27
TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III Solid-state NMR of spin > 1/2 Anisotropic Interactions Anisotropy of the chemical shift 1 H 0 ... 40 ppm (max. 16 kHz @ 9.4 T) 13 C 0 ... 250 ppm (max. 25 kHz @ 9.4 T) 19 F 0 ... 300 ppm (max. 113 kHz @ 9.4 T) Dipolar Interaction 1 H- 1 H, 1 H- 13 C: typically 50 kHz Quadrupolar Interaction Only for spin I 1 2 H (I=1) 0 ... 250 kHz 14 N (I=1) 0 ... 2 MHz 23 Na (I=3/2) 0 ... 10 MHz 27 Al (I=5/2) 0 ... 10 MHz 35,37 Cl (I=3/2) 0 ... 40 MHz Nuclear spins with I > 1/2 possess an “electrical quadrupole moment”.

Solid-state NMR of spin > 1/2 - Tata Institute of ...nmr/workshops/ws_nmr_10/ssnmr_2010_files/tb... · Solid-state NMR of spin > 1/2 ... Only for spin I ≥ 1 2 H (I=1) 0 ... Multi-Quantum

  • Upload
    vudang

  • View
    218

  • Download
    1

Embed Size (px)

Citation preview

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Solid-state NMR of spin > 1/2

Anisotropic Interactions

• Anisotropy of the chemical shift 1H 0 ... 40 ppm (max. 16 kHz @ 9.4 T) 13C 0 ... 250 ppm (max. 25 kHz @ 9.4 T) 19F 0 ... 300 ppm (max. 113 kHz @ 9.4 T)

• Dipolar Interaction 1H-1H, 1H-13C: typically ≤ 50 kHz

• Quadrupolar Interaction Only for spin I ≥ 1

2H (I=1) 0 ... 250 kHz

14N (I=1) 0 ... 2 MHz 23Na (I=3/2) 0 ... 10 MHz 27Al (I=5/2) 0 ... 10 MHz 35,37Cl (I=3/2) 0 ... 40 MHz

Nuclear spins with I > 1/2possess an “electricalquadrupole moment”.

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Properties of Selected Quadrupolar Nuclei

Q values in millibarn

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Quadrupolar Interaction for Spin-1

Energy level diagram Single crystal spectrum

Approximation:

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Relative Magnitude of Quadrupolar Interaction

Different situations because of relative magnitude of quadrupolar couplingconstant Cq (or QCC, or χ) and Larmor frequency ω0:

B0 = 0: Pure quadrupolar interaction (NQR, NNuclear QQuadrupole RResonance): Transitions between the quadrupole levels

Cq « ω0: „Quadrupolar interaction of first order“(i.e., Cq of the order of tens to hundreds of kHz)

Cq ≤ ω0: „Quadrupolar interaction of 2nd (and higher) order“ (i.e., Cq of the order of MHz)

Tetrahedral and higher symmetry: eq = 0 ⇒ No quadrupolar coupling!

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Quadrupolar Hamiltonian and Eigenfunctions for Spin-1

Quadrupolar Hamiltonian:

First order Hamiltonian:

Eigenvalues andEigenfunctions:

-

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

The Quadrupolar Splitting (I=1)

Quadrupolar CouplingConstant (QCC, Cq):

Largest component of EFG tensor:

Quadrupole moment:

!

", # Euler angles relating the PAS of the EFG to B0 (lab frame)

!

" asymmetry parameter of quadrupolar coupling tensor Q

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

The Quadrupolar Coupling Tensor

Keep a direct relation between doublet splitting andquadrupolar interaction by defining a quadrupolarcoupling tensor Q:

asymmetry of Q:

with:

Q in its own PAS:

with:

Obtain doublet splitting simply bythe tensor products:

b - unit vector along the magnetic field B0

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

From Rotation Pattern to Q-Tensor

Have z-axis of the Q-tensor PAS originally aligned alongdirection of B0, rotate step-wise around y-axis of PAS.

The tensor at 0o rotation is diagonal:

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Determine Full Q-Tensor from Rotation Pattern

T. Voosegard et al.

To obtain all elements of the Q-tensor:

⇒ Need more complex transformations for general orientation of Q-tensor.

⇒ Use more than one rotation axis.

⇒ Utilize crystal symmetries to extract all information from one rotation pattern. („Single rotation method“, Tesche et al., JMR 1993)

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Relation of the Q-Tensor to Molecular Structure

Haeberlen & co-workers, J. Magn. Reson., (2001), 151, 65-77. For a static (i.e. not motionallyaveraged) Q-tensor of a chemically bound deuteron, the following 3 rules can be formulated:

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Dynamic Information by 2H-NMR: Relaxation Time Analysis

Reorientational correlation timesaccessible by NMR methods

T1 relaxation time curve

methyl groupdynamics

phenyl ringdynamics

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

The Quadrupolar Echo Sequence

Echo experiment for I=1 only!

Systematic derivation:M. H. Levitt, Spin Dynamics,2nd edition

Alternative derivation:

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Solid-state 14N-NMR

S.P. Marburger, B.M. Fung, A. K. Khitrin,J. Magn. Reson. (2002) 154, 205--209

TiN(underMAS)

low symmetry:⇒ wide-line 14N-NMR spectra

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

14N-NMR: Overtone Spectroscopy

14N-Overtone NMR spectra of N-acetyl-D,L-valine

The frequency of a m ⇔ -m transition is unaffected by the 1st order quadrupolarsplitting. Therefore, overtone spectra of integral spin nuclei (e.g., 14N) can havemuch smaller total spectral ranges than the fundamental single-quantum spectra.

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Quadrupolar Nuclei in Inorganic Materials: Mostly I > 1

Numerous materials of technologicalinterest, which are functional only in thesolid state:

• Glasses, Ceramics• Minerals, Cements• Catalysts (Zeolites)• Polymers, Biopolymers

Frequently occuringNMR-observable nuclei:

• 1H (I=1/2)• 13C (I=1/2)• 29Si (I=1/2)• 11B (I=3/2)• 17O (I=5/2)• 23Na (I=3/2)• 25Mg (I=5/2)• 27Al (I=5/2)

(2002)

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Energy Levels of Spin-5/2

5(2si n22θ + si n4q)

3(si n4θ - 2si n22θ)

- 3(si n4θ - 2si n22θ)

- 5(2si n22θ + si n4θ)

2(si n4θ - 2si n22θ)

- 2(si n4θ - 2si n22θ)CT

ST

ST

ST

ST

HNMR = HZ + HQ (+ HDD + HCS) Zeeman 1st order HQ 2nd order HQ

- hν0m ( hCq/40) (3cos2θ- 1) (9hCq2/6400ν0)

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Spin-5/2 Static Spectra

1st order

central transition

Spectrum with 2I components, shifted by

νm = 3Cq(3cos2θ –1)(mz –1/2 )/(4I(2I-1)), with Cq = eQVzz/h

→ quadrupolar interaction parameters can be determined from full 1st orderpattern, or from characteristic 2nd order line shape

satellite transitions

2nd order

A = (I(I +1)-3/4) νq2/ν0

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Spectra of Spin-3/2 under MAS

ν r

M. E. Smith, E.R.H. van Eck, Prog. NMR Spec., 34, 159 (1999)

23Na-NMR spectra of Amelia albite (NaAlSi3O8)

2nd order line shape

2nd order quadrupolar lineshapes of the central transition

→ Extraction of quadrupolarparameters from shape ofcentral-transition line.

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Signal Enhancement by Spin Population Transfer (SPT)

central transition (CT)

satellite transitions (ST)

Saturation of satellite transitions firstdemonstrated by R. V. Pound in 1950.

Experimental realisation:

• adiabatic passage (Haase et al.)

•Double Frequency Sweeps (DFS) (Kentgens et al.)

• Fast Amplitude Modulated (FAM) pulse trains (S. Vega, P. K. Madhu, A. Goldbourt; P. Grandinetti)

• hyperbolic secant pulses (HS) (Wasylishen et al.)

Signal enhancement of CT:

saturation of ST ⇒ I + 1/2

inversion of ST ⇒ 2I

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Signal Enhancement using the QCPMG Sequence

87Rb (I=3/2) static

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Excitation Regimes for Quadrupolar Nuclei with I > 1

Non-selective excitation:

!

"RF

>>"Q!

"Q#"

Q

(1)max( ) =

3$

2I 2I %1( )

Selective excitation:

!

"RF

<<"Q

Intermediate case:

!

"RF#"

Q

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Selective Excitation of Central Transition

Pulse Nutation Response of CT:

Spin 3/2:

!

"nut

C= 2"

RF

Spin 5/2:

!

"nut

C= 3"

RF!

"nut

C= I +

1

2

#

$ %

&

' ( "RF

!

"nutC

= 2#$ nut

C % & p = 2# I +1

2

'

( )

*

+ , $RF % & p

Correct selective (“solid”) pulse:

“This effect often catches outinexperienced spectroscopists.”

(M. H. Levitt, Spin Dynamics, 2nd edition)

!

"RF

<<"Qfor

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

How to suppress 2nd order broadening

Simulation of 27Al-NMR MAS spectra ofthe centre band of kyanite (Al2SiO5)

B 0

M. E. Smith, E.R.H. van Eck, Prog. NMR Spec., 34, 159(1999)

field dependenceLegendre poly-nomial P4(cosq)

magi c angl e

P4(cosq)P2(cosq)

→ no angle for averaging P2and P4 simultaneously byrotating around a single axis

four sites resolved!

!"#1/ 2 , +1 / 2

(2nd order) = #Cq

2

6"0

I I +1( ) #3

4

$

% &

'

( )

* Acos4+ + Bcos

2 + + C[ ]

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Averaging P4(cosθ) by Double Rotation (DOR)

“High resolution solid-state N.M.R. Averaging ofsecond-order effects by means of a double-rotor”;A. Samoson, E. Lippmaa, & A. Pines,Mol. Phys., 65, 1013 (1988)

→ mechanically demanding: limited rotation speeds, therefore limited resolution→ still impossible to extract both chemical shift and Cq from one DOR spectrum

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Dynamic Angle Spinning (DAS)

B. F. Chmel ka et al ., Nature, 339, 42 (1989)

L. M. Bul l et al ., J. Am. Chem. Soc., 120, 3510 (1998)

→ less mechanically demanding than DOR→ because of long switching time (30 ms), the signal vanishes if sample has: * short T1 * strong dipolar interactions

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Multi-Quantum MAS (MQMAS) Spectroscopy

MQMAS DAS

coherence order

“Isotropic Spectra of Half-Integer QuadrupoleSpins from Bidimensional MAS NMR”,L. Frydman, and J. S. Harwood,J. Am. Chem. Soc., 117, 5367 (1995)

number of citations (Jan. 2010): 731

General principle: refocus anisotropicparts of interactions, so that at kt1 anecho will form. The amplitude of thisecho evolves only under the isotropicparts of the interactions.

!"#1/ 2 ,+1 / 2

(2nd order)= !" iso

(2nd order)+ Cl

pAl $ ,%( )

l=2,4

& Pl cos'( )

k =P2cos!

1( )P2cos!

2( )=P4cos!

1( )P4cos!

2( )k =

C4

p

C4

1

TIFR/RAC, Jan. 2010 Quadrupolar Nuclei I to III

Resolving Structural Sites with MQMAS

87Rb MQMAS spectra of RbNO3

D. Massiot et al., Solid State NMR, 6,73, (1996)

• anisotropic dimension F2 (2nd order quadrupolar)

• isotropic dimension F1 (chemical shift)→ different sites resolved

• obtain 2nd order line shapes for sites from 1D slices

• simulate line shapes to extract Cq values