Tìm hiểu tích phan LEBESGUE và không gian Lp

Embed Size (px)

Citation preview

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    1/60

    I HC QUC GIA H NITRNG I HC KHOA HC T NHIN

    KHOA TON - C - TIN HC

    Trnh Thu Trang

    TM HIU V TCH PHN LEBESGUEV KHNG GIAN Lp

    KHA LUN TT NGHIP I HC H CHNH QUY

    Ngnh: Ton - Tin ng dng

    Ngi hng dn: TS. ng Anh Tun

    H Ni - 2011

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    2/60

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    3/60

    LI CM N

    Trc khi trnh by ni dung chnh ca kha lun, em xin by t lng bit

    n su sc ti Tin s ng Anh Tun ngi thy tn tnh hng dn em

    c th hon thnh kha lun ny.

    Em cng xin by t lng bit n chn thnh ti ton th cc thy c gio

    trong khoa Ton - C - Tin hc, i hc Khoa Hc T Nhin, i Hc Quc

    Gia H Ni dy bo em tn tnh trong sut qu trnh hc tp ti khoa.

    Nhn dp ny em cng xin c gi li cm n chn thnh ti bn b nhng

    ngi lun bn cnh c v, ng vin v gip em.

    c bit cho em gi li cm n chn thnh nht ti gia nh nhng ngi

    lun chm lo, ng vin v c v tinh thn cho em.

    H Ni, ngy 16 thng 05 nm 2011

    Sinh vin

    Trnh Thu Trang

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    4/60

    Mc lc

    M u 1

    1 Tch phn Lebesgue 3

    1.1 i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.2 o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.2.1 o trn -i s tp hp . . . . . . . . . . . . . . . . . . 7

    1.2.2 o Lebesgue . . . . . . . . . . . . . . . . . . . . . . . . . 11

    1.3 Hm o c Lebesgue . . . . . . . . . . . . . . . . . . . . . . . . . 161.3.1 Hm o c Lebesgue . . . . . . . . . . . . . . . . . . . . . 16

    1.3.2 Cc php ton v hm s o c . . . . . . . . . . . . . . 17

    1.3.3 Cu trc hm o c . . . . . . . . . . . . . . . . . . . . . 19

    1.3.4 Hi t hu khp ni . . . . . . . . . . . . . . . . . . . . . . 20

    1.3.5 S hi t theo o . . . . . . . . . . . . . . . . . . . . . . 22

    1.3.6 Mi lin h gia hi t . . . . . . . . . . . . . . . . . . . . . 24

    1.4 Tch phn Lebesgue . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    1.4.1 Tch phn ca hm n gin . . . . . . . . . . . . . . . . . 28

    1.4.2 Tch phn ca hm khng m . . . . . . . . . . . . . . . . . 29

    1.4.3 Tch phn ca hm c du bt k . . . . . . . . . . . . . . 29

    1.4.4 Cc tnh cht s cp . . . . . . . . . . . . . . . . . . . . . . 30

    i

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    5/60

    MC LC

    1.4.5 Qua gii hn di du tch phn . . . . . . . . . . . . . . . 33

    1.4.6 Mi lin h gia tch phn Lebesgue v Rie mann . . . . . 36

    2 Khng gian Lp 382.1 Khng gian Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    2.2 Tnh tch c ca Lp . . . . . . . . . . . . . . . . . . . . . . . . . 47

    2.3 Bin i Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    2.3.1 Bin i Fourier trong L1 . . . . . . . . . . . . . . . . . . . 51

    2.3.2 Bin i Fourier trong Lp . . . . . . . . . . . . . . . . . . . 52

    Kt lun 55

    ii

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    6/60

    M u

    Tch phn Lebesgue xut hin vo th k XX nhm gii quyt mt vi

    nhc im ca tch phn Riemann, chng hn hm Dirichlet l hm n gin

    nhng khng kh tch Riemann. C mt iu th v v tng xy dng hai

    loi tch phn ny. Hai loi tch phn ny c xy dng da trn hai cch nhn

    khc nhau v hm s: Bernhard Riemann nhn hm s bt u t min xc nh

    cn Henri Lebesgue nhn hm s t tp gi tr. Kha lun ca em nhm tm

    hiu cch xy dng tch phn Lebesgue v cc lp hm kh tch Lebesgue cng

    nh c nhng so snh vi cc kt qu hc trong tch phn Riemann. Khalun c chia thnh hai chng.

    Trong Chng 1, em trnh by cch thc xy dng tch phn Lebesgue t

    o Lebesgue, hm o c Lebesgue ri tch phn Lebesgue v hm kh tch

    Lebesgue. Trong chng ny c khi nim hi t hu khp ni v hi t theo

    o l s m rng ca khi nim hi t im v hi t u. Em a vo

    cc v d cho thy s khc nhau gia cc khi nim hi t ny. Phn gn cui

    chng c cp n cc kt qu quan trng v vic chuyn gii hn qua du

    tch phn ca Beppo Levi, Pierre Fatou, c bit ca Henri Lebesgue v hi t

    chn. Em a v d cho thy kt qu hc Gii tch v vic chuyn gii hn

    qua du ly tch phn c m rng thc s. Kt thc chng ny l kt qu

    v mi quan h gia tch phn Lebesgue v tch phn Riemann.

    1

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    7/60

    M u

    Trong Chng 2, em trnh by khng gian Lp, 1 p v cc tnh cht.

    y l lp khng gian Banach (nh chun, y ) hn na cn tch c (c

    tp con m c tr mt) ngoi tr trng hp p =

    . Sau khi trnh by cc

    tnh cht c bn ny, em trnh by php bin i Fourier trong Lp, 1 p 2.

    xy dng c php bin i Fourier em da vo Bt ng thc Hausdorff-

    Young. Trong trng hp p > 2 em a vo v d cho thy Bt ng thc

    ny khng cn ng.

    Do thi gian c hn cng nh vic nm bt kin thc cn hn ch nn

    trong Kha lun khng trnh khi thiu st, chng hn em cha a vo chngminh Bt ng thc Hausdorff -Young v chng minh ny i hi kh nhiu kin

    thc chun b (L thuyt ni suy khng gian). Rt mong c s ch bo ca

    thy c v bn b khp ni.

    2

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    8/60

    Chng 1

    Tch phn Lebesgue

    1.1 i s

    nh ngha 1.1.1. [1]Cho tp X l mt tp ty khc rng. Mt h C cc tp

    con ca X c gi l i s cc tp con ca X, nuC tha mn ba iu kin:

    i) X C,

    ii) A C th X\A C,

    iii) A1, A2, A3, . . . An C thn

    k=1

    Ak C.

    Mnh 1.1.1. Cho C l i s tp con ca X th:

    i) C,

    ii) A1, A2, . . . An C thn

    k=1

    Ak C,

    iii) A C, B C th A\B C.

    Chng minh.

    i) Do C l i s tp con ca X nn theo iu kin (i) ca i s X C.

    3

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    9/60

    Chng 1. Tch phn Lebesgue

    M i s kn vi php ly phn b nn X\X = C.

    ii) Do A1, A2, . . . An C nn X\A1, X\A2, . . . X \An C. V C kn vi php hp hu

    hn nnn

    k=1

    (X

    \Ak)

    C. Mt khc

    n

    k=1

    (X

    \Ak) = X

    \(

    n

    k=1

    Ak) nn X\

    (n

    k=1

    Ak)

    C.

    M C kn vi php ly phn b nn X\(X\n

    k=1

    Ak) =n

    k=1

    Ak C. Vyn

    k=1

    Ak C.

    iii) Ta c A\B = A (X\B). M A, X\B C nn A (X\B) C (theo tnh cht

    2 va chng minh). Vy A\B C.

    Mnh 1.1.2. Cho X = R, C = {n

    i=1

    i : i l gian, i = 1, 2,...,n,n N,

    i

    j =

    vi i

    = j

    }l i s cc tp con caR.

    Trong , gian trnR l mt tp im c mt trong cc dng sau

    (a, b), [a, b], (a, b], [a, b), (, a), (, a], (a, +), [a, +), (, +) via, b R v

    = [a, b] th || = a b c gi l di ca trnR.

    Chng minh.

    i)Chn 1 = (

    , 0), 2 = [0, +

    ), 3 = (a, a) th R = 1

    2

    C v

    = 3

    C.

    ii)Gi sA C th khi A l hp ca hu hn ca cc gian khng giao nhau.

    Trng hp A l hp hu hn ca cc gian c dng i = (ai, ai+1) vi ai, ai+1 R.

    Khng mt tnh tng qut, gi sa1 < a2 < .. . < a2n. Khi A =n

    i=1

    i v

    R\A = (, a1] [a2, a3] ... [a2n, +)

    =

    n1i=1

    [a2i, a2i+1] (, a1] [a2n, +),

    cng l hp hu hn ca cc gian.

    Mt cch xy dng tng t vi cc trng hp cn li ca tp A ta cng c

    R\A cng l hp hu hn ca cc gian. Vy C kn vi php ly phn b.

    iii) Gi sP, Q C. Trc ht ta chng minh P Q C.

    t P =n

    i=1Ii , Ii l mt gian Ii

    Ii = vi i = i

    .

    4

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    10/60

    Chng 1. Tch phn Lebesgue

    Q =k

    j=1

    Jj , Jj l mt gian Jj

    Jj = vi j = j

    . Khi

    P

    Q = P

    (

    k

    j=1

    Jj) =

    k

    j=1

    (P

    Jj) =

    k

    j=1

    [(

    n

    i=1

    Ii)

    Jj ] =

    k

    j=1

    n

    i=1

    (Ii

    Jj).

    M Ii Jj = Lij(i = 1, . . . n;j = 1, . . . k) l cc gian khng giao nhau i mt nnk

    j=1

    ni=1

    Lij C hay P Q C.

    Theo chng minh trn th R\P, R\Q C nn (R\P) (R\Q) C,

    hay R\(P Q) C.

    T chng minh (ii) trn c P

    QC. S dng quy np ta c nu A1, A2, . . . An

    C

    thn

    i=1

    Ai C.

    nh ngha 1.1.2. [1]Cho X l mt tp hp khc rng, mt h F cc tp con

    ca X c gi l -i s, nuF tha mn ba iu kin:

    i) X F,

    ii) A F th X\A F,

    iii) A1, A2, ...An, . . . F th+k=1

    Ak F.

    V d 1.1.1. Cho X = R, C = {n

    i=1

    i : i l cc gian ri nhau, i = 1,...n, n N}

    khng l -i s.

    Tht vy, t Ak = [2k, 2k + 1], kN th Ak

    C. Ta cn i chng minh

    k=1

    Ak khng c dngn

    i=1

    i, vi i l mt gian.

    S dng phn chng, gi s rng

    k=1

    Ak =n

    i=1

    i vi i l gian v ij = (i = j ).

    Gi s1 c u mt l a1, a2 ; 2 c u mt l a3, a4; . . . ; n c u mt l

    a2n1, a2n.

    Do cc gian ri nhau nn khng mt tnh tng qut, gi sa1 < a2 < . . . < a2n1 < a2n.

    Nu a2n < +, chn k0 sao cho 2k0 > a2n. Nh vy 2k0

    k=1

    [2k, 2k + 1] nhng

    5

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    11/60

    Chng 1. Tch phn Lebesgue

    2k0 /n

    i=1

    i. iu ny v l.

    Nu a2n = +, chn k0 sao cho 2k0 > a2n1.

    Nh vy 2k0 +3

    2 n nhng 2k0 +

    3

    2/

    k=1

    [2k, 2k + 1]. iu ny v l.

    Vy iu gi s l sai, C khng l -i s.

    Ta s xy dng mt -i s nh nht cha C.

    nh ngha 1.1.3. [1]-i s nh nht bao hm lp cc tp m trong khng

    gianR c gi l -i s Borel ca khng gianR v nhng tp thuc-i s

    ny c gi l tp Borel trong khng gianR.

    Tp Borel l nhng tp xut pht t tp m v thc hin mt s hu hn hay

    m c php ton hp, giao trn tp .

    Theo nh ngha -i s mt tp l tp Borel th phn b ca n cng l

    tp Borel. Do tp m l tp Borel nn tp ng cng l tp Borel.

    Do -i s ng vi php hp v giao m c nn hp ca mt s m

    c cc tp ng l mt tp Borel v giao ca mt s m c tp m cng

    l tp Borel.

    Mnh 1.1.3.

    i) -i s Borel trong khng gianR cng l-i s nh nht bao hm lp cc

    tp ng.

    ii) -i s Borel trnR cng l -i s nh nht bao hm lp cc khong.

    iii) -i s Borel trnR cng l -i s nh nht bao hm lp cc gian.

    Chng minh. i) Cho M l lp cc tp m trong R. Gi F(M) l -i s nh

    nht bao hm lp M hay -i s Borel. N l lp cc tp ng, F(N) l -i

    s nh nht bao hm N. Ta c N F(M) nn F(N) F(M).

    6

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    12/60

    Chng 1. Tch phn Lebesgue

    Mt khc v mi tp m l phn b ca tp ng nn M F(N). Do

    F(M) F(N). Vy F(M) = F(N) hay -i s nh nht bao hm lp cc tp

    ng cng l -i s Borel.

    ii) Cho M l lp cc tp m trong R, N l lp cc khong. V mi khong

    u l tp m nn N F(M) vi F(M) l -i s nh nht bao hm M v

    F(N) F(M).

    M mi tp m l hp hu hn hay m c cc khong nn M F(N) v

    F(M) F(N).

    Vy F(M) = F(N) hay -i s nh nht bao hm lp cc khong cng l -i

    s Borel.

    iii) Cho G l lp cc gian, N l lp cc khong. Gi F(G), F(N) l -i s nh

    nht bao hm mi tp . Do gian cha cc khong m nn F(N) F(G).

    M mi gian li biu din c thnh hp hu hn hoc m c ca cc tp

    m hoc ng v -i s nh nht bao hm lp cc tp m cng l -i s

    nh nht bao hm cc tp ng. Do F(G) F(N).

    Vy F(G) = F(N).

    1.2 o

    1.2.1 o trn -i s tp hpCho X l tp bt k trong khng gian R, F l -i s cc tp con ca X.

    Xt hm tp : F [0, +].

    nh ngha 1.2.1. [1] c gi l cng tnh nu

    A, B

    F, A

    B =

    , A

    B

    F th (A

    B) = (A) + (B).

    7

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    13/60

    Chng 1. Tch phn Lebesgue

    nh ngha 1.2.2. [1] c gi l cng tnh hu hn nu c mt h hu hn

    cc tp hp i mt ri nhau A1, A2, . . . An F th

    (

    ni=1

    Ai) =

    ni=1

    (Ai).

    nh ngha 1.2.3. [1] c gi l -cng tnh nu c mt h m c cc

    tp hp i mt ri nhau A1, A2, . . . An,... F th

    (

    +i=1

    Ai) =

    +i=1

    (Ai).

    Mt hm -cng tnh th cng tnh nhng ngc li khng ng.

    nh ngha 1.2.4. [1] l o trn -i s nu tha mn hai iu kin sau:

    i) () = 0,

    ii) l -cng tnh.

    Tnh cht ca o

    Vi l o trn F ta c cc tnh cht sau:

    1. A, B F, A B th (A) (B).

    V A B nn B = (B\A) A, B\A A = .

    Do (B) = (B\A) + (A) (A).

    2. Nu A, B F, A B, (A) < + th (B\A) = (B) (A).

    V (B) = ((B\A) A) = (B\A) + (A) hay (B\A) = (B) (A).

    3. Hp ca mt h m c cc tp c o bng 0 l tp c o bng 0.

    Ta c (Ak) = 0 vi k = 1, 2, . . . , n . . . v l -cng tnh nn

    (

    k=1

    Ak) =

    k=1

    (Ak) = 0.

    8

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    14/60

    Chng 1. Tch phn Lebesgue

    nh ngha 1.2.5. o c gi l o nu mi tp con ca tp c

    o bng 0 u l tp o c v c o bng 0.

    nh ngha 1.2.6. [1] Mt hm

    xc nh trn mt lp tt c cc tp conca khng gianR, c gi l o ngoi nu:

    i) (A) 0 vi mi A X,

    ii) () = 0,

    iii) A

    k=1

    Ak th (A)

    k=1

    (Ak).

    nh l 1.2.1. [1](Caratheodory) Cho l o ngoi trn X, k hiu L l

    lp tt c cc tp con A ca X sao cho

    (E) = (E A) + (E\A) vi mi E X. (1.2.1)

    Khi yL l -i s v hm = /L (thu hp ca trn L) l o trn L.

    Chng minh. Trc ht ta chng minh L l mt -i s.

    D nhin L v vi mi E X : (E) = () + (E) = (E ) + (E\).

    Lp L cng kn i vi php ly phn b, v nu A L th vi mi E X ta c

    (E) = (E A) + (E\A) = (E\(X\A)) + (E (X\A)).

    chng minh L l -i s ta cn chng minh L kn vi php hp m c.

    Cho Ai L, i = 1, 2, . . . v tp bt k E X. p dng ng thc 1.2.1, ta c:

    (E) = (E A1) + (E\A1)

    = (E A1) +

    (E\A1) A2

    +

    (E\A1)\A2

    = ...

    =

    k

    j=1

    (E\

    j1

    i=1 Ai) Aj

    +

    (E\

    k

    j=1 Aj).

    9

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    15/60

    Chng 1. Tch phn Lebesgue

    Do

    (E) k

    j=1

    (E\j1i=1

    Ai) Aj

    +(E\

    j=1

    Aj).

    V iu ny ng vi mi k nn

    (E)

    j=1

    (E\j1i=1

    AiAj) + (E\

    j=1

    Aj). (1.2.2)

    Mt khc d dng nhn thy

    E (

    j=1

    Aj) =

    j=1

    (E\

    j1i=1

    Ai) Aj

    ,

    (v nu c mt j vi x E Aj th ly j l ch s nh nht nh vy ta c

    x E\Ai vi mi i = 1, . . . , j 1).

    Vy theo tnh cht di cng tnh (iii) ca :

    (E) (E (

    j=1

    Aj)) + (E\

    j=1

    Aj)

    j=1

    ((E\j1i=1

    Ai) Aj) + (E\

    j=1

    Aj)

    (E) (theo 1.2.2),

    suy ra

    j=1

    Aj L, chng t L l -i s.

    Cho Ai L, i = 1, 2, . . . l cc tp ri nhau. Ly E =

    j=1

    Aj. Khi E\

    j=1

    Aj =

    v (E\j1i=1

    Ai) Aj = Aj .

    Ta c (

    j=1

    Aj)

    j=1

    (Aj ) theo (1.2.2),

    M theo iu kin (iii) ca o ngoi ta c (

    j=1

    Aj)

    j=1

    (Aj).

    Vy (

    j=1

    Aj) =

    j=1

    (Aj) hay trn L l mt o.

    Nh vy nu xy dng mt o ngoi trn R tha mn mn nh l

    Caratheodory th ta c mt o trn R. Ta xy dng o ngoi nh sau.

    10

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    16/60

    Chng 1. Tch phn Lebesgue

    Cho hm : R [0, +]

    (A) = inf{+i=1

    |i| :+i=1

    i A, i l gian, i = 1, 2, . . .},

    khi l mt o ngoi trn R.

    Tht vy, hin nhin (A) 0 vi mi A R, () = 0.

    Vi > 0 bt k, vi mi i = 1, 2, . . . ta ly mt h khong m k,i , k = 1, 2, . . .

    sao chok,i

    k,i Ai v

    k

    |k,i| (Ai) + 2i

    . V A k,i

    k,i ta c

    (A)k,i |

    k,i| i (

    (Ai) +

    2i) =

    i

    (Ai) + .

    Do > 0 ty nn (A)

    i=1

    (Ai). Vy l o ngoi trn R.

    1.2.2 o Lebesgue

    nh ngha 1.2.7. [1]Cho hm : R [0, +]

    (A) = inf{+i=1

    |i| :+i=1

    i A, i l gian, i = 1, 2, 3, . . .},

    c gi l o ngoi Lebesgue trnR.

    Hm tp l mt o ngoi trn R nh vy ta c th p dng nh l

    Caratheodory xy dng mt o trn R, chnh l o Lebesgue.

    nh ngha 1.2.8. Hm : L [0, ] trong L l lp tt c cc tp con A

    caR sao cho

    (E) = (E A) + (E\A) vi mi E R,

    l o Lebesgue trnR, k hiu l v A c gi l tp o c Lebesgue.

    Theo nh l Caratheodory th lp cc tp o c Lebesgue L l mt -i s.

    11

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    17/60

    Chng 1. Tch phn Lebesgue

    nh ngha 1.2.9. Tp A R c gi l tp o c Lebesgue trongR nuA

    thuc -i s Lebesgue.

    Vy tp khng o c Lebesgue s nh th no? Ta ly v d sau y t tiliu [4]

    V d 1.2.1. Vi mi tp Ax = {y [0, 1] : x y = r, r Q} chn mt im.

    Tp tt c cc im ny gi l P th P l mt tp khng o c.

    nh ngha 1.2.10. [1] Tp N bt k c gi l tp c o 0 nu(N) = 0,

    tc l sao cho

    inf{

    k=1

    |k| :

    k=1

    k N, k l gian} = 0. (1.2.3)

    nh l 1.2.2. [1] Mt tp N c o 0 khi v ch khi vi mi > 0 c th tm

    c mt h (hu hn hay m c) giank ph N v c di tng cng nh

    hn

    +

    k

    k N, +k=1

    |k| < .

    Chng minh. Tht vy, nu (N) = 0 th theo cng thc (1.2.3) vi > 0 cho

    trc c mt h khong m k ph N sao cho

    k=1

    |k| < .

    Ngc li, nu vi mi > 0 u c mt ph nh vy th

    inf{

    k=1|k| :

    k=1

    k N, k l gian} = 0.

    Vy N l tp c o 0.

    V d 1.2.2.

    1. Tp N = 1, 2, . . . , n l tp c o 0.

    2. Tp cc s hu t c o 0.

    3. Tp Cantor P trn [0, 1] xy dng theo cch di y c o 0.

    12

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    18/60

    Chng 1. Tch phn Lebesgue

    Xt tp hp [0, 1].

    Bc 1. Chia [0, 1] thnh ba khong bng nhau, b i khong gia G1 = (1

    3,

    2

    3).

    Bc 2. Chia ba mi on cn li l [0,1

    3

    ] v [2

    3

    , 1] b i khong gia ca chng.

    t G2 = (1

    9,

    2

    9) (7

    9,

    8

    9) . . . Gi Gn l hp ca 2n1 cc khong b i bc th

    n, G =

    k=1

    Gk l hp ca tt c cc khong b i, P = [0, 1]\G.

    Ta c (Gn) = 2n1.(1

    3)

    n

    =1

    2.(

    2

    3)n.

    Khi (G) =

    n=1 (Gn) =1

    2

    n=1(

    23)

    n = 1.

    M [0, 1] = ([0, 1]\G) G = P G nn ([0, 1]) = (P) + (G).Vy (P) = ([0, 1]) (G) = 1 1 = 0.

    Ta thy tp c o 0 c th c lc lng l hu hn, m c hay khng

    m c. Tp Cantor l mt tp c bit. Lc lng ca tp Cantor trn R l

    khng m c nhng o ca n vn bng 0.

    nh l 1.2.3. [1] o Lebesgue l o .Chng minh. Gi s(A) = 0 ta cn chng minh mi tp con ca A u o c

    v c o bng 0.

    Gi N l tp con ca A th 0 (N) (A). M (A) = 0 th (N) = 0. Li

    c E = (E N) (E\N) nn (E) (E N) + (E\N) vi mi E R.

    Do (E

    N)

    N nn (E

    N)

    (N) = 0 v (E)

    (E

    \N).

    Mt khc (E\N) E nn (E\N) (E). Do (E) = (E\N), tc l

    (E) = (E N) + (E\N).

    Vy N l tp o c Lebesgue v (N) = (N) = 0.

    nh l 1.2.4. Mi tp Borel u o c Lebesgue.

    Chng minh. Trc ht ta i chng minh mi khong m u o c Lebesgue.

    Ly mt khong m bt k. Xt mt tp E R ty v mt h gian k

    13

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    19/60

    Chng 1. Tch phn Lebesgue

    ph E. R rng vi mi k th k = k l gian v k\ =k,i

    k,i l hp

    cc gian.

    Cho nn k

    k = (k

    k)(k

    k,i) v k |

    k

    |=

    k |

    k

    |+

    k,i |

    k,i

    |.

    Do

    (E) = inf{

    k

    |k|}

    = inf{

    k

    |k| +

    k,i

    |k,i|}

    inf

    {k |

    k

    |}+ inf

    {k,i |

    k,i

    |},

    Suy ra (E) (E ) + (E\), E R, hay o c Lebesgue.

    Do l khong m bt k nn mi khong m u o c Lebesgue. M mi

    tp m trong R l mt hp m c nhng khong m, nn -i s nh nht

    bao hm lp cc khong m cng l -i s nh nht bao hm lp cc tp m,

    tc l -i s Borel. M -i sL

    l -i s bao hm lp cc khong. Vy

    -i s L cha -i s Borel, hay tp Borel o c Lebesgue.

    nh l 1.2.5. Mi tp o c Lebesgue l mt tp Borel thm hay bt mt

    tp c o 0.

    Chng minh. B l tp Borel v N l tp c o 0 th B, N L nn vi tp

    A = B\N v A = B N cng o c Lebesgue.Ngc li gi sA L. Ta i chng minh tn ti tp Borel B sao cho (B) = (A).

    V A L nn c th tm c cho mi k = 1, 2, ..., nhng khong m Pik sao cho

    A

    i=1

    Pik v

    i=1

    (Pik) (A) + 1/k = (A) + 1/k.

    t B =

    k=1

    i=1

    Pij ta thy B A v B thuc i s Borel.

    14

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    20/60

    Chng 1. Tch phn Lebesgue

    Mt khc vi mi k, B

    i=1

    Pij nn

    (B)

    i=1

    (Pik) (A) + 1/k.

    Do (B) (A) m B A nn (B) = (A).

    t N = B\A ta c (N) = (B\A) = 0.

    V A L nn R\A L. Tn ti hai tp B l tp Borel v N l tp c o 0

    sao cho R\A = B\N. Suy ra A = (R\B) N, hay A = B N vi B = R\B

    l tp Borel.

    Vy mi tp o c Lebesgue chng qua l mt tp Borel thm hay bt mt

    tp c o 0.

    nh l 1.2.6. i vi mt tp A trnR ba iu kin sau l tng ng:

    i) A o c Lebesgue.

    ii) Vi mi > 0 c th tm c tp m G A sao cho (G\A) < .

    iii) Vi mi > 0 c th tm c mt tp ng F A sao cho

    (A\F) < .Chng minh. (i) (ii). Trc ht ta xt trng hp (A) < . T nh ngha

    o ngoi, vi > 0 cho trc c th tm c mt h khong m k ph

    A sao cho

    k

    |k| < (A) + . ng nhin G l tp m bao hm A v c

    (G) k

    |k| < (A) + . T (G\A) = (G) (A), suy ra (G\A) < .

    Trong trng hp tng qut, A =

    n=1 A [n, n] v mi tp An = A [n, n] c

    (An) < , nn theo trn c nhng tp m Gn An vi (Gn\An) < 1/2n. Khi

    y tp G =

    n=1

    Gn m, bao hm A v tha mn

    (G\A)

    n=1

    (Gn\An) 0 c th tm

    c mt tp m G (R\A) sao cho (G\(R\A)) < . D nhin vi F l phn

    b ca G th F A v (A\F) = (G\(R\A)) < . T suy ra (i) (iii).

    1.3 Hm o c Lebesgue

    1.3.1 Hm o c Lebesgue

    nh ngha 1.3.1. Hm s f : A [, +] c gi l o c trn A vi

    A l mt tp o c Lebesgue nu

    a R, E1 = {x A : f(x) < a} L. (1.3.4)

    nh l 1.3.1. iu kin (1.3.4) trong nh ngha tng ng vi cc ng

    thc sau:

    a R, E2 = {x A | f(x) > a} L. (1.3.5)

    a R, E3 = {x A | f(x) a} L. (1.3.6)

    a

    R, E4 =

    {x

    A

    |f(x)

    a

    } L. (1.3.7)

    Chng minh. (1.3.4) (1.3.7) v E2 v E4 b nhau nn E4 L v L kn i vi

    php ly phn b.

    Tng t (1.3.5) (1.3.6) v E2, E3 b nhau.

    (1.3.4) (1.3.6). Tht vy f(x) a khi v ch khi vi mi n c f(x) < a + 1n

    .

    Nn vi mi n {x A : f(x) a} =+

    n=1{x A : f(x) < a +1

    n} L,

    v {x A : f(x) < a + 1n} L.

    16

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    22/60

    Chng 1. Tch phn Lebesgue

    Ngc li (1.3.6) (1.3.4). Tht vy f(x) < a khi v ch khi mi n c f(x) a 1n

    .

    Nn {x A : f(x) < a} =+n=1

    {x A : f(x) a 1n} L, (v {x A : f(x)

    a

    1

    n} L).

    1.3.2 Cc php ton v hm s o c

    Mnh 1.3.1. Cho A l tp o c Lebesgue.

    i) Nu f(x) o c trn A th vi mi > 0 hm s |f(x)| cng o c.

    ii) Nu f(x), g(x) o c trn A v hu hn th cc hm s

    f(x) g(x), f(x).g(x),max{f(x), g(x)},min{f(x), g(x)}

    cng o c, v nu g(x) khng trit tiu th hm s 1/g(x) cng o c.

    Chng minh. i) Nu f(x) o c th vi mi a > 0

    {x A : |f(x)| < a} = {x A : |f(x)| < a 1}

    = {x A : a 1 < f(x) < a 1}

    = {x A : f(x) < a 1} {x A : f(x) > a 1} L,

    v mi tp {x A : f(x) < a 1} v {x A : f(x) > a 1} u thuc L.

    Nu a

    0 th{

    x

    A :

    |f(x)

    | < a

    }=

    L. Vy

    |f(x)

    | o c.

    ii) Cho a l mt s thc bt k, r1, r2, r3, . . . , rn, . . . l dy cc s hu t. Khi

    f(x) + g(x) < a f(x) < a g(x).

    Do tp hu t tr mt trong tp s thc nn tn ti s hu t rn sao cho

    f(x) < rn < a g(x). Nh vy

    {x A : f(x) g(x) < a} =

    n{x A : f(x) < rn < a g(x)}

    =

    n=1

    {x A : f(x) < rn} {x A : g(x) < a rn} L,17

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    23/60

    Chng 1. Tch phn Lebesgue

    v mi tp {x A : f(x) < rn}, {x A : g(x) < a rn} u thuc L.

    Vy f(x) + g(x) l o c. Tng t ta c f(x) g(x) l o c.

    Ta c cc h thc sau

    f(x).g(x) =1

    4[(f(x) + g(x))2 (f(x) g(x))2],

    max{f(x), g(x)} = 12

    (f(x) + g(x) + |f(x) g(x)|),

    min{f(x), g(x)} = 12

    (f(x) + g(x) |f(x) g(x)|).

    Vy cc hm s f(x).g(x),max{

    f(x), g(x)

    },min

    {f(x), g(x)

    }cng o c.

    nh l 1.3.2. Cho A l mt tp o c Lebesgue, fn : A R, n = 1, 2, 3 . . . l

    nhng hm o c v hu hn trn A th cc hm

    supn

    fn(x), infn

    fn(x), limn

    fn(x), limn

    fn(x)

    cng o c trn A, v nu hm s limn

    fn(x) tn ti th n cng o c.

    Chng minh. Chn s thc a bt k c

    {x A : supn

    fn(x) a} =

    n=1

    {x A : fn(x) a} L,

    {x A : infn

    fn(x) a} =

    n=1

    {x A : fn(x) a} L.

    Suy ra cc hm s supn

    fn(x), infn

    fn(x) o c.

    Do ta c

    limn

    fn(x) = infn

    {supk

    fn+k(x)},

    limn

    fn(x) = supn

    {infk

    fn+k(x)},

    cng o c.

    Nu dy fn(x) hi t th limn fn(x) = limn fn(x). Vy limn fn(x) o c.

    18

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    24/60

    Chng 1. Tch phn Lebesgue

    1.3.3 Cu trc hm o c

    nh ngha 1.3.2. Cho A l mt tp bt k trong khng gianR, ta gi hm

    c trng ca A l hm sXA(x) xc nh nh sau

    XA(x) =

    0 nu x / A ,

    1 nu x A .

    nh ngha 1.3.3. Cho A l tp o c Lebesgue, hm f : A R c gi l

    hm n gin nu n hu hn, o c v ch ly mt s hu hn gi tr. Gi

    f1, f2, . . . , f n l cc gi tr khc nhau ca f(x) v Ai = {x : f(x) = fi} th tp Aio c, ri nhau v ta c

    f(x) =

    ni=1

    fiXAi(x).

    nh l 1.3.3. Mi hm f(x) o c trn tp o c A l gii hn ca mt

    dy hm n gin fn(x),f(x) = lim

    nfn(x).

    Nu f(x) 0 vi mi x A th c th chn cc fn cho

    fn(x) 0, fn+1(x) fn(x),

    vi mi n v mi x

    A.

    Chng minh. t f(x) = 0 vi mi x / A ta c th coi nhf(x) xc nh v o

    c trn ton R.

    Nu f(x) 0. t

    fn(x) =

    n nu f(x) n,

    i 12n

    nu i 12n

    f(x) < i2n

    (i = 1, 2, . . . , n .2n).

    19

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    25/60

    Chng 1. Tch phn Lebesgue

    R rng fn(x) l hm n gin v fn(x) 0, fn+1(x) fn(x).

    Ta cn chng minh f(x) = limn

    fn(x).

    Nu f(x) 0 limn+

    ({x A : |fn(x) f(x)| }) = 0.

    Ni cch khc > 0, > 0 tn ti n0 N sao cho

    n N : n > n0 th ({x A : |fn(x) f(x)| }) < .

    nh l 1.3.5.

    i) Nu f(x), g(x) o c v f(x), g(x) bng nhau h.k.n trn A, fn f trn A

    th fn g trn A.

    ii) Nu fn f trn A v fn g trn A th f(x), g(x) bng nhau h.k.n trn A.

    Chng minh. i) V f(x), g(x) bng nhau h.k.n trn A nn tn ti mt tp

    B = {x A : f(x) = g(x)} c o (B) = 0 (v f(x), g(x) o c nn B L).

    Vi mi > 0 ta c:

    An = {x A : |fn(x) g(x)| }

    = {x A\B : |fn(x) f(x)| } {x B : |fn(x) g(x)| }

    {x A\B : |fn(x) g(x)| } B.

    M {x A\B : |fn(x) g(x)| } = {x A\B : |fn(x) f(x)| },

    nn An {x A : |fn(x) f(x)| } B. Suy ra

    (An) ({x A : |fn(x) f(x)| }) + (B)

    = ({x A : |fn(x) f(x)| }) 0 khi n ,

    22

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    28/60

    Chng 1. Tch phn Lebesgue

    v fn f trn A. Do lim

    n(An) = 0. Vy fn

    g trn A.

    ii) t A0 = {x A : |f(x) g(x)| > 0} = {x A : f(x) = g(x)},

    A =

    {x

    A :

    |f(x)

    g(x)

    |

    }, > 0,

    Ak = {x A : |f(x) g(x)| 1k}, k N,

    Bn = {x A : |fn(x) f(x)| 2}, n N,

    Cn = {x A : |fn(x) g(x)| 2}, n N.

    Cc tp hp ny u o c v fn(x), f(x), g(x) u o c trn A.

    Ta cn chng minh (A0) = 0.Trc ht ta chng minh

    A0 =

    k=1

    Ak (1.3.8)

    Ly x0 A0, ta c x A v |f(x) g(x)| > 0.

    Theo tnh tr mt ca tp s thc s tn ti s t nhin k0 sao cho

    |f(x) g(x)| 1k0

    > 0,

    suy ra x Ak0. Do x

    k=1

    Ak

    Ngc li ly x

    k=1

    Ak th tn ti s t nhin k0 sao cho x0 A.

    Suy ra x A v |f(x) g(x)| 1k0

    nn |f(x) g(x)| > 0, do x A0.

    Vy ng thc (1.3.8) c chng minh. Khi ta c

    (A0)

    k=1(Ak) (1.3.9)

    By gi ta chng minh

    A Bn Cn, n N, > 0 (1.3.10)

    hay A\A A\(Bn Cn) = (A\Bn) (A\Cn). Tht vy, ly x (A\Bn) (A\Cn)

    23

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    29/60

    Chng 1. Tch phn Lebesgue

    Ta c x A v |fn(x) f(x)| < 2

    , |fn(x) g(x)| < 2

    . Suy ra

    |f(x) g(x)| = |f(x) fn(x) + fn(x) g(x)|

    |fn(x) f(x)| + |fn(x) g(x)| < .

    Do x A\A. Vy (1.3.10) c chng minh.

    Khi

    (A) (Bn) + (Cn). (1.3.11)

    M limn

    (Bn) = 0, limn

    (Cn) = 0.

    V fn f, fn g trn A, nn ly gii hn hai v ca (1.3.11) ta c (A) = 0,

    vi mi > 0.

    Suy ra (Ak) = 0, khi =1

    k> 0, vi mi k N.

    T (1.3.9) ta c (A0) = 0.

    1.3.6 Mi lin h gia hi tnh l 1.3.6. (Egorov) Cho mt dy hm{fn} o c, hu hn h.k.n, trn

    mt tp o c A c o (A) < +. Vi mi > 0 tn ti mt tp o c

    B A sao cho (A\B) < v dy hm{fn} hi t u trn tp B.

    Trc ht ta chng minh b sau

    B 1.3.1. Cho , > 0 th c mt tp ng B l con ca A v mt s thc

    K sao cho (A\B) < v |f(x) fk(x)| < vi mi x F v k > K.

    Chng minh. C nh , > 0. Cho m bt k, t Am = {x A : |f(x)

    fk(x)| < vi mi k > m}. Nh vy Am =

    k>m{x A : |f(x) fk(x)| < }

    v Am l o c.

    R rng Am Am+1. Ngoi ra fk(x) hi t h.k.n n hm s f(x) trn A v f(x)

    24

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    30/60

    Chng 1. Tch phn Lebesgue

    l hu hn nn Am tng n A\Z vi (Z) = 0. Do (Am) (A\Z) = (A).

    T(A) < ta thy rng (A\Am) 0.

    Chn m0 sao cho (A\

    Am0) 0 p dng b 1.3.1 chn tp ng

    Bm A, m 1 v s thc Km, sao cho (A\Bm) < 12m

    v |f(x) fk(x)| < 1m

    trong Bm nu k > Km,. B =m

    Bm l tp ng v B Bm vi mi m nn fk(x)

    hi t u ti f(x) trn B.

    Suy ra A\B = A\m

    Bm =m

    (A\Bm). Vy (A\B)

    (A\Bm) < .

    nh l 1.3.7. Nu mt dy hm{fn} o c trn mt tp A hi t h.k.n ti

    mt hm s f(x) th f(x) o c v nu (A) < th fn f.

    Chng minh. {fn(x)} hi t h.k.n ti f(x) trn A nn tn ti B = {x A :

    fn(x) f(x)}, (B) = 0 v mi tp con ca B cng o c v c o 0 (v

    l o ). Do f(x) o c trn B.

    Mt khc fn(x) f(x) vi mi x A\B nn theo nh l 1.3.2 f(x) o c

    trn A\B.

    Vy f(x) o c trn B (A\B) = A.

    Chn > 0 ty . Vi mi n tn ti i sao cho |fn+i(x) f(x)| suy ra x B,

    cho nn n=1

    i=1

    {x A : |fn+i(x) f(x)| } B,

    do

    n=1

    i=1

    {x A : |fn+i(x) f(x)| }

    = 0.

    t En =

    i=1{x A : |fn+i(x) f(x)| }, ta c

    E1 E2 . . . En . . .

    25

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    31/60

    Chng 1. Tch phn Lebesgue

    v E1 A nn (E1) (A) < nn (

    n=i

    En) = limn

    (En),

    do (

    i=1

    {x A : |fn+i(x) f(x)| }) (En) 0.

    Vy fn

    f.

    nh l 1.3.8. Nu dy hm s o c fn(x) hi t theo o ti f(x), th c

    mt dy con fnk(x) hi t h.k.n ti f(x).

    Chng minh. Chn dy gk 0 v dy tk > 0 sao cho

    k=1 tk < . Vi mi k

    tn ti mt s t nhin n(k) sao cho vi mi n n(k)

    ({x : |fn(x) f(x)| gk}) < tk.

    t n1 = n(1), n2 = max{n1 + 1, n(2)},... ta s c n1 < n2 < . . . v dy ny hi t

    ti +. Vi mi k ta c

    ({x : |fnk(x) f(x)| gk}) < tk.

    Xt tp B =

    i=1

    Qi vi Qi =

    k=1{x : |fnk(x)f(x)| gk}. Vi mi i ta c B Qicho nn

    (B) (Qi)

    k=i

    ({x : |fnk(x) f(x)| gk}) n0 th x [0, 1 1n

    ] suy ra fn(x) = x = f(x)

    Do fn(x) hi t im n f(x) trn [0, 1)

    sup[0,1)

    |fn(x)

    f(x)

    |= 1 +

    1

    n

    1 khi n

    .

    fn(x) khng hi t u. Vy fn(x) hi t theo o nhng khng hi t u.

    27

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    33/60

    Chng 1. Tch phn Lebesgue

    Ta xt v d v mt hm hi t h.k.n nhng c o l v cng th s khng

    hi t theo o.

    V d 1.3.3. Chof

    n xc nh trnR

    fn(x) =

    1 khi x [n, n + 1],

    0 ti cc im khc,

    v hm f(x) = 0.

    Ly x R. Chn n0 = [x]+1 th vi mi n > n0 tc l n > [x]+1 > x th fn(x) = 0.

    Nn limn fn(x) = 0 hay fn(x) hi t h.k.n n f(x) = 0 trn R v (R) = Chn =

    1

    2th

    |fn(x) 0| 12

    khi x [n, n + 1].

    Do Bn = {x R : |fn(x) 0| 12} = [n, n + 1].

    (Bn) = 1 1 khi n , hay fn(x) khng hi t theo o n f(x) = 0.

    Vyf

    n(x)

    hi t h.k.n trnR

    nhngf

    n(x)

    khng hi t theo o.

    1.4 Tch phn Lebesgue

    1.4.1 Tch phn ca hm n gin

    nh ngha 1.4.1. Cho A l tp o c, f : A [, +] l hm n gin,

    o c trn A. Gi f1, f2, . . . f n l cc gi tr khc nhau i mt ca f(x).

    t Ak = {x A : f(x) = fk}, k = 1, ...n.

    A =

    nk=1

    Ak v f(x) =n

    k=1

    fkXAk , x A.

    Khi tch phn ca hm n gin f(x) trn A vi o l s

    A

    f(x)d =

    n

    k=1

    fk(Ak).

    28

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    34/60

    Chng 1. Tch phn Lebesgue

    V d 1.4.1. Cho hm s f : [0, 1] R

    f(x) =

    1 khi x [0, 1] Q,

    0 khi x [0, 1]\Q.

    Khi

    [0,1]

    f(x)d = 1. ([0, 1] R) + 0. ([0, 1]\Q) = 1.0 + 0.1 = 0.

    1.4.2 Tch phn ca hm khng m

    Cho A l tp o c Lebesgue, hm f : A [0, +] l hm o c. Khi

    tn ti dy n iu tng cc hm n gin o c fn(x) 0 hi t h.k.n v

    f(x) trn A.

    nh ngha 1.4.2. Tch phn ca hm f(x) trn A i vi o o l

    A

    f(x)d = limn+

    (

    A

    fn(x)d).

    1.4.3 Tch phn ca hm c du bt k

    nh ngha 1.4.3. Cho A l tp o c Lebesgue, hm f : A R l hm o

    c trn A. Khi ta c

    f(x) = f+(x) f(x) vi f+(x), f(x) 0.

    Cc hm sf+(x), f(x) c tch phn tng ng trn A lA

    f+(x)d,A

    f(x)d.

    Nu hiuA

    f+(x)d A

    f(x)d c ngha th tch phn ca hm o c f(x)

    trn A vi o l

    A

    f(x)d =

    A

    f+(x)d A

    f(x)d.

    29

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    35/60

    Chng 1. Tch phn Lebesgue

    1.4.4 Cc tnh cht s cp

    1. Cng tnh

    Nu A B = th

    ABf(x)d =

    A

    f(x)d +B

    f(x)d.

    Chng minh. Nu f(x) l hm n gin trn A B.

    Tn ti f1, f2, . . . f n l cc gi tr khc nhau i mt ca f(x).

    t Ek = {x A B : f(x) = fk}, k = 1, . . . n th thn

    k=1

    Ek = A B.

    Ta c f(x) =n

    k=1 fkXEk(x), Ek = (A B) Ek = (A Ek) (B Ek).

    V A B = nn A Ek, B Ek ri nhau. Do AB

    f(x)d =

    nk=1

    fk(x)(Ek)

    =

    nk=1

    fk(x)(A Ek) +n

    k=1

    fk(x)(B Ek)

    =

    A

    f(x)d +

    B

    f(x)d.

    Nu f(x) > 0 trn tp A B, fn(x) l dy hm n gin khng m v hi

    t ti f(x) ti mi im x A B.

    Theo chng minh trn

    AB

    fn(x)d =

    A

    fn(x)d +

    B

    fn(x)d.

    Suy ra limn

    AB

    fn(x)d = limn

    A

    fn(x)d + limn

    B

    fn(x)d.

    Hay

    ABf(x)d =

    A

    f(x)d +B

    f(x)d.

    Nu f(x) c du bt k.

    Ta t f(x) = f+(x) f(x)

    AB

    f(x)d = AB

    f+(x)d

    ABf(x)d.

    30

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    36/60

    Chng 1. Tch phn Lebesgue

    Theo chng minh trn th

    AB

    f+(x)d =

    A

    f+(x)d +

    B

    f+(x)d. (1.4.12)

    AB

    f(x)d =

    A

    f(x)d +

    B

    f(x)d. (1.4.13)

    Ly (1.4.12)-(1.4.13) ta c

    AB

    f(x)d =

    A

    f+(x)d

    A

    f(x)d +

    B

    f+(x)d

    B

    f(x)d

    =

    A

    f(x)d +

    B

    f(x)d.

    2. Bo ton th t

    Nu f(x), g(x) bng nhau h.k.n trn A th

    Af(x)d =

    A

    g(x)d.

    3. Tuyn tnh

    i)

    Ac f(x)d = c

    Af(x)d (c l hng s).

    ii) f(x) + g(x) xc nh h.k.n trn A th

    A

    f(x) + g(x)

    d =

    A

    f(x)d +

    A

    g(x)d.

    4. Kh tch

    i) Nu

    A f(x)d c ngha th

    A f(x)d A |f(x)|d.

    ii)f(x) kh tch khi v ch khi |f(x)| kh tch.

    iii) Nu |f(x)| g h.k.n trn A v g(x) kh tch th f(x) cng kh tch.

    iv) Nu f(x), g(x) kh tch th f(x) g(x) cng kh tch. Nu f(x) kh tch,

    g(x) b chn th f(x).g(x) cng kh tch.

    31

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    37/60

    Chng 1. Tch phn Lebesgue

    Chng minh. i)Ta c

    |

    A

    f(x)d| = |

    A

    f+(x)d

    A

    f(x)d|

    A

    f+(x)d +

    A

    f(x)d

    =

    A

    (f+(x) + f(x))d =

    A

    |f(x)|d.

    ii)Nu |f(x)| kh tch th A

    |f(x)|d < + suy ra | A

    f(x)d| < + hay

    f(x) kh tch.

    Nu f(x) kh tch, A

    f+(x)d A f

    d < +

    nn A

    f+(x)d < +

    ,

    Af(x)d < +.

    Vy

    A|f(x)|d =

    A

    f+(x) + f(x)

    d < + hay |f(x)| kh tch.

    iii) V |f(x)| g(x) h.k.n trn A, g(x) kh tch nn

    A

    |f(x)|d

    A

    g(x)d < +.

    Do |f(x)| kh tch nn theo chng minh trn f(x) kh tch.iv) Nu f(x), g(x) kh tch th

    A

    f(x)d,

    Ag(x)d hu hn.

    A

    (f(x) + g(x)) d =

    Af(x)d +

    A

    g(x)d hu hn hay f(x) + g(x) kh tch.

    Tng t ta c f(x) g(x) kh tch.

    Nu f(x) kh tch, g(x) b chn. Gi s |g(x)| m.

    Ta c|f(x).g(x)

    | m.

    |f(x)

    |nn

    A

    |f(x).g(x)|d A

    (m.|f(x)|)d = m. A

    f(x)d.

    Mt khc f(x) kh tch nn |f(x)| cng kh tch (chng minh trn).

    Do A

    |f(x)|d < suy ra A

    |f(x)g(x)|d < hay |f(x)g(x)| kh tch. Vy

    f(x)g(x) cng kh tch.

    32

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    38/60

    Chng 1. Tch phn Lebesgue

    1.4.5 Qua gii hn di du tch phn

    nh l 1.4.1. (hi t n iu Beppo Levi) Nu fn(x) 0 v fn(x) n iu

    tng n f(x) trn A th

    limn

    A

    fn(x)d =

    A

    f(x)d.

    Chng minh. Nu fn(x) l hm n gin th y chnh l nh ngha tch phn

    ca hm n gin.

    Nu hm fn(x) bt k v o c. Vi mi n c mt dy hm n gin, khng

    m g(n)m (x) fn(x). V fn+1(x) > fn(x) nn c th coi g(n+1)m (x) g(n)m (x).

    Vy vi k n ta c

    g(k)n (x) g(n)n (x) fn(x),

    A

    g(k)n (x)d

    A

    g(n)n (x)d

    A

    fn(x)d,

    cho n ta c fk(x) limn

    g(n)n (x) f(x) v

    A

    fk(x)d

    A

    limn

    g(n)n (x)d lim

    n

    A

    fn(x)d.

    Cho k ta c f(x) limn

    g(n)n (x) f(x) v

    limk

    A

    fk(x)d

    A

    limn

    g(n)n (x)d lim

    n

    A

    fn(x)d.

    Nh vy limn

    g(n)n (x) = f(x), lim

    nA

    fn(x)d = A

    f(x)d.

    Ch rng c th thay iu kin fn(x) 0 bi iu kin f1(x) kh tch.

    nh l 1.4.2. (nh l Dini) Nu fn(x) l dy hm lin tc, n iu, hi t

    im n mt hm f(x) lin tc trnR th fn(x) hi t u ti f(x).

    Chng minh. Gi sfn(x) l dy hm n iu gim.

    Cho mi n N, t gn(x) = fn(x)f(x) th gn(x) l hm lin tc v limn

    gn(x) = 0.

    33

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    39/60

    Chng 1. Tch phn Lebesgue

    Hn na gn(x) > gn+1(x) > 0. Gi Mn = sup gn(x) : x R. Ta cn chng minh

    limn

    Mn = 0. Ly > 0, gi On = {xn : g1n (x) < }. V gn(x) l hm lin tc nn

    tp On l tp m. T gn(x) > gn+1n (x) c On

    On+1.

    Vi mi x R, limn

    gn(x) = 0 s c n N vi gn(x) < th x On. Vy

    n=1

    = R.

    Ta c R l compact nn h tp m On ph R s cha mt h ca On hu hn

    vn ph R. TOn On+1 nn s c mt tp hu hn ln nht ph R. Vy tn

    ti s N N sao cho ON = R. Do gN(x) < vi mi x R. Vy MN . T

    Mn gim vi mi n N nn vi mi Mn 0 ta s c limn

    Mn = 0. Nh vy nu

    fn(x) hi t u n f(x) trn tp A o c th limn

    A fn(x)d =

    A f(x)d.

    V d 1.4.2. Cho fn(x) =x + 2

    xn + 1vi x [0, 1].

    Ta c fn(x) 0 vi x [0, 1] v fn(x) tng n hm f(x) = x + 2 trn [0, 1] nn

    limn

    [0,1]

    fnd =

    [0,1]

    (x + 2)d.

    nh l 1.4.3. (B Fatou) Nu fn(x) 0 trn A th

    A

    limn

    fn(x)d limn

    A

    fn(x)d.

    Chng minh. t gn(x) = inf{fn(x), fn+1(x), . . .}.

    Ta c gn(x) 0 v gn(x) limn

    fn(x), cho nn theo nh l 1.4.1 c

    limn

    A

    gn(x)d =

    A

    limn

    fn(x)d.

    Nhng gn(x) fn(x) nnA

    gn(x)d A

    fn(x)d v limn

    A

    gn(x)d limn

    A

    fn(x)d.

    Do A

    limn

    fn(x)d limn

    A

    fn(x)d.

    nh l 1.4.4. (hi t chn Lebesgue) Nu |fn(x)| g(x), g(x) kh tch v

    fn(x) f(x) (h.k.n hay theo o) trn A th

    A

    fn(x)d A

    f(x)d.

    34

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    40/60

    Chng 1. Tch phn Lebesgue

    Chng minh. Trng hp fn(x) f(x) h.k.n trn A.

    Ta c g(x) fn(x) g(x) v g(x) kh tch. Theo b Fatou cho cc hm

    g(x)

    fn(x)

    0 v fn(x) + g(x)

    0 ta c

    A

    limn

    fn(x)d limn

    A

    fn(x)d,

    A

    limn

    fn(x)d limn

    A

    fn(x)d.

    Nhng fn(x) f(x) h.k.n trn A nn limn

    fn(x) = limn

    fn(x) = f(x), nn

    A

    f(x)d limn

    A

    fn(x)d limn

    A

    fn(x)d

    A

    f(x)d,

    suy ra limn

    A fn(x)d =

    A f(x)d.

    Trng hp fn f theo o. Theo nh ngha gii hn trn ta c mt dy nksao cho

    A

    fnk(x)d limn

    A

    fn(x)d.

    Mt khc do fn(x) f(x) theo o nn c th trch ra mt dy con nki hi t

    h.k.n n f(x) (theo nh l 1.3.8) hay fnki (x) f(x) h.k.n.Do

    limn

    Afn(x)d = limk

    A

    fnk(x)d = limi

    Afnki (x)d =

    A

    f(x)d.

    Tng t ta c

    limn

    A

    fn(x)d =

    A

    f(x)d,

    cho nn limn

    A

    fn(x)d =

    Af(x)d.

    Nh hc, chuyn gii hn qua du tch phn th iu kin cn l dy hm

    {fn} hi t u n f(x) trn mt on [a, b]. y l mt iu kin ngt ngho.

    Trong khi iu kin hi t n iu v hi t chn th rng ri hn.

    V d 1.4.3. Cho hm fn : [0, 1] R, fn(x) =

    nxenx2

    .

    Vi mi x [0, 1] ta c f(x) = limn

    nxenx

    2

    = 0.

    sup

    [0,1]

    |fn(x) f(x)| = sup[0,1]

    nxenx

    2

    = (2e)1 0 khi n .

    Nh vy fn(x) khng hi t u n f(x) trn [0, 1]. Mt khc10

    f(x)dx = 0.

    35

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    41/60

    Chng 1. Tch phn Lebesgue

    limn

    10

    fn(x)dx = limn

    10

    nxenx

    2

    = limn

    1

    2(

    1 enn

    ) = 0.

    Do limn

    10

    fn(x)dx =10

    f(x)dx.

    L do c du = xy ra l v 0

    fn(x)

    g(x) = (2e)1 x

    [0, 1], g(x) l mt

    hm kh tch v fn(x) f(x) trn [0, 1] nn fn(x), f(x) tha mn iu kin ca

    nh l hi t chn. Nh vy ta c th chuyn gii hn qua du tch phn.

    1.4.6 Mi lin h gia tch phn Lebesgue v Rie mann

    nh l 1.4.5. Cho f : [a, b] R

    Nu f kh tch Riemann trn [a, b] th kh tch Lebesgue trn [a, b] v

    [a,b]

    f(x)d =

    ba

    f(x)dx

    Chng minh. Nu f(x) kh tch Riemann trn on [a, b] th f(x) b chn v lin

    tc h.k.n trn [a, b].

    Xt dy phn hoch Dn ca on [a, b] vi||

    Dn||

    0. Gi Sn l tng Darboux

    di ng vi phn hoch Dn.

    Gi i l phn hoch th i ca phn hoch Dn trn [a, b].

    Sn =

    ni=1

    ti|i| ti = infxi

    f(x).

    t fn(x) =n

    i=1tiXi(x). Ta c f(x) lin tc h.k.n trn [a, b], vi n ln th

    ||Dn|| 0 v do i s nh Vi > 0 bt k, |f(x) fn(x)| = |f(x) ti| < . Suy ra fn(x) f(x) h.k.n trn

    [a, b]. Do theo nh l v hi t chn ta c

    Sn =

    [a,b]

    fn(x)d [a,b]

    f(x)d.

    Mt khc Sn

    b

    af(x)dx.

    Vy[a,b]

    f(x)d =b

    af(x)dx.

    36

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    42/60

    Chng 1. Tch phn Lebesgue

    Tuy nhin mt hm kh tch Lebesgue th khng kt lun c s kh tch

    Riemann. Ta c v d 1.4.1 v hm Dirichlet kh tch Lebesgue trn [0, 1] nhng

    khng kh tch Riemann trn .

    V d 1.4.4. Cho hm s D : [0, 1] R

    D(x) =

    1 khi x [0, 1] Q,

    0 khi x [0, 1]\Q.

    Chng minh. Ta s i chng minh hm Dirichlet khng kh tch Riemann.

    Tht vy, vi mi phn hoch T ca on [0, 1], gi i l phn hoch th i ca

    T. Nu ly l im c ta l nhng s hu t th D(T, ) =n

    i=1

    D(i)|i| = 1

    cn nu ly

    l im c ta l nhng s v t th D(T,

    ) = 0 nn hm

    Dirichlet khng kh tch Riemann.

    37

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    43/60

    Chng 2

    Khng gian Lp

    2.1 Khng gian Lp

    Cho khng gian R, E l tp o c Lebesgue v mt o .

    nh ngha 2.1.1. [1] H cc hm s f(x) c ly tha bc p (1 p < ) ca

    modun kh tch trn E, tc l sao choE

    |f(x)|pd < ,

    gi l khng gian Lp(E).

    Hm s f(x) o c trn E gi l b chn ct yu nu tn ti mt tp hp

    P c o 0, sao cho f(x) b chn trn tp hp E\

    P, tc l tn ti s K sao cho

    |f(x)| K vi mi x E\P.

    Cn di ng ca tp hp cc s K tha mn bt ng thc trn gi l cn

    trn ng ct yu ca hm f(x), c k hiu l ess supE

    |f(x)|.

    nh ngha 2.1.2. [2] H tt c cc hm f(x) b chn ct yu trn E c gi

    l khng gian L(E).

    38

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    44/60

    Chng 2. Khng gian Lp

    Mnh 2.1.1. [2] Nu hm f(x) L(E) th

    |f(x)| ess supE

    |f(x)| h.k.n trn E.

    Chng minh. Gi s{Kn} l mt dy s thc n iu gim n K = ess supE

    |f(x)|.

    Khi , tp hp

    Pn = {x E : |f(x)| > Kn},

    c o 0 vi mi n. Hin nhin tp hp P =

    n=1

    Pn c o 0 v

    |f(x)| K vi mi x E\P.

    Vy |f(x)| ess supE

    |f(x)| h.k.n trn E.

    nh l 2.1.1. [1] (Bt ng thc Holder) Nu f(x), g(x) o c, xc nh trn

    mt tp o c E v p, q l hai s thc sao cho 1 < p < v 1p

    +1

    q= 1 th

    E

    |f(x) g(x)|d E

    |f(x)|pd1p

    E|g(x)|qd

    1q

    .

    Cch chng minh da vo b sau

    B 2.1.1. Nu a,b khng m v p, q l hai s thc sao cho 1 < p < v1

    p+

    1

    q= 1 th ta c

    ab

    ap

    p

    +bq

    q

    .

    Chng minh. Xt f(t) =t

    p+

    1

    q t1/p (t 0).

    Ta thy f(1) = 0 v f

    (t) =1

    p 1

    p t1/(p1) dng vi t > 1, m vi t < 1, chng

    t rng f(t) t cc tiu ti t = 1.

    Do vi mi t 0 ta c tp

    +1

    q t1/p 0. Vi t = apbq 0 ta c

    apbq

    p

    +1

    q abp/q

    0 hay

    ap

    p

    +bq

    q ab

    0.

    39

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    45/60

    Chng 2. Khng gian Lp

    Chng minh. ( Chng minh bt ng thc Holder)

    NuE

    |f(x)|d, E

    |g(x)|d hu hn v dng. p dng bt ng thc va chng

    minh vi

    a =|f(x)|

    E|f(x)|pd 1p , b =

    |g(x)|E

    |g(x)|qd 1q .Ta c

    |f(x).g(x)|E

    |f(x)|pd 1p E

    |g(x)|qd 1q |f(x)|p

    p

    E|f(x)|pd +

    |g(x)|qq

    E|g(x)|qd .

    Ly tch hai v

    E

    |f(x)g(x)|dE

    |f(x)|pd 1p

    E|g(x)|qd

    1q

    E|f(x)|pd

    p

    E|f(x)|pd

    +

    E|g(x)|qd

    q

    E|g(x)|qd

    =1

    p+

    1

    q= 1.

    NuE

    |f(x)|d hoc E

    |g(x)|d bng v cng th bt ng thc ng.

    Nu E |

    f(x)|d hoc

    E |g(x)

    |d bng 0, chng hn

    E |f(x)

    |d = 0 th f(x) = 0

    h.k.n trn E nn f(x)g(x) = 0 h.k.n trn E. Do bt ng thc ng.

    nh l 2.1.2. [1](Bt ng thc Minkowski) Nuf(x), g(x) l hai hm o c

    trn E v 1 p < th

    E

    |f(x) + g(x)|pd 1

    p

    E

    |f(x)|pd 1

    p

    +

    E

    |g(x)|pd 1

    p

    .

    Chng minh. Vi p=1, bt ng thc ng.

    Xt vi 1 < p < . Chn q sao cho 1p

    +1

    q= 1.

    40

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    46/60

    Chng 2. Khng gian Lp

    p dng bt ng thc Holder ta c

    E

    |f(x) + g(x)|pd

    E

    |f(x)| + |g(x)|

    .|f(x) + g(x)|p1d

    =

    E

    |f(x)|.|f(x) + g(x)|p1d +

    E

    |g(x)|.|f(x) + g(x)|p1d

    E

    |f(x)|pd 1

    p

    E

    |f(x) + g(x)|(p1)qd 1

    q

    +

    E

    |g(x)|pd 1

    p

    E

    |f(x) + g(x)|(p1)qd 1

    q

    =

    E

    |f(x)|pd 1

    p

    +

    E

    |g(x)|pd 1

    p

    E

    |f(x) + g(x)|pd 1

    q

    .

    T

    E

    |f(x) + g(x)|pd1 1

    q

    E

    |f(x)|pd 1

    p

    +

    E

    |g(x)|pd 1

    p

    .

    v 1 1q

    =1

    pnn

    E

    |f(x) + g(x)|pd 1p E

    |f(x)|pd 1p + E

    |g(x)|pd 1p .

    nh l 2.1.3. Tp hp Lp

    (E), trong khng phn bit cc hm bng nhauh.k.n l mt khng gian vector nh chun, vi cc php ton thng thng v

    cng hm s, nhn hm s vi s, v vi chun

    ||f||p =

    E

    |f(x)|pd 1

    p

    khi 1 p < ,

    ||f|| = ess supE

    |f(x)| khi p = .

    Chng minh. Vi 1 p < .

    Gi sf(x), g(x) Lp(E). Ta c |f(x) + g(x)| 2max{|f(x)|, |g(x)|}

    suy ra |f(x) + g(x)|p 2p(max{|f(x)|, |g(x)|})p 2p|f(x)|p + |g(x)|p.Do |f(x)|p, |g(x)|p kh tch th |f(x) + g(x)|p cng kh tch, hay

    f(x) + g(x)

    Lp(E) (2.1.1)

    41

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    47/60

    Chng 2. Khng gian Lp

    Mt khc, nu f(x) Lp(E), l s thc bt k th |f(x)|p = ||p.|f(x)|p kh

    tch, nn

    f(x)

    Lp(E) (2.1.2)

    T (2.1.1) v (2.1.2) suy ra Lp(E) l khng gian vector.

    Ta li c||f||p > 0 khi f(x) = 0 v ||f||p = 0 khi f(x) = 0 h.k.n v khng phn bit

    hai hm bng nhau h.k.n nn tha mn tin 1 v chun.

    ||.f||p =

    E

    |f(x)|pd 1

    p

    = ||

    E

    |f(x)|pd 1

    p

    = ||.||f||p,

    tha mn iu kin thun nht ca chun.

    p dng bt ng thc Minkowski ta c bt ng thc tam gic

    ||f + g||p =

    E

    |f(x) + g(x)|pd 1

    p

    E

    |f(x)|pd 1

    p

    +

    E

    |g(x)|pd 1

    p

    = ||f||p + ||g||p.

    Vi p = +.Gi sf(x) L(E).Ta c ||f|| > 0 nu f(x) = 0 v ||f|| = 0 nu f(x) = 0 h.k.n trn E nn tha

    mn tin 1 v chun.

    Ta i chng minh iu kin thun nht ca chun. Vi l s thc bt k ta

    cn chng minh

    ||.f

    || =

    |

    |.

    ||f

    ||. (2.1.3)

    Nu = 0 th iu kin (2.1.3) lun ng.

    Nu = 0. Gi s phn chng ||.f|| < M < ||.||f||. Ta c

    ||.|f(x)| = |.f(x)| ess supE

    |.f(x)| < M.

    Do .f(x) L(E) v ||.||f|| < M. Nh vy th ||.||f|| < M < ||.||f||.

    iu ny v l. Chng minh mt cch tng t ta cng c ||.||f|| < M < ||.f||

    42

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    48/60

    Chng 2. Khng gian Lp

    l iu v l hay ||.f|| = ||.||f||.

    Cui cng ta i chng minh iu kin v bt ng thc tam gic.

    Tht vy, gi sf(x), g(x)

    L(E).

    |f(x)+g(x)| |f(x)|+|g(x)| ess supE

    |f(x)|+ess supE

    |g(x)| nn f(x)+g(x) L(E).

    V ess supE

    |f(x)+g(x)| ess supE

    |f(x)|+ess supE

    |g(x)| hay ||f+g|| ||f||+ ||g||.

    nh l 2.1.4. Lp(E) l khng gian vector nh chun .

    Chng minh. Cho fn(x) l dy c bn trong Lp

    (E), tc l ||fn fm||p 0. Nhvy lun tm c n1 ln cho ||fn fm||p < 1/2 vi mi n, m n1. Tip

    tc tm c n2 > n1 sao cho ||fn fm||p < 1/22 vi mi n, m n2. Do ta c

    th chn c mt dy n1 < n2 < .. . < nk < . . . cho vi mi k ta c

    n, m nk ||fn fm||p < 1/2k.

    Nh vy ||fnk+1 fnk ||p < 1/2k. p dng b Fatou (1.4.3) cho dy hm khng

    m gs(x) = |fn1(x)| +s

    k=1 |fnk+1(x) fnk(x)| Lp(E).

    Vi mi x c nh gs(x) khng gim theo s nn tn ti limn

    gs(x).

    Do E

    lims

    (gs(x))pd lim

    s

    E

    (gs(x))pd = lim

    s(||gs||p)p.

    Mt khc

    ||gs||p ||fn1||p +s

    k=1

    ||fnk+1 fnk ||p

    < ||fn1||p +s

    k=1

    (1/2k) < ||fn1||p + 1.

    nn lims

    (||gs||p)p < . Do

    Elim

    s(gs(x))

    p d < .

    iu ny chng t lims

    |gs(x)|p < h.k.n, hay tn ti lims

    gs(x) v hu hn

    h.k.n trn E.

    43

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    49/60

    Chng 2. Khng gian Lp

    Suy ra fn1(x) +

    k=1

    fnk+1(x) fnk(x)

    hi t tuyt i h.k.n.

    Nh vy khi s s tn ti gii hn hu hn h.k.n ca hm

    fns+1(x) = fn1(x) +

    sk=1

    fnk+1(x) fnk(x) .

    Ta gi gii hn ny l f0(x), fns+1 f0(x) h.k.n. V |fns+1(x)| lims

    gs(x) Lp(E).

    Theo nh l hi t chn c

    E

    |f0(x)|pd = lims

    E

    |fns+1(x)|pd,

    tc l f0(x) Lp(E). p dng b Fatou ta c

    ||f0 fnk ||p =

    E

    lims

    |fns+1(x) fnk(x)|pd

    limn

    E

    |fns+1(x) fnk(x)|pd = lims

    ||fns+1 fnk ||p

    = lims

    ||s

    t=k

    fnt+1 fnk ||p lims

    st=k

    ||fnt+1 fnk ||p

    lims

    st=k

    12t

    =

    t=k

    12t

    .

    Suy ra limk

    ||f0 fnk ||p = 0. Cui cng v {fn} l dy c bn nn vi n, nk

    ln ta s c ||fnk fn||p < . Khi ta chn k ln va c nk n0 v

    ||f0 fnk ||p < th s c vi mi n n0

    ||f0

    fn||p ||

    f0

    fnk ||

    +||

    fnk

    fn||

    + ,

    chng t dy fn(x) hi t ti f0(x).

    H qu 2.1.1. Nu mt dy{fn} hi t trong Lp(E) th n cha mt dy con

    {fnk} hi t h.k.n trn E.

    Tht vy, nu

    {fn

    }hi t th n l dy c bn nn theo nh l 2.1.4 c th

    trch ra mt dy con {fnk} hi t h.k.n.

    44

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    50/60

    Chng 2. Khng gian Lp

    nh l 2.1.5. Nu 1 p < p < v (E) < th Lp

    (E) Lp(E).

    Chng minh. p dng bt ng thc Holder ta c

    ||f.g||1 ||f||p.||g||q vi 1 p < , 1p

    +1

    q= 1.

    Ta ly g(x) = 1, thay f(x) bi |f(x)|p, thay p, q bi p/p,p/(p p) ta c

    || |f| ||1 || |f|p || pp

    .(E)p

    p

    p .

    Do (E) 0, t B = {x : |fn(x) f(x)| }, ta cE

    |fn(x) f(x)|pd

    B

    |fn(x) f(x)|pd

    B

    pd = p.(B),

    iu ny chng t rng (B) 0 khi n , nu fn(x) Lp

    f(x).

    45

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    51/60

    Chng 2. Khng gian Lp

    Mi quan h gia hi t

    Hi t hu khp ni (A) < Hi t theo o

    Hi t trung bnh

    ( ch ra rng c th trch ra mt dy con hi t).

    Mt hm hi t trung bnh th hi t theo o nhng iu ngc li khng ng.

    V d 2.1.3. Xt dy hm fn(x) trn on [0, 1] c xc nh nh sau

    fn(x) =

    n nu x 0,

    1

    n

    0 nu x

    1

    n, 1

    .

    v hm f(x) = 0.

    Ta c

    ({x [0, 1] : |fn(x) f(x)| }) = ([0, 1n

    ]) =1

    n 0 khi n .

    Do fn(x) f(x).Tuy nhin,

    [0,1]

    |fn(x) f(x)|d = n.

    0,1

    n

    = 1 0 khi n nn fn(x)

    khng hi t trung bnh n f(x) trn [0, 1].

    V d sau cho thy mt hm hi t h.k.n nhng khng hi t trung bnh.

    V d 2.1.4. Cho hm fn(x) xc nh trn [0, 1]

    fn(x) =n

    1 + n2x2,

    v hm f(x)=0.

    Ta c limn

    fn(x) = limn

    n

    1 + n2x2= lim

    n

    11

    n+ nx2

    = 0. Do fn(x) hi t

    h.k.n n f(x) = 0 trn [0, 1]. Tuy nhin

    limn

    10

    fn(x)dx = limn

    10

    n1 + n2x2

    dx.

    46

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    52/60

    Chng 2. Khng gian Lp

    t u = nx ta c

    limn

    n0

    1

    1 + u2du = lim

    n(arctan u)|n0 = lim

    narctan n =

    2.

    Vy fn(x) khng hi t trung bnh v f(x) = 0.

    2.2 Tnh tch c ca Lp

    nh l 2.2.1. Mi h hm sau y l tr mt trong Lp(E), 1 p < .

    1. Cc hm n gin.

    2. Cc hm lin tc.

    Chng minh. H cc hm gi l tr mt trong Lp(E) nu vi mi f(x) Lp(E)

    v mi > 0, u tn ti mt hm g(x) thuc h sao cho ||f g||p < .

    a) Xt mt hm bt k f(x)

    Lp(E).

    Ta c f(x) = f+(x) + f(x), vi f+(x), f(x) 0.

    Tn ti mt dy hm n gin khng m f+n (x) f+(x).

    V

    f+(x) f+n (x)p 0 nn

    E

    (f+(x) f+n (x))pd

    E

    0d = 0,

    ngha l ||f+ f+n ||p 0.Vy vi n ln ta s c mt hm n gin fn (x) vi ||f fn ||p 0 tn ti mt tp m G A v mt tp ng F A sao cho (G\A) < p

    2,

    (A\F) < p

    2, tc l (G\F) < p. Ta ly

    g(x) =(x,R

    \G)

    (x,R\G) + (x, F) .

    Trong (x, M) = infyM

    ||x y|| ch khong cch t x n M. R rng x R\G

    th (x,R\G) = 0 nn g(x) = 0. Vi x F th (x,R\G) = 0, (x, F) = 0 nn

    g(x) = 1. Hm (x,R\G), (x, F) u lin tc v c tng khc 0 nn g(x) cng

    lin tc. Hiu XA(x) g(x) c gi tr gm 0 v 1 trn tp G\F v bng 0 ngoi

    tp . Cho nn

    ||XA g||p =

    E

    XA(x) g(x)pd 1

    p

    (G\F) 1p < .Do mi hm c dng XA(x) vi A o c u c th xp x ty bi

    mt hm lin tc. Suy ra h cc hm lin tc tr mt trong h cc hm n

    gin, v mi hm n gin c dng

    vi=1 iXAi(x) ch vic chn hm lin tc

    gi(x) sao cho ||XAi gi||p < v|i| , th s c hm lin tc g(x) =

    igi(x) vi

    ||iXAi g||p v1 i||XAi g||p < .Mt khc mt h M tr mt trong Lp(E) v mt h N tr mt trong M th h

    N cng tr mt trong Lp(E). Vy h cc hm lin tc tr mt trong Lp(E).

    nh l 2.2.2. Khng gian Lp(R), 1 p < tch c (ngha l cha mt tp

    con m c tr mt trong n).

    Chng minh. Ly f(x) Lp(R). Gi fn0 : R R xc nh

    fn0(x) =

    f(x) khi |x| < n0,

    0 khi |x| n0.

    th fn0(x) f(x) Lp(R) khi n .

    Nh vy tn ti s n0 sao cho ||f fn0 ||p 3 v tn ti hm lin tc

    48

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    54/60

    Chng 2. Khng gian Lp

    gn0 : [n0, n0] R sao chon0n0

    |fn0(x) gn0(x)|pdx 1

    p

    0 sao cho |z| < 1 th

    |ez 1| < 2 2||f||1 ,

    nn vi |x| < R0 v |( 0)| < 1R0

    th

    |x| 0 sao cho

    |

    0

    |< th

    |Ff() Ff(0)| < 12

    2

    2+

    2

    2

    = .

    Vy Ff L(R) C(R).

    2.3.2 Bin i Fourier trong Lp

    Ta xy dng bin i Fourier trong Lp(R) nh sau. t

    X[R,R](x)f(x) =

    0 nu |x| > R

    f(x) cn li .

    Ta c |X[R,R](x)f(x) f(x)| 0 khi R nn |X[R,R](x)f(x) f(x)|p 0 khi

    R

    .

    M |X[R,R](x)f(x) f(x)|p |f(x)|p, |f(x)|p Lp(R).

    Theo nh l v hi t chn ta c

    R

    |X[R,R](x)f(x) f(x)|pd 0 khi R .

    Do X[R,R](x)f(x) Lp(R) l dy Cauchy hi t n f(x) trong Lp(R).

    Ta cn chng minh {F(X[R,R]f)} hi t trong Lq(R) vi 1 p 2, 1p + 1q = 1.

    52

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    58/60

    Chng 2. Khng gian Lp

    Theo bt ng thc Hausdorff-Young ta c

    Vi g(x) L1(R) Lp(R), 1 p 2, 1p

    +1

    q= 1 th Fg Lp(R) v

    ||Fg||q C||g||p.

    Nh vy vi g(x) = X[R,R](x)f(x) ta c {F(X[R,R]f)} l dy Cauchy v hi t

    n mt hm Ff trong Lq(R) vi 1 p 2, 1p

    +1

    q= 1.

    Nhng vi 2 < p < vic xy dng nh th ny khng cn ng. Ngi ta phi

    xy dng bin i Fourier theo cch khc. V d sau cho thy vi 2 < p < bt

    ng thc Hausdorff-Young nh trn khng cn ng.

    V d 2.3.1. [3] Chn dy fk(x) = e(1ik)x2

    , k = 1, 2 . . .. Bin i Fourier ca

    f(x) l

    Ff() = (2)12

    R

    eixe(1ik)x2

    d.

    Bin i ny tha mn bi ton Cauchy

    2(1 ik)dFfkd

    () Ffk() = 0,

    vi iu kin ban u lFfk(0) =1

    2(1 ik)nnFfk() =

    12(1 ik)

    e (1+ik)

    2

    4(1+k2) .

    Khi chun trong Lp(R) l

    ||fk||p = 1/2p

    p1/2p

    Cn chun trong Lq(R) l

    ||Ffk||q = 21q 12 (1 + k2)

    12q

    14

    12p

    q12q

    .

    V 2 < p < nn 1 q < 2 nn ||Ffk||q khi k .

    53

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    59/60

    Kt lun

    Kha lun trnh by hai ni dung chnh l:

    Xy dng tch phn Lebesgue t o Lebesgue, hm o c Lebesgue,tch phn Lebesgue, chuyn gii hn qua du ly tch phn.

    Khng gian Lp, 1 p , tnh cht y v tch c, php bin i

    Fourier trong Lp, 1 p 2.

    Tuy nhin do thi gian lm kha lun cn hn ch khng th trnh c nhng

    nhm ln, sai st nn em mong nhn c s gp ca thy c v bn c.

    54

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    60/60

    Ti liu tham kho

    Ting Vit

    [1] Hong Ty (2005), Hm thc v gii tch hm, Nh xut bn i hc Quc

    gia H Ni.

    [2] Nguyn Xun Lim (2007), Gii tch hm, Nh xut bn Gio dc.

    Ting Anh

    [3] Elliott H. Lieb and Michael Loss (2001), Analysis (second edition), American

    Mathematical, Society.

    [4] Frank Burk (1998), Lebesgue Measure and Integral An Introduction, John

    Wiley & Sons, Inc.

    [5] Richard L. Wheeden and Antoni Zygmund (1977), Measure and Integral an

    Introduction to Real Analysis, Marcel Dekker, Inc. New York.

    Ting Php

    [6] H. Brezis (1983), Analyse Fonctionnelle, Masson.