

fraction

The table below lists the oximetry derived parameters.

(ABL73X corresponds to an ABL72X, but it can measure ctBil and F HbF).

Symbol Unit ABL

70X

ABL

71X

ABL72X/73X Input parameter Sample type

Hct % ctHb

fraction c c c

sO2  %

fraction e

F O2Hb  %

fraction e e c

F HHb %

fraction e e c

Continued on next page

Acid-base

Parameters

(continued)

Oximetry

Parameters

Page 178: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 178/234

6. Parameters ABL700 Series Reference Manual 

6-22 

Units for Derived Parameters, Continued 

The table below lists the oxygen derived parameters.

(ABL73X corresponds to an ABL72X, but it can measure ctBil and F HbF).

Symbol Unit ABL

70X

ABL

71X

ABL72X/

73X

Input parameter Sample type

 pO2(T ) mmHg; torr e e c T  

kPa

 pO2(A) mmHg; torr c c c F O2(I)+RQ Arterial,

kPa e e e capillary

 pO2(A,T ) mmHg; torr c c c F O2(I)+RQ+T   Arterial, capillary

kPa e e e

 p50 mmHg; torr e e e*

kPa

 p50(T ) mmHg; torr e e c* T  

kPa

 p50(st) mmHg; torr e e c*

kPa

 pO2(A−a) mmHg; torr c c c F O2(I)+ RQ Arterial,

kPa e e e capillary

 pO2(A−a,T ) mmHg; torr e e c F O2(I)+RQ+T   Arterial,

kPa e e e capillary

 pO2(a/A) % c c c F O2(I)+RQ Arterial,

fraction e e e capillary

 pO2(a/A, T ) % c c c F O2(I)+RQ+T   Arterial,

fraction e e e capillary

 pO2(a)/F O2(I) % c c c F O2(I) Arterial,

fraction capillary

 pO2(a,T )/ % c c c F O2(I)+T   Arterial,

F O2(I) fraction capillary

Continued on next page

Oxygen

Parameters

Page 179: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 179/234

Page 180: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 180/234

Page 181: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 181/234

Page 182: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 182/234

6. Parameters ABL700 Series Reference Manual 

6-26 

List of Equations, Continued 

where

Eq. Description

5.1 a'=4.04 10 tHb-3× + ×   −

4 25 104

. c  

5.2 ( )

cHCO 103-

 pH(st)

( . ) . .533 0 23 533

6.161

0.9524= × ×

−⎡

⎣⎢

⎦⎥ 

5.3 pH(st) pH log

5.33

CO

 pH(Hb) pH

log CO Hb log(7.5006 CO2 2 2

= +  ⎛ 

⎝ ⎜

  ⎞

 ⎠⎟ ×

  −−

⎛ 

⎝ ⎜

  ⎞

 ⎠⎟

 p p p( ) ) 

5.4 ( ) pH(Hb) tHb +5.98- 10

tHb= × ×−   −4 06 10 1922 0 16169. .

.c

5.5 ( )log CO (Hb) tHb+ 3.4046+ 2.12 102

tHb p c

c= − × ×−   −17674 10 2 0.15158.

Eq. 6   [4]:

c c c sBase(B,ox) Base(B) tHb O2= − × × −0 3062 1. ( )

If ctHb is not measured or keyed in, the default value will be used.

If sO2 is not measured, it will be calculated from equation 39.

Eq. 7   [5]:

cBase(Ecf) = cBase(B) for ctHb = 3 mmol/L

Eq. 8:

cBase(Ecf,ox) = cBase(B,ox) for ctHb = 3 mmol/L

Eq. 9 [4,14]:

( )cHCO P,st) 0.919 Z + Z a' Z-83

- ( .= + × × ×24 47

where

Eq. Description

9.1 a'= 4.04 10 tHb-3× + × ×−4 25 10 4. c  

9.2 (   ) Z = × ×c c sBase(B)- 0.3062 tHb 1- O2  

Eq. 10 [4,5]:

c p ctCO P CO HCO P2 2 3

-( ) . ( )= × +0 23

Continued on next page

cBase(B)

(continued) 

 cBase(B,ox)

 cBase(Ecf)

 cBase(Ecf,ox)

 cHCO3–(P,st)

 ctCO2(P)

Page 183: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 183/234

 ABL700 Series Reference Manual 6. Parameters

6-27

List of Equations, Continued 

Eq. 11 [5]:

( )

⎟ ⎠

 ⎞⎜⎝ 

⎛  −×+

××××=   −−

0.21

tHb1)P(tCO

10+1tHbCO10286.9)B(tCO

2

K  pH2

32

EryEry

cc

c pc  p

 

where

Eq. Description

9.1 ( ) ( ) pH pH -7.40 OEry 2

= + × + × −719 0 77 0 035 1. . . s  

9.2 ( )[ ] pK log 1+10Ery

 pH OEry 2= −  − − ×

61257 84 0 06

.. . s

 

Eq. 12   [14]:

 pH(st): see equations 5.3 - 5.5.

Eq. 13 [15]:

Hct = 0.0485×ctHb + 8.3×10-3

 

Hct cannot be calculated on the basis of a default ctHb value.

Eq. 14 [16,17]:

The standard Oxygen Dissociation Curve (ODC) is used (i.e. p50(st) = 3.578 kPa) at

actual values of pH, pCO2, F COHb, F MetHb, F HbF (see equations 46 - 47 in the

section Oxyhemoglobin Dissociation Curve).

 pO2(T ) is calculated by a numerical method using:

(   )t ( ) tHb 1- COHb - MetHb O O Oi 2,i 2 2,i

T c F F s T T p T  = × × + ×( ) ( ) ( )α   

where

Eq. Description See…  

14.1 S = ODC(P,A,T ) Eq. 47

14.2 (   )s T 

F F O ( ) =

S 1- MetHb COHb

1- COHb - MetHb2,i

× −

F F  

Eq. 46.12

14.3

( )

 p T F 

s T F F  

O ( ) =P

COHb

O ( ) COHb MetHb2,i

2

11

,i

+× − −

 Eq. 46.10

Continued on next page

 ctCO2(B)

pH(st)

Hct

 pO2(T )

Page 184: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 184/234

6. Parameters ABL700 Series Reference Manual 

6-28 

List of Equations, Continued 

Eq. Description See…  

14.4 ( ) ( )[ ]242 37.0-101.237.0-1015.13

2 1083.9O T T e

  ××+×−−   −−

×=α   

14.5 P is the variable during iteration.

14.6( )37.0-

 pH1.04-ac=A T 

T ××

∂  

∂   

14.7 T = patient temperature inoC (keyed-in).

14.8(   )

∂  

∂  

 pH

( ) pH

When t then O O ( )i 2,i 2

T p T p T  

= − × − × × −

= =

− −146 10 65 10 37 7 40

37 0

2 3. . ( ) .

( ) ( . ), ( )t i

 

Eq. 15 [5]:

(   )

(   )[ ] p F p

 p F 

O (A) O (I) (amb) -6.275

CO RQ O (I) RQ 1

2 2

2

1

2

1

= ×

− × − × −− − 

If F O2(I) and RQ are not keyed in, they are set to the default values.

The calculation requires entering the sample type as “Arterial” or “Capillary”.

Eq. 16 [4,5,18]:

[ ]

( )[ ]1RQ(I)ORQ)(CO

)(OH-(amb)(I)O)A,(O

1-

2

1

2

222

−×−×−

×=−

F T  p

T  p pF T  p 

( ) ( )[ ] p T 

T T 

H O( ) =6.275 102

 

×  × × − − × × −− −2 36 10 37 0 9 6 10 37 02 5 2

. . . .

 

If F O2(I) and RQ are not keyed in, they are set to the default values.The calculation requires entering the sample type as “Arterial” or “Capillary”.

Continued on next page

 pO2(T )

(continued) 

 pO2(A)

 pO2(A,T )

Page 185: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 185/234

 ABL700 Series Reference Manual 6. Parameters

6-29

List of Equations, Continued 

Eq. 17:

(I)O(a)O(I)O/(a)O

2

222

F  pF  p   =  

The calculation cannot be performed on the basis of the default F O2(I) value, and

the calculation requires entering the sample as “Arterial” or “Capillary”.

Eq. 18:

(I)O

),(aO(I)O/)(a,O

2

222

T  pF T  p   =  

The calculation cannot be performed on the basis of the default F O2(I) value, andthe calculation requires entering the sample as “Arterial” or “Capillary”.

Eq. 19   Refer to Eq. 46.10:

The ODC is determined as described in equations 46 - 47 in the section

Oxyhemoglobin Dissociation Curve.

( )

 pF 

F F 

50=P

COHb

0.5 1- COHb- MetHb1+

×

 

where

Description See... 

P = ODC(S,A,T ) Eq. 47

(   )S  =

  × − +05 1. F F F 

COHb- MetHb COHb

1- MetHb 

Eq. 46.11

A = a

T  = 37.0 oC Eq. 46.13

Eq. 20: 

The ODC is determined as described in equations 46 - 47 in the section

Oxyhemoglobin Dissociation Curve.

(   )

 p T F 

F F 

50( )=P

COHb

0.5 1- COHb- MetHb1+

×

 

where

Continued on next page

 pO2(a)/  FO2(I)

 pO2(a,T )/  FO2(I)

 p50

 p50(T )

Page 186: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 186/234

6. Parameters ABL700 Series Reference Manual 

6-30 

List of Equations, Continued 

Description See…  

P = ODC(S,A,T ) Eq. 47

( )S  =

  × − +05 1. F F F 

COHb- MetHb COHb

1- MetHb 

Eq. 46.11

( )0.37)(

 pH04.1a   −××−= T 

T  A

∂  

∂   

( )∂  

∂  

 pH pH

( ). . ( ) .

T = − × − × × −− −

146 10 65 10 37 7 402 3  

T  = patient temperature inoC (keyed-in)

Eq. 21:

 p50 is calculated for pH = 7.40, pCO2 = 5.33 kPa, F COHb = 0, F MetHb = 0, F HbF

= 0.

The ODC is determined as described in equations 46 - 47 in the section

Oxyhemoglobin Dissociation Curve, see equation 47.

 p50(st) = ODC(S,A,T )

where

Description See…  

S = 0.5 Eq. 46.11

A = a6 corresponds to pH = 7.40, pCO2 = 5.33 kPa, F COHb = 0,

F MetHb = 0, F HbF = 0

Eq. 46.13

T  = 37.0 oC

Eq. 22: 

 p p pO (A a) = O (A) - O (a)2 2 2−  

The calculation requires entering the sample type as “Arterial” or “Capillary”.

Eq. 23: 

 p T p T p T O (A a, ) = O (A, ) O (a, )2 2 2− −  

The calculation requires entering the sample type as “Arterial” or “Capillary”.

Continued on next page

 p50(T ) 

(continued) 

 p50(st)

 pO2(A-a)

 pO2(A-a,T )

Page 187: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 187/234

Page 188: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 188/234

6. Parameters ABL700 Series Reference Manual 

6-32 

List of Equations, Continued 

Eq. 27   [5]:

( )c p s F F ctO O O O COHb MetHb tHb2 2 2 2= × + × − − ×α 1

αO2 is the concentrational solubility coefficient for O 2 in blood (here set to

9.83 x 10−3 mmolL  –1kPa –1 at 37 oC [5,19].

ctO2 cannot be calculated on the basis of a default ctHb value.

Eq. 28: 

ctO2(a − v –  ) = ctO2(a) – ctO2(v –  )

where ctO2(a) and ctO2(v –  ) are calculated from equation 27 for arterial and mixed

venous blood, respectively. The calculation requires two measurements.

Eq. 29   [7]:  

( ) BO c F F 2

1= × − −tHb COHb MetHb

 BO2 cannot be calculated on the basis of a default ctHb value.

Eq. 30   [8]:

The ODC is determined, as described in equations 46 - 47 in the section

Oxyhemoglobin Dissociation Curve.

c ctO tO2 2( ) ( )x a t i= −  

where

Eq. Description See… 

30.1 ( )t tHbi = × − × +

+ × ×−

c F F s

 p

1

9 83 10 3

COHb - MetHb O

O (5)

2,i

2. 

30.2  pO2(5) = 5.00 kPa

30.3 S = ODC(P,A,T )  Eq. 47

30.4

( )P = × + × − −⎡

⎣⎢⎢

⎤⎦⎥⎥

 p F s F F 

O (5) COHbO COHb MetHb

2

2,i

11

 Eq. 46.9

30.5 ( )( )

sF F 

F F O

MetHb COHb

COHb MetHb2,i

 =  × − −

− −

S  1

Eq. 46.12

30.6 A = a

30.7 T  = 37.0oC

Continued on next page

 ctO2 

 ctO2(a v– )

 BO2 

 ctO2(x)

(or cx)

Page 189: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 189/234

Page 190: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 190/234

6. Parameters ABL700 Series Reference Manual 

6-34 

List of Equations, Continued 

Eq. Description

34.2F 

c c

c cShunt =

tO a tO v

tO A tO a

2 2

2 2

1

1

+  −

⎣⎢

⎦⎥

−( ) ( )

( ) ( ) 

where

ctO2(c): total oxygen in pulmonary capillary blood

ctO2(a): total oxygen in arterial blood

ctO2(A): total oxygen in alveolar air. Oxygen tension = pO2(A)

ctO2(v –  ): total oxygen in mixed venous blood

34.3 ( )c p c F F stO a O (a) tHb COHb MetHb O (a)2 2 2( ) .= × + × − − ×−9 83 10 13  

34.4

( ) (A)OMetHbCOHb1

tHb(A)O1083.9)A(tO

2

2

3

2

sF F 

c pc

×−−

×+×=   −

 

34.5

( ) )v(OMetHbCOHb1

tHb)v(O1083.9)v(tO

2

2

3

2

sF F 

c pc

×−−

×+×=   −

 

where:

 pO2(a): oxygen tension in arterial blood; measured.

 pO2(A): oxygen tension in alveolar blood. See equation 15. pO2(v

 –  ): oxygen tension in mixed venous blood; measured and then

entered.

sO2(a): oxygen saturation in arterial blood; can be measured.

sO2(A): oxygen saturation in (alveolar) blood calculated from equation 39

where P = pO2(A). If sO2(a) > 0.97, a keyed-in p50(st) will be used to

determine the ODC. If sO2(a) > 0.97 and no p50(st) has been keyed in, the

default value (3.578 kPa) will be used to determine the ODC.

sO2(v –  ): oxygen saturation in mixed venous blood.

If not keyed in, it will be calculated from equation 39 where P =  pO2(v –  ).If sO2(a) > 0.97, a keyed-in p50(st) will be used to determine the ODC.

The calculation requires entering the sample type as “Arterial” or

“Capillary”.

If sO2(a) > 0.97 and no p50(st) has been keyed in, the default value (3.578

kPa) will be used to estimate the ODC.

If no venous sample is measured, F Shunt is estimated assuming:

ctO2(a) – ctO2(v –  ) = 2.3 mmol/L in equation 34.2

Continued on next page

 FShunt

(continued) 

Page 191: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 191/234

 ABL700 Series Reference Manual 6. Parameters

6-35

List of Equations, Continued 

Eq. 35  [5,16]:

F T c T c T  

c T c T  Shunt( ) =

tO (a, ) - tO (v, )

tO (A, ) - tO (a, )

2 2

2 2

1

1

+⎡⎣⎢

⎤⎦⎥

 

where

ctO2(a,T ): total oxygen in arterial blood at patient temperature

ctO2(A,T ): total oxygen in alveolar blood at patient temperature ctO2(v –  , T ): total

oxygen in mixed venous blood at patient temperature

Eq. Description See… 

35.1 ctO2(a,T ) = ctO2 calculated from equation 25 for arterial  pO2 

and sO2 values at 37 oC.

35.2

( )

c T T pO T  

c F F s T  

tO (A O A

tHb 1- COHb - MetHb O (A,

2 2

2

, ) ( ) ( , )

)

= ×

+ × ×

α  2 

35.3 ( ) ( )[ ]α O2

32 1 10 37 0

9 83 104 2

( ) .. .

T T 

= ×   −   × × + × × −−

e-1.15 10 -37.0

-2T 

 

35.4  pO2(A,T ) is calculated from equation 15.

35.5 sO2(A,T ) = S

35.6 S = ODC(P,A,T ) Eq. 47

35.7 P = pO2(A,T )

35.8( )A a

 pH= − × × −104 37 0.

( ).

∂  

∂   T T   

35.9 T  = patient temperature (keyed-in)

35.10( )

∂  

∂  

 pH pH

( ). . ( ) .

T = × − × −− −

146 10 65 10 37 7 402 3  

If sO2(a) > 0.97, a keyed-in p50(st) will be used to determine the

ODC. If sO2(a) > 0.97 and no p50(st) has been keyed in, the

default value (3.578 kPa) will be used to determine the ODC.

35.11 ctO2(v –  , T ) = ctO2(v

 –  ) at 37 oC is calculated from equation 27 for

mixed venous blood values of pO2 and sO2. If sO2(v –  ) > 0.97, a

keyed-in p50(st) will be used to determine the ODC.

If sO2(v –  )>0.97 and no  p50(st) has been keyed in, the default

value (3.578 kPa) will be used to estimate the ODC. If no mixed

venous sample is measured, the F Shunt(T ) is estimated

assuming ctO2(a,T ) – ctO2(v –  , T ) = 2.3 mmol/L in equation 35.

Continued on next page

 FShunt(T )

Page 192: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 192/234

6. Parameters ABL700 Series Reference Manual 

6-36 

List of Equations, Continued 

Eq. 36: 

RI = O A O aO a

2 2

2

 p p p( ) ( )

( )−  

The calculation requires entering the sample type as “Arterial” or “Capillary”.

Eq. 37: 

RI( ) =O (A O (a

O (a

2 2

2

T  p T 

 p T p T , ) , )

, )

− 

The calculation requires entering the sample type as “Arterial” or “Capillary”.

Eq. 38  [8]:

The ODC is determined as described in equations 46 - 47 in the section

Oxyhemoglobin Dissociation Curve.

Q x =

−2 3.

( )ctO a t2 i

 

Eq. Description See… 

38.1 ( )t tHb 1- COHb - MetHb O Oi 2, i 2

= × × + ×   −c F F s p9 83 10 53. ( )

 

38.2  pO2(5) = 5.00 kPa

38.3 S = ODC(P,A,T )

38.4

 

MetHbCOHb1O

COHb1(5)O

i2,

2F F s

F  pP  

Eq. 46.9

38.5 (   )s

F F 

F F O

S 1 MetHb COHb

1 - COHb - MetHb2,i =

  × − − 

Eq. 46.12

38.6 A = a

38.7 T  = 37.0

o

C

ctO2(a) is determined as described in equation 27.

Qx cannot be calculated on the basis of a default ctHb value.

Qx can only be calculated if the measured sO2(a)   ≤ 0.97 (or if p50(st) is keyed in).

The calculation requires entering the sample type as “Arterial” or “Capillary”.

Continued on next page

RI

RI(T )

Qx 

Page 193: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 193/234

 ABL700 Series Reference Manual 6. Parameters

6-37

List of Equations, Continued 

Eq. 39: 

The ODC is determined as described in equation 46 (points I and III). See the sectionOxyhemoglobin Dissociation Curve.

( )s

F F 

F F O

S 1 MetHb COHb

1 - COHb - MetHb2 =

  × − − 

where

Description See… 

S = ODC(P,A,T )

P p F 

s F F 

= +  ×

× − −

 pOO COHb

O COHb MetHb2

2

2 ( )1

 Eq. 46.9

A = a

T  = 37.0oC

Eq. 40:

( )F s F F  O Hb O 1 COHb MetHb2 2

= × − −  

If sO2 is not measured, it will be calculated from equation 39.

If dyshemoglobins (F COHb, F MetHb) are not known, they are set to the default

values.

Eq. 41:

( )F s F F F F  HHb O 1 COHb MetHb COHb MetHb2= − × − − − −1

If sO2 is not measured, it will be calculated from equation 39.

If dyshemoglobins (F COHb, F MetHb) are not known, they are set to the default

values.

Eq. 42 [5]:

(   )V  V 

F F c( )

. B   =   × ×

× − × ×1 10 (CO)

COHb(2) COHb(1) tHb

3

24 0 91 

Continued on next page

 sO2 

 FO2Hb

 FHHb

V (B)

Page 194: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 194/234

6. Parameters ABL700 Series Reference Manual 

6-38 

List of Equations, Continued 

Eq. Action

42.1

( )V B( ) =

× × − ×V 

F F c(CO)

2.184 10 COHb(2) COHb(1) tHb-2 

42.2 V (CO) = volume (in mL) of carbon monoxide injected according to the

 procedure and the value keyed-in.

42.3 F COHb(1) = fraction of COHb measured before the CO injection

42.4 F COHb(2) = fraction of COHb measured after the CO injection

Eq. 43: 

Anion Gap, K Na K Cl HCO+

= + − −+ + − −

c c c c 3 (P)

Eq. 44: 

AnionGap Na Cl HCO3

= − −+ − −c c c (P)

Eq. 45 Ref. [12]:

( )[ ]c cCa Ca pH22 7 4 1 0 53 7 40+ += − × −( . ) . .

Due to biological variations this equation can only be used for a pH value in the

range 7.2 - 7.6.

See Oxyhemoglobin Dissociation Curve (ODC) further in this chapter.

Eq. 48:

Glu Na2Osm ccm   +=   + 

Eq. 49: 

An iterative method is used to calculate F HbF. The input parameters are sO2, ceHb

(effective hemoglobin concentration), and cO2HbF (concentration of fetal oxyhe-

moglobin).

In the calculations the following are assumed: pH = 7.4, pCO2 = 5.33 kPa, F COHb

= 0, F MetHb = 0, cDPG = 5 mmol/L, and temp = 37 °C.

Step Description

1. An estimate of F HbF is made: F HbFest = 0.8

2.  pO2,est = ODC ( sO2,A,T ); See Eq. 47

where the constant A depends on F HbF = F HbFest 

Continued on next page

V (B)

(continued) 

Anion Gap,K+ 

Anion Gap

 cCa2+

(7.4)

Eq. 46-47

 mOsm

 FHbF

Page 195: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 195/234

 ABL700 Series Reference Manual 6. Parameters

6-39

List of Equations, Continued 

Step Description

3. sO2 (for fetal blood) = ODC ( pO2,est, A,T ); See Eq.47

where F HbF = 1 

4. cO2HbFest = sO2 (fetal blood) ×  ceHb ×  F HbFest

5.ΔF 

c c

cHbF

O HbF O HbF

eHbest

2 meas. 2 est=  −

 

6. If |ΔF HbFest|  ≥ 0.001, proceed to step 7.

If |ΔF HbFest| < 0.001, proceed to step 9.

7. F HbFest, new = F HbFest, old + ΔF HbFest

8. Return to step 2. 

9. End of iteration. The value for F HbF has converged. 

Eq. 50 [8]: 

The ODC is determined as described in equations 46 - 47 in Oxyhemoglobin

 Dissociation Curve.

 pO2(x) is calculated by a numerical method, using:

Eq. Description See… 

50.1 S = ODC(P,A,T ) Eq. 47

50.2 ( )MetHbCOHb1

COHbMetHb1)(O2,i

F F 

F F S T s

−−−−×

=  Eq. 46.12

50.3

( )MetHbCOHb1)(O

COHb1

P)(O

2,i

2,i

F F T s

F T  p

−−×+

=  Eq. 46.10

50.4 ( )

)(O)(O+

)(OMetHbCOHb1tHb)(t

i2,2

i2,i

T  pT 

T sF F cT 

×

+×−−×=

α  

50.5 A = a

50.6 T  = patient temperature

50.7 [ ]25 )37(1021)37(115.0

2 00983.0)(αO   −××+−×−   −

×= T T eT   

Continued on next page

 FHbF 

(continued) 

 pO2(x,T )

Page 196: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 196/234

6. Parameters ABL700 Series Reference Manual 

6-40 

List of Equations, Continued 

Eq. Description See… 

50.8 )(x,OO 2i2, T  p p   =  

when ti(T ) = ctO2(37 °C) − 2.3 mmol/L

 pO2(x,T ) is calculated in accordance with OSA V3.0.

 pO2(x,T ) can only be calculated if the measured sO2(a) ≤ 0.97 (or p50(st) keyed in).

 pO2(x,T ) is tagged with "?" if any of the following parameters: sO2, F MetHb,

F COHb, pO2, pCO2, pH or ctHb is tagged with "?".

The calculation requires entering the sample type as “Arterial” or “Capillary”.

Eq. 51: 

275.6(amb)

COair)(dry/CO 2

2 −=

 p

 pV V   

Eq. 52: 

275.6(amb)

Oair)(dry/O 2

2 −=

 p

 pV V   

 pO2(x,T )

(continued)

V CO2 / V (dry air)

V O2 / V (dry air)

Page 197: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 197/234

Page 198: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 198/234

6. Parameters ABL700 Series Reference Manual 

6-42 

Oxyhemoglobin Dissociation Curve (ODC), Continued 

The ODC displacement which is described by 'a' and 'b' in the coordinate system

(ln(s/(1– s))vsln( p)), is given by the change in p50 from the default to its actual value

in a more common coordinate system (sO2, pO2).

Eq. Description

46.5x x ln

7a bo− = − −

 p 

46.6 h = +h ao

  where ho = 3.5

46.7  b = × −0055. ( )T T o   T o = 37

oC

46.8  p p p= + ×O CO2  M   

where M× pCO is taken from the Haldane equation [20]: p

c

 p

c

O

O Hb

CO

COHb

2

2

= × M  , to give eq. 46.9

46.9 p p

 p

s

- F - F  = + × ⎡

⎣⎢⎤

⎦⎥O

O

O

COHb

1 COHb MetHb2

2

2

 or equation 46.10

46.10 ( )[ ] p

 p s F F 

F O

O COHb MetHb

COHb2

2=

  × × − −

+

1

The ordinate, s, may loosely be termed the combined

oxygen/carbon monoxide saturation of hemoglobin and is

described by equation 46.11 below:

Eq. Description

46.11

( )

sc c

c c c

s F F F  

=   ++ +

=  × +

O Hb COHb

O Hb COHb HHb

O 1- COHb - MetHb COHb

MetHb

2

2

2

1

  or

46.12 ( )s

s F F 

F F O

1- MetHb COHb

COHb MetHb2 =

  × −

− −1 

Continued on next page

The ODC

Displacement

Page 199: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 199/234

Page 200: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 200/234

6. Parameters ABL700 Series Reference Manual 

6-44 

Oxyhemoglobin Dissociation Curve (ODC), Continued 

Step Description

(II): sO2 > 0.97 (or erroneous) and p50(st) is keyed in.

Coordinates (P0, S 0) are calculated from ( p50(st), 0.5) using

equations 46.9 and 46.11.

Reference position of the ODC.

The ODC is shifted from the reference position to pass

through the point (P0, S 0). In this position, the ODC reflects

the p50(st) of the patient, i.e., the particular patient but atstandard conditions. 

The ODC is further shifted, as determined by the effect of

the measured parameters (“ac”), to its actual position. This

 position reflects the p50(act) of the patient.

(III): sO2 > 0.97 (or erroneous) and no p50(st) has been keyed in.

Reference position of the ODC.

The position of the actual ODC can now be approximated

from the reference position, using the actual values of pH,

 pCO2, F COHb, F MetHb and F HbF to determine the shift

'ac'. 

The curves are used only to illustrate the principles of the ODC determination  

Continued on next page

Determining the

Actual

Displacement 

(continued) 

 NOTE: 

Page 201: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 201/234

Page 202: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 202/234

6. Parameters ABL700 Series Reference Manual 

6-46 

Conversion of Units

The equations stated above are based on the SI-unit-system. If parameters are known

in other units, they must be converted into a SI-unit before entering the equations.

The result will be in a SI-unit.

After the calculation the result may be converted to the desired unit. Conversion of

units may be performed, using the equations stated below:

T   °F = 325

9 o +C T   

T   °C = )32(9

5 o −F T   

cX (meq/L) = cX (mmol/L) where X is K +, Na

+ or Cl −.

cCa2+

 (meq/L) = 2 ×  cCa2+

 (mmol/L) or

cCa2+

 (mg/dL) = 4.008 ×  cCa2+

 (mmol/L)

cCa2+

 (mmol/L) = 0.5 ×  cCa2+

 (meq/L)or

cCa2+

 (mmol/L) = 0.2495 ×  cCa2+

 (mg/dL)

 p (mmHg) =  p (torr) = 7 500638.   ×  p (kPa)

 p (kPa) = (mmHg133322.0  p× 

= 0133322.   ×  p (torr)

[4] 

ctHb (g/dL) = 1.61140 ×  ctHb (mmol/L)

ctHb (g/L)  = 16.1140 ×  ctHb (mmol/L) or

ctHb (mmol/L)  = 0.62058 ×  ctHb (g/dL)

ctHb (mmol/L)  = 0.062058 ×  ctHb (g/L)

x (Vol %) = 2.241 × x (mmol/L)

x (Vol %) = x (mL/dL)

x (mmol/L) = 0.4462 × (mL/dL)

where x is ctCO2, ctO2, ctO2(a−v– ), BO2 

Continued on next page

SI-units

Temperature

 cK+, cNa

+, cCl

– 

 cCa2+

 

Pressure

 ctHb

 ctCO2, ctO2,

 ctO2(a v –   ), BO2 

Page 203: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 203/234

 ABL700 Series Reference Manual 6. Parameters

6-47

Conversion of Units, Continued 

V·O2 (mmol/L)/min   = V

·O2/22.41 (mL/dL)/ min

[22] 

cGlucose (mg/dL) = 18.016 ×  cGlucose (mmol/L) or

cGlucose (mmol/L)  = 0.055506 ×  cGlucose (mg/dL)

[22] 

cLactate (mg/dL)  = 9.008 ×  cLactate (mmol/L) or

cLactate (mmol/L)  = 0.11101 ×  cLactate (mg/dL)

cLactate (meq/L)  = cLactate (mmol/L)

(conversion based on the molecular weight of lactic acid)

ctBil (μmol/L) = 17.1 ×  ctBil (mg/dL)

ctBil (μmol/L)  = 1.71 ×  ctBil (mg/L) or

ctBil (mg/dL)  = 0.0585 ×  ctBil (μmol/L)

ctBil (mg/L)  = 0.585 ×  ctBil (μmol/L)

 All conversions of units are made by the analyzer. 

V·O2 

 cGlucose

 cLactate

 ctBil

 NOTE: 

Page 204: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 204/234

6. Parameters ABL700 Series Reference Manual 

6-48 

Default Values

The following default values are used in the ABL700 Series analyzers, if other

values are not keyed-in.

T   = 37.0 °C (99 °F)

F O2(I) = 0.21 (21.0 %)

RQ  = 0.86

ctHb  = 9.3087 mmol/L, (15.00 g/dL or 150 g/L)

F COHb  = 0.004 (0.4 %)

F MetHb  = 0.004 (0.4 %)

 p50(st)  = 3.578 kPa (26.84 mmHg)

Values

Page 205: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 205/234

 ABL700 Series Reference Manual 6. Parameters

6-49

Altitude Correction

The barometric pressure is measured by the analyzer's built-in barometer, and the

effect of barometric pressure on blood samples is compensated by the analyzer’s

software.

Quality control result for pO2 obtained on aqueous quality control solutions at low

 barometric pressure (at high altitudes) is affected as the properties of aqueous

solutions differ from those of blood. The deviation from the pO2 value obtained at

sea level can be expressed by an altitude correction that can be added to the control

ranges.

The relationship between the altitude and barometric pressure can be expressed by

the following equation:

( )act ref 

act ref 

 B B

 B BT  A

+

−×+×= 004.0116000  

where:

 A = altitude in m

T = temperature in °C

 Bref   = standard barometric pressure at sea level = 760 mmHg

 Bact   = actual barometric pressure in mmHg.

Reference:

Kokholm G, Larsen E, Jensen ST, ChristiansenTF. 3rd

 ed. Blood gas measurementsat high altitudes. Copenhagen: Radiometer Medical A/S, 1991. Available as AS109.

Equation for

Altitude

Correction

Page 206: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 206/234

Page 207: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 207/234

 ABL700 Series Reference Manual 6. Parameters

6-51

References, Continued 

15. Kokholm G. Simultaneous measurements of blood pH, pCO2, pO2 and

concentrations of hemoglobin and its derivatives - a multicenter study. Scand J

Clin Lab Invest 1990; 50, Suppl 203: 75-86. Available as AS107.

16. Siggaard-Andersen O, Wimberley PD, Gøthgen IH, Siggaard-Andersen M.

A mathematical model of the hemoglobin-oxygen dissociation curve of human

 blood and of the oxygen partial pressure as a function of temperature. Clin

Chem 1984; 30: 1646-51.

17. Siggaard-Andersen O, Wimberley PD, Gøthgen IH, Fogh-Andersen N,

Rasmussen JP. Variability of the temperature coefficients for pH, pCO2 and  pO2 

in blood. Scand J Clin Lab Invest 1988; 48, Suppl 189: 85-88.

18. Siggaard-Andersen O, Siggaard-Andersen M. The oxygen status algorithm: a

computer program for calculating and displaying pH and blood gas data. Scand

J Clin Lab Invest 1990; 50, Suppl 203: 29-45.

19. Bartels H, Christoforides C, Hedley-Whyte J, Laasberg L. Solubility

coefficients of gases. In: Altman PL, Dittmer DS, eds. Respiration and

circulation. Bethesda, Maryland: Fed Amer Soc Exper Biol, 1971: 16-18.

20. Roughton FJW, Darling RC. The effect of carbon monoxide on the

oxyhemoglobin dissociation curve. Am J Physiol 1944; 141: 17-31.

21. Engquist A.. Fluids electrolytes nutrition. Copenhagen: Munksgaard, 1985: 56-

68 and 118.

22. Olesen H. et al. A proposal for an IUPAC/IFCC recommendation, quantities

and units in clinical laboratory sciences. IUPAC/IFCC Stage 1, Draft 1, 1990:

1-361.

List of

References

(continued) 

Page 208: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 208/234

 

Page 209: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 209/234

7. Solutions and Gas Mixtures

This chapter gives information about all the solutions and gases used with the

ABL700 Series analyzer, their composition, use, and consumption.

The Certificates of Traceability for the calibrating solutions are found at the end of

the chapter.

This chapter contains the following topics.

General Information ......................................................................................... 7-2

S1720 and S1730 Calibration Solutions .......................................................... 7-3

S4970 Rinse Solution....................................................................................... 7-4

S7370 Cleaning Solution and S5370 Cleaning Additive ................................. 7-5

S7770 tHb Calibration Solution ....................................................................... 7-6

Gas Mixtures (Gas 1 and Gas 2) ...................................................................... 7-7

Electrolyte Solutions ........................................................................................ 7-8

S5362 Hypochlorite Solution........................................................................... 7-9

Certificates of Traceablility.............................................................................. 7-10

Introduction

Contents

Page 210: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 210/234

7. Solutions and Gas Mixtures ABL700 Series Reference Manual

 

General Information

Introduction The ABL700 Series analyzers and their electrodes utilize various solutions and

gases, the compositions and uses of which are described in this chapter.

Solution

Numbers

Each solution has a number for identification purposes. The number starts with S

(for solution) and is followed by 4 or 5 digits. The name of the solution comes

after the number.

Example: S7370 Cleaning Solution

 

Gas Names The two gases or gas mixtures used by the analyzer are named Gas 1 and Gas 2.

All the solutions described in this chapter are for in vitro diagnostic use. In Vitro 

Diagnostic Use

Expiration Date The expiration date of a solution found on the label or on a sticker on the side of

the container is stated as a month and year. Do not use a product after its expiration

date.

Safety Data

Sheets

Safety Data Sheets for all solutions are available from your Radiometer distributor.

Re-ordering Information for re-ordering solutions from Radiometer can be found in the

ABL700 Series Operator’s Manual, Chapter 14.

7-2 

Page 211: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 211/234

 ABL700 Series Reference Manual 7. Solutions and Gas Mixtures

S1720 and S1730 Calibration Solut ions

Use Calibration solutions for pH, electrolyte and metabolite electrodes in the ABL700

Series analyzers.

Quantity 200 mL

Composition Solutions contain the following substances with the stated nominal concentrations:

Solution Substance Concentration (mmol/L)

S1720 K +

 Na+

Ca2+

Cl− 

cGlu

cLac

 buffer

4

145

1.24

102

10

4

Maintains a pH of 7.4

S1730 K +

 Na+

Ca2+

Cl− 

 buffer

40

20

5

50

Maintains a pH of 6.8

 NOTE: The exact values are included in the bar code.

Additives Contain preservatives and surfactants.

At 2-25oC (36-77

oF). Storage

Stability Expiration date and Lot No. are printed on a label.

Stability in use: S1720: 4 weeks.

S1730: 8 weeks.

7-3

Page 212: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 212/234

7. Solutions and Gas Mixtures ABL700 Series Reference Manual

 

S4970 Rinse Solut ion

Use Rinse solution in the ABL700 Series analyzers.

Quantity 600 mL

Composition Contains salts, buffer, anticoagulant, preservative, and surfactants.

At 2-32oC (36-90

oF).Storage

ExpiStability ration date and Lot No. are printed on a separate label.

Stability in use: 6 months.

7-4 

Page 213: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 213/234

 ABL700 Series Reference Manual 7. Solutions and Gas Mixtures

S7370 Cleaning Solution and S5370 Cleaning Additive

S7370 Cleaning

SolutionUse: Cleaning solution in the ABL700 Series analyzers.

Quantity: 200 mL

Composition: Contains salts, buffer, anticoagulant, preservatives, and

surfactants.

Storage: At 2-25oC (36-77

oF).

Stability Expiration date and Lot No. are printed on a separate label.

S5370 Cleaning

Additive

Use: An additive to the S7370 Cleaning solution in the ABL700

Series analyzers.

Composition: Contains Powdered streptokinase.

Storage: At 2-10 °C (36-50 °F).

Stability: Expiration date and Lot No. are printed on a separate label.

The Cleaning Solution with the Cleaning Additive is stable

for 2 months in use.

WARNING/

CAUTION:

 May cause sensitization by inhalation and skin contact). Donot breathe dust. Avoid contact with skin. Wear suitablegloves. In case of accident or if you feel unwell, seek medicaladvice immediately (show the label where possible).

7-5

Page 214: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 214/234

7. Solutions and Gas Mixtures ABL700 Series Reference Manual

 

S7770 tHb Calibration Solution

Use For calibration of the cuvette optical path length in the ABL700 Series analyzers.

The calibrated value can be ctHb, ctHb and ctBil, or ctBil depending on the

analyzer version.

Quantity 2 mL

Composition Contains salts, a buffer, preservative and a coloring agent.

Keep in a dark place at 2 - 25oC (36 - 77

oF).Storage

Stability Expiration date and Lot No. are printed on a separate label.

After opening the solution must be used at once.

7-6 

Page 215: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 215/234

 ABL700 Series Reference Manual 7. Solutions and Gas Mixtures

Gas Mixtures (Gas 1 and Gas 2)

Calibration gases for the pCO2 and pO2 electrodes in the ABL700 Series analyzers.Use

Cylinder Type The analyzers employ different types of Gas 1 cylinders depending on the

geographical location in which the analyzer is to be used.

The following table gives details of the two gas cylinders.

Gas 1 Gas 2

EU USA Japan

Cylinder Volume 1 L 1 L 1 L 1 L

Gas Volume 10 L 33 L 25 L 10 L

Fill Pressure

at 25oC

140 psi

(10 bar)

500 psi

(34 bar)

375 psi

(26 bar)

140 psi

(10 bar)

Composition 19.76 % O2, 5.60 % CO2 

74.64 % N2

< 0.04 % O2, 11.22 % CO2

88.78 % N2

 

WARNING/

CAUTION: 

 Not for drug use.

 High pressure gas. Do not puncture. Do not store near heat or open flame -

exposure to temperatures above 52 °C (125 °F) may cause contents to vent or

cause bursting.

 Not for inhalation. Avoid breathing gas - mixtures containing carbon dioxide canincrease respiration and heart rate. Gas mixtures containing less than 19.5 %

oxygen can cause rapid suffocation.

Store with adequate ventilation. Avoid contact with oil and grease.

Only use with equipment rated for cylinder pressure.

Use in accordance with Safety Data Sheet. 

 NOTE:  The percentages given in the table above are more accurately given in the bar

code on the gas cylinder label. The barcode is read into the analyzer by the bar

code reader or entered manually via the keyboard. 

Stability Gas 1 and Gas 2 are stable for 25 months from the date of filling.

The gas cylinders should be stored between 2 - 32 oC (36 - 90 oF).Storage

7-7

Page 216: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 216/234

Page 217: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 217/234

 ABL700 Series Reference Manual 7. Solutions and Gas Mixtures

S5362 Hypochlorite Solut ion

S5362

Hypochlorite

Solution

Use: For protein removal and decontamination according to the

 procedures described in the Operator's Manual, chapter 4: Analyzer Menus and Programs.

Quantity: 100 mL. Delivered with a 1 mL syringe.

Composition: Contains sodium hypochlorite (pH ≈12).

Storage: Keep in a dark place at 2-8oC (36-45

oF). After use, keep the

 bottle tightly capped to avoid contamination and

decomposition.

Stability: Expiration date and Lot No. are printed on a separate label on

the bottle.

7-9

Page 218: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 218/234

7. Solutions and Gas Mixtures ABL700 Series Reference Manual

 

Certif icates of Traceablil ity

7-10 

Page 219: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 219/234

 ABL700 Series Reference Manual 7. Solutions and Gas Mixtures

7-11

Page 220: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 220/234

7. Solutions and Gas Mixtures ABL700 Series Reference Manual

 

7-12 

Page 221: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 221/234

 ABL700 Series Reference Manual 7. Solutions and Gas Mixtures

7-13

Page 222: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 222/234

7. Solutions and Gas Mixtures ABL700 Series Reference Manual

 

7-14 

Page 223: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 223/234

Page 224: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 224/234

8. Interfacing Facilities ABL700 Series Reference Manual 

Connecting a Mouse

Scope of Use A mouse connected to the ABL700 analyzer may be used to activate all the

analyzer’s screen functions instead of the operator touching the screen.

Material

Required

A standard PS/2 port mouse is the sole item that is required for connection to the

analyzer.

Procedure for

Connecting the

Mouse

Follow the instructions below to connect the mouse to the analyzer.

Step Action

1. Switch off the analyzer.

2. Connect the mouse to the mouse port at the rear of the analyzer.

3. Switch on the analyzer.

8-2 

Page 225: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 225/234

Page 226: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 226/234

8. Interfacing Facilities ABL700 Series Reference Manual 

Connecting the Bar Code Reader

Scope of Use A bar code reader connected to the ABL700 analyzer may be used to read in bar

coded information quickly and accurately. The type of information that is stored in

 bar codes include the expiration date for consumable items, product lot numbers,

Radiometer-determined product identification, and user passwords. Bar codes may

 be scanned into the analyzer anytime the bar code symbol appears in a screen.

Material

Required

The items that are required to connect a bar code reader to the analyzer are:

• A bar code reader

It should incorporate a decoder for reading EAN and UPC codes as WPC

symbols, and NW-7, CODE39, ITF (Interleaved 2 of 5), STF (Standard 2 of 5),

CODE93 and CODE128 codes as industrial symbols.

• A cable for connecting the bar code reader to the analyzer

This should have shielded wires and be no more than 3 m in length.

 NOTE: The bar code reader which has a RS232C interface must be connected to

the analyzer in accordance with the EN50022/4.1987, EN50082-1/1992 standards. 

Transmission

Format

The communication conditions for the bar code reader are outlined in the table

 below:

Item Standard Specification

Method of transmission Start-stop synchronization method

Transmission character set 7 bits ASCII code

Data bit 7 bits

Parity bit Odd

Stop bit 2 bits

Transmission speed 9600 bps (bits per second)

Pin Designation The pins on the connector of the cable are assigned as follows:

Pins 1, 4, 7, 6, 8 - Not connected

Pin 2 - RxD

Pin 3 - TxD

Pin 5 - Ground

Pin 9 - +5 V

Power Source - Max 0.5 A

Continued on next page

8-4 

Page 227: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 227/234

 ABL700 Series Reference Manual 8. Interfacing Facilities

Connecting the Bar Code Reader, Continued

 

Procedure for

Connecting the

Bar Code

Reader

Follow the instructions below to connect the bar code reader to the analyzer.

Step Action

1. Switch off the analyzer.

2. Connect the bar code reader to the bar code reader port (COM3) at the

rear of the analyzer.

3. Switch on the analyzer.

8-5

Page 228: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 228/234

Page 229: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 229/234

Index

 A 

ABL700 Series Analyzer

documentation ........................................................... .................................................. 1-2

ABL735/30 Performance Test Results - Bilirubin......................................................... 5-36

ABL735/30/25/20/15/10/05/00 Capillary - pH Only Mode .......................................... 5-35

Absorbance ..................................................... ........................................................... ...... 3-2

Absorption Spectroscopy............................... ............................................................... ... 3-2

Acid-base Parameters ................................................................. ..................................... 6-6

Activity ............................................................. ............................................................... 2-3

Alphanumeric Keyboard...................................... ............................................................ 8-3

Altitude Correction ......................................................... ............................................... 6-49

Amperometric Method............................... ..................................................................... . 2-5

 B 

Bar Code Reader.......................... ..................................................................... ............... 8-4

Bias ................................................................. ................................................................ . 5-4

Bilirubin................................................................. ................................................. 3-9, 6-13

C  

Calibration

optical system..................................................................... ......................................... 3-9

Capillary - pH only mode

corrections ............................................................... .................................................... 2-22

Connecting

a bar code reader ......................................................... ................................................ 8-4

a mouse.............................................. ................................................................ .......... 8-2a network.............................................................. ....................................................... 8-6

an alphanumeric keyboard....................................................... .................................... 8-3

Conversion of Units...... ................................................................ ................................. 6-46

Correction factors for oximetry parameters and bilirubin ............................................... 4-4

Cuvette.............................................................................. ............................................... 3-2

 D 

Default Values ................................................................... ............................................ 6-48

Derived Parameters................................................................. ....................................... 6-20

 E 

Electrode Jacket ............................................................ ................................................... 2-2

Electrodescalibration.................................................................. .................................................. 2-7

general construction .............................................................. ...................................... 2-2

Electrolyte electrodes

description ........................................................... ...................................................... 2-43

Electrolyte Parameters.................................................................. ................................. 6-14

Equations

conversion of units .................................................... ................................................ 6-46

list of................................... ..................................................................... .................. 6-25

oxyhemoglobin dissociation curve (ODC)............... ................................................. 6-41

Expired Air Mode

 performance test results ........................................................................ ..................... 5-33

Gas Mixtures................................................ .................................................................... 7-7

Page 230: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 230/234

Index ABL700 Series Operator’s Manual 

 I  

Input Parameters............................................................... ............................................. 6-19

Interference tests .................................................................. .......................................... 5-42

 L 

Lambert-Beer's Law................................................................. ........................................ 3-2

 M  

Mean Corpuscular Hemoglobin Concentration

MCHC...................................................... ............................................................... .. 5-47

Measured Parameters.......................................... ........................................................... 6-16

Measurement and Corrections

optical system................................................................ ............................................ 3-10

Measurement Times - All Electrodes............................................................................. 2-14

Measuring Principles

general ........................................................ ................................................................. 2-3

Membrane................................................................. ....................................................... 2-2

Metabolite electrodes

description ............................................................ ..................................................... 2-55Metabolite Parameters .................................................................... ............................... 6-15

Mouse ............................................................... ............................................................... 8-2

 N  

 Network ............................................................ ............................................................... 8-6

Optical System

calibration.................................................................. .................................................. 3-9

correcting for HbF interference..................................................................... .............. 3-7

measurement and corrections .......................................................... .......................... 3-10

measuring principle .................................................................. ................................... 3-2

Oximetry Parameters ........................................................... ............................................ 6-8Oxygen Parameters......................... ............................................................... .................. 6-9

Oxyhemoglobin Dissociation Curve (ODC)................................................................ .. 6-41

 P 

Parameters

acid-base.................... ..................................................................... ............................. 6-6

 bilirubin ................................................................. .................................................... 6-13

electrolyte .............................................................. .................................................... 6-14

metabolite ..................................................................... ............................................. 6-15

oximetry.......................................................................................... ............................. 6-8

oxygen .......................................................... ............................................................... 6-9

 pCO2 Electrode

description ............................................................ ..................................................... 2-24

Performance Characteristics

general information .................................................................. ................................... 5-2

Performance test results

ABL700................................................................... .................................................. 5-31

ABL735/30/25/20/15/10/05 Macromodes................................................................. 5-11

ABL735/30/25/20/15/10/05 Micromodes ...................................................... ........... 5-20

Performance tests

interference........................ ..................................................................... ................... 5-42

Performance Tests

definition of terms and test conditions ..................................................................... ... 5-3

 pH Electrode

description ............................................................ ..................................................... 2-16

 pO2 Electrode

Page 231: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 231/234

 ABL700 Series Operator’s Manual Index

description ............................................................ ..................................................... 2-33

Potentiometric Method ......................................................................... ........................... 2-3

 R 

Reference Electrode

description ............................................................ ..................................................... 2-15

Reference Methodsfor the ABL700 series .................................................................. ............................... 5-9

Repressing Spectra....................................................................... .................................... 3-9

Residual spectrum......................................... ................................................................ ... 3-8

Salt-bridge Solution .................................................................. ....................................... 2-2

Solutions

electrolyte .......................................................... .......................................................... 7-8

S1720 and S1730 calibration solutions ............................................................. .......... 7-3

S4970 rinse solution .............................................................. ...................................... 7-4

S5362 Hypochlorite Solution ......................................................... ............................. 7-9

S5370 Cleaning Additive ............................................................. ............................... 7-5

S7370 cleaning solution .............................................................. ................................ 7-5

S7770 tHb calibration solution................................................................ .................... 7-6

T  

Test Conditions............................................................... ................................................. 5-6

Test Conditions for Capillary – pH only mode................................................................ 5-8

Test Measurements .................................................................. ........................................ 5-5

Test Measurements for Capillary – pH only mode.......................................................... 5-7

The Deep Picture ................................................................ ............................................. 6-2

U  

Units and Ranges

conversion of units .......................................................... .......................................... 6-46input parameters ........................................................ ................................................ 6-19

measured parameters ........................................................... ...................................... 6-16

Units

derived parameters ............................................................... ..................................... 6-20

Updatings - All Electrodes....................................................................... ...................... 2-14

User-Defined Corrections

correction factors for oximetry parameters and bilirubin............................................ 4-4

electrolyte and metabolite parameters ....................................................................... .. 4-8

general ......................................................... ................................................................ 4-2

W  

Warnings/Cautions and Notes .............................................................. ............................. 1-3

 

Page 232: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 232/234

 

Page 233: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 233/234

ate of Issue

TRadiometer Representative: T

 

TManufacturer:T

 

T ABL700 Series Reference Manual

Tfrom software identification version 3.836

Publication: 201003

Edition: Q

Code Number: 989-312

Specifications based on 29112-A4.

Page 234: Radiometer ABL 700 Serie

8/10/2019 Radiometer ABL 700 Serie

http://slidepdf.com/reader/full/radiometer-abl-700-serie 234/234

 ABL700 Series Reference Manual Date of Issue