TLSK1_8_RLS

Embed Size (px)

Citation preview

  • 8/8/2019 TLSK1_8_RLS

    1/11

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 1

    Communication Signal Processing I:

    8. Recursive Least SquaresAlgorithm

    Markku Juntti

    Overview Kalman filtering is briefly reviewed. The

    method of least squares is modified to a recursiveform suitable for adaptive filtering applications. Itsproperties are then evaluated.

    Source The material is mainly based on Chapters 7

    and 13 of the course book [1] (Chapters 9 and 10 of[1A]).

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 2

    Course Contents

    1. Introduction

    Part I Background2. Optimum receiver design problem and equalization3. Mathematical tools

    Part II Linear and Adaptive Filters and Equalizers4. Optimum linear filters5. Matrix algorithms6. Stochastic gradient and LMS algorithms7. Method of least squares8. Recursive least squares algorithm9. Rotations and reflections10. Square-root and order recursive adaptive filters

    Part III Nonlinear Equalizers11. Decision-directed equalization12. Iterative joint equalization and decoding

    Part IV Other Applications13. Spectrum estimation14. Array processing15. Summary

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 3

    Contents

    Review of last lecture Review of Kalman filters

    Kalman filtering problem

    Innovations process State estimation by the innovations process Summary of Kalman filtering Summary and discussion

    Introduction to RLS algorithm Matrix inversion lemma Exponentially weighted RLS algorithm Weighted error squares Convergence analysis Application example equalization

    Relation to Kalman filter Summary

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 4

    Review of Last Lecture

    Method of least squares (LS): no statisticalassumptions on observations (data).

    an alternative to the Wiener filter theory. Minimize the squares of modeling errors.

    The least squares estimate is model-dependent block-by-block method.

    the BLUE method.

    the MVUE method for Gaussian signals.

    Robust computation can be based on singular valuedecomposition (SVD) of the data matrix to calculatethe pseudoinverse.

  • 8/8/2019 TLSK1_8_RLS

    2/11

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 5

    Multiple Linear Regression Model

    Assume an unknown

    underlying model to beestimated with u(i) andd(i) known.

    Estimation errorise(i)=d(i)y(i), where

    Error:

    Sum of error squares:

    ( ) ( ).1

    0

    =

    M

    k=k kiuwiy

    ( ) ( ) ( ).1

    0

    =

    M

    k= kkiuwidie

    ( ) ( ) .,,,2

    1

    2110

    = =

    i

    iiM iewww E

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 6

    Principle of Orthogonality

    The error signal:

    The cost function (the sum of error squares):

    Principle of orthogonality with time average:

    The filter output provides the linear LS estimateofthe reponse d(i).

    ( ) ( ) ( ) ( ).,,,2

    110 =

    = ==

    N

    Mi

    N

    MiM ieieiewww E

    ( ) ( ) ( ) ( ) ( ).H1

    0

    iidkiuwidieM

    k=k uw==

    ( ) ( ) .1,,1,0,0min ===

    MkiekiuN

    Mi

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 7

    Matrix Formulation of the NormalEquations

    == rnonsingulaisif, 1 zwzw

    +

    =

    )1(

    )1(

    )0(

    )1,1()1,1()1,0(

    )1,1()1,1()1,0(

    )0,1()0,1()0,0(

    1

    1

    0

    Mz

    z

    z

    w

    w

    w

    MMMM

    M

    M

    M

    Time averaged (auto)correlation matrix Time averagedcrosscorrelation

    vector( ) ( ) ( )H ,N

    i M

    i i i=

    = u u u

    ( )1H H

    =w A A A d

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 8

    Review of Kalman Filters

    Wiener filters are optimal for stationaryenvironments.

    Kalman filters enable efficient recursive computationbased on state-space model.

    Kalman filters are optimal in MMSE sense fornonstationary environments described by a state-space model.

    Related (similar) to recursive least squares (RLS)adaptive filtering algorithms.

    Summary herein, details in Statistical SignalProcessing.

  • 8/8/2019 TLSK1_8_RLS

    3/11

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 9

    Kalman Filtering Problem

    ( )nx 1z

    ( )nn ,1+F

    ( )1+nx( )n1v ( )nC

    ( )n2v

    ( )ny

    ProcessObservation

    Process equation: Special case: time-invariant system:

    Measurement equation:

    Problem: Find the MMSE estimates of the statex(i),1in, using all the observationsy(i), 1in.

    ( ) ( ) ( ) ( ).,11 1 nnnnn vxFx ++=+

    ( ) ( ) ( ) ( ).2 nnnn vxCy +=

    processnoise

    statevector

    state transition m

    atrix

    measurementnoise

    observationvector

    ( ) ( ).,1 nnn FF =+

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 10

    Innovations Process

    The MMSE estimate of the observed datay(n):where is Y

    n1is the space spanned by the

    observationsy(i), 1in1.

    The estimation error process

    is innovations process, since by orthogonalityprinciple:

    1.

    2.

    3.

    ( ), 1nnYy

    ( ) ( ) ( ) ,2,1, 1 == nnnn nYyy

    ( ) ( )[ ] ,11,H = nkkn 0y

    ( ) ( )[ ] ,11,H = nkkn 0

    ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] .,,2,1,,2,1 nn yyy

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 11

    Correlation matrix:

    where the predicted state-error correlation matrix is

    and the predicted state-error:

    Correlation Matrix of the InnovationsProcess

    ( ) ( ) ( ). 1= nnnn Yxx

    ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ),1,E 2 nnnnnnnn QCKCR +==

    ( ) ( ) ( )[ ]nnn 222 E vvQ =

    ( ) ( ) ( )[ ] ,1,1,E1, = nnnnnn K

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 12

    State Estimation by the InnovationsProcess

    Remind that

    The MMSE state estimate can be expressed a

    Recursive estimate update:

    ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] .,,2,1,,2,1 nn yyy

    ( ) ( ) ( )

    .1==

    n

    kin kki x Y

    ( ) ( ) ( ) ( ) ( ).,11 1 nnnnnn nn GxFx ++=+ YY

    correction term

    Kalman gain innovation

  • 8/8/2019 TLSK1_8_RLS

    4/11

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 13

    Recursive One-Step Predictor

    ( ) ( ) ( ) ( ) ( ).,11 1 nnnnnn nn GxFx ++=+ YY

    ( )nG 1z

    ( )nn ,1+ F

    ( )ny +

    ( ) nC

    ( )n ( )1 nnYx( )nn Y1 +x

    Model of the dynamic system

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 14

    Kalman Gain

    The Kalman gain matrix

    can also be computed recursively:

    ( ) ( ) ( )[ ] ( )nnnn 11E += RxG

    ( ) ( ) ( ) ( ) ( ).1,,1 1 nnnnnnn += RCKFG

    ( )nC

    ( ) 1

    ( )1, nnK

    ( )n1R

    Computation

    ofR-1

    (n)

    ( ) + nn ,1F ( )nG

    ( ) nC

    ( )n2Q

    ( )n1R

    pre-multiplication post-multiplication

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 15

    Riccati Equation

    The the predicted state-error correlation matrix

    K(n, n-1) can also be computed recursively:

    ( ) ( ) ( ) ( ) ( ),,1,1,1 1H

    nnnnnnnn QFKFK +++=+

    ( )nC ( ) + 1,nnF ( )nG

    ( )n1

    Q

    ( ) ( ) ( ) ( ) ( ) ( ).1,1,1, += nnnnnnnnn KCGFKK

    1z +

    ( )1, nnK( ) + nn ,1F ( )nn ,1+F

    ( )nn ,1+K

    ( )nK

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 16

    Summary of Kalman Filtering

    ( )nG

    1z

    ( )1, nnK

    ( ) +1,nnF

    ( )nn ,1+K

    ( )0,1:conditionInitial K

    Riccatiequationsolver

    Kalmangaincomputer

    ( )1, nnK

    One-steppredictor

    ( )ny ( )nn Y1 +x( )nnYx

    ( )01:conditionInitial Yx

  • 8/8/2019 TLSK1_8_RLS

    5/11

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 17

    Kalman Variables

    x(n) state vector at time n(M1)

    y(n) observation vector at time n(N1)

    F(n+1,n) state transition matrix from time nto n+1 (MM)C(n) measurement matrix at time n(NM)

    Q1(n) correlation matrix of process noise vector v1(n) (MM)

    Q2(n) correlation matrix of observation noise v2(n) (NN)

    predicted estimate of the state vector at time n+1 (M1)

    filtered estimate of the state vector at time n+1 (M1)

    G(n) Kalman gain matrix at time n(MN)

    (n) innovations vector at time n(N1)

    R(n) correlation matrix of innovations vector at time n(NN)K(n+1,n) correlation matrix of the error in (MM)

    K(n) correlation matrix of the error in (MM)

    ( )nn Y1 +x( )nnYx

    ( )nnYx( )nn Y1 +x

    Knownparameters

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 18

    Kalman Computations

    ( ) ( ) ( ) ( ) ( )nnnnnn nn GxFx ++=+ 1,11 YY

    ( ) ( ) ( ) ( ) ( )nnnnnnnn 1H ,1,1,1 QFKFK +++=+

    ( ) ( ) ( ) ( ) ( ) ( )1,1,1, += nnnnnnnnn KCGFKK

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]1

    2

    1,1,,1

    ++= nnnnnnnnnnn QCKCCKFG

    ( ) ( ) ( ) ( )1 = nnnnn YxCy

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 19

    Summary of Kalman Filtering

    Efficient recursive computation based on state-spacemodel.

    Optimal in MMSE sense: They minimize the trace ofthe filtered state error correlation matrix K(n).

    Widely applied in control systems.

    A framework for RLS algorithms in adaptive filtering.

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 20

    Variants of the Kalman Filter

    Covariance filtering. Studied so far.

    Information filtering: propagate K-1(n) (~ Fishers

    information matrix) instead ofK(n+1,n). Square-root filtering: propagate the Cholesky

    factorization K(n) = K1/2(n)KH/2(n) (covarianceform) or inverse K-1(n) = K-1/2(n)K-H/2(n)(information form). Improved numerical stability.

    UD-factorization or fast Kalman algorithm:modification of square-root filtering to reduce

    computational complexity. The numerical stability advantage lost.

  • 8/8/2019 TLSK1_8_RLS

    6/11

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 21

    Extended Kalman Filter

    Sometimes the basic system model is nonlinear.

    The Kalman filter can be extendedto such a caseas well:1. Linearize the problem approximately by Taylor series.

    2. Approximate the state equations:

    Kalman filtering still applies except a few

    modifications.

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ).

    ,,11

    2

    1

    nnnn

    nnnnnn

    vxCy

    dvxFx

    +

    ++++

    deterministic (non-random)

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 22

    Introduction to RLS Algorithm

    The next step is to apply the method of leastsquares to update the tap-weights of adaptive

    transversal filters. We search for a recursive least squares(RLS)

    algorithm to update the filter tap-weights when newobservations (data, input samples) are fed into thefilter.

    More efficient utilization of data than in the LMSalgorithm. Improved convergence.

    Increased complexity. Close relationship to Kalman filtering, but RLSalgorithm is treated as on its own.

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 23

    Problem SetUp

    The cost function to be minimized at time nis

    where (n,i) is a weighting or forgetting factor, ande(i) = d(i)y(i) is the error between the desiredresponse d(i) and the transversal filter output y(i).

    Remind:

    Block processing: taps are fixed over 1in.

    ( ) ( ) ( ) ,,1

    2=

    =n

    i

    ieinnE

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )[ ]

    ( ) ( ) ( ) ( )[ ] .

    ,11

    ,

    T

    110

    T

    H1

    0

    nwnwnwn

    Miuiuiui

    inkiunwiy

    M

    M

    k=k

    =

    +=

    ==

    w

    u

    uw

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 24

    Exponentially Weighted Least Squares

    The weighting factor must satisfy 0

  • 8/8/2019 TLSK1_8_RLS

    7/11

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 25

    The Impact of the Value of

    = 0.999

    = 0.99

    = 0.98 = 0.97

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 26

    Matrix Inversion Lemma

    General form: [S. M. Kay, Fundamentals of Stat. Sign. Proc., Prentice Hall, 1993, p. 571]

    Textbooks [1] special case:

    whereA and B are positive definite MMmatrices.

    Another useful special case (Woodburys indentity):

    where u is a vector.

    ( ) ( ) .111111

    +=+ DACBDABAABCDA

    ( ) ,H1H1H11 BCBCCDBCBACCDBA +=+=

    ( ) ,1 1H1H1

    11H

    uAu

    AuuAAuuA

    +=+

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 27

    Exponentially Weighted RLSAlgorithm

    Apply Woodburys identity to the exponentiallyweighted least squares problem:

    Let (for notational convenience) the inversecorrelation matrixbe P(n) = 1(n):

    ( ) ( ) ( ) ( )

    ( ) ( )( ) ( ) ( ) ( )

    ( ) ( ) ( ).

    11

    111

    1

    1H

    1H1111

    H

    nnn

    nnnnnn

    nnnn

    uu

    uu

    uu

    +

    =

    +=

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( )( ) ( ) ( )

    .11

    1

    ,11

    H1

    1

    H11

    nnnnnn

    nnnnn

    uPuuPk

    PukPP

    +=

    =

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 28

    Riccati Equation of the RLS Algorithm

    The gain vector can be updated via the Riccatiequationof the RLS algorithm (compare to Kalmanfilter):

    ( )( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )[ ] ( )( ) ( ) ( ) ( ).

    11

    11

    1

    1

    H11

    H1

    1

    nnnn

    nnnnnn

    nnn

    nnn

    uuP

    uPukPk

    uPu

    uPk

    ==

    =

    +

    =

  • 8/8/2019 TLSK1_8_RLS

    8/11

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 29

    Time Update of the Tap-Weight Vector

    The tap-weight vector update:

    where the a priori estimation error a posterioriestimation error

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )ndnnnnnnn

    ndnnnn

    ndnnnnnnnn

    +=

    +=+===

    uPzPukP

    uPzP

    uzPzPzw

    111

    1

    1

    H11

    1

    ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )[ ]

    ( ) ( ) ( ),1

    11

    11

    1111

    H

    H

    H

    nnn

    nnndnn

    ndnnnnn

    ndnnnnnnnn

    +=

    +=

    +=

    +=

    kw

    wukw

    kwukw

    uPzPukzP

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).1 HH nnndnennndn uwuw ==Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 30

    RLS Algorithm Illustrations

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 31

    Summary of the RLS Algorithm

    ( )( ) ( )

    ( ) ( ) ( )nnn

    nnn

    uPu

    uPk

    11

    1H1

    1

    +

    =

    ( ) ( ) ( ) ( )nnndn uw 1H

    =

    ( ) ( ) ( ) ( )nnnn += kww 1

    ( ) ( ) ( ) ( ) ( )11 H11 = nnnnn PukPP

    Typical simple initializations: P(0) = I, ( ) .0 0w =

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 32

    Weighted Error Squares

    Resume that

    where now

    Note that

    Conversion factor:

    ( ) ( ) ( ),Hmin nnnd wz=EE

    ( ) ( ) ( ) ( ) .12

    1

    2ndnidn d

    n

    i

    ind +==

    =

    EE

    ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]nnnndnnndnd +++= kwuz 111 HH2min EE( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]1111 HH += nnndndnnnd wuwzE( ) ( ) ( )

    nnn kzH

    ( ) ( ) ( ).1minmin nenn+= EE

    ( ) ( ) ( ) ( ).nennen =

    ( ) ( )( )

    ( ) ( ).1 H nnnnne uk==

  • 8/8/2019 TLSK1_8_RLS

    9/11

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 33

    Convergence Analysis

    Convergence analysishere is rigorous. Direct averaging method

    (as in the case of the LMSalgorithm) is not used.

    Multiple linear regressionmodel is applied. Regression parameter: wo.

    Measurement error: eo(n).

    Analysis carried out for=1 or (n,i)=ni=1.

    ( ) ( ) ( )nnend uwHoo +=Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 34

    Mean Value

    Similarly to the unbiasedness of the LS estimator,the RLS algorithm is convergent in the mean value:

    Proof:

    The claim follows from the above by noting that theexpectation of the latter term is zero.

    ( ) .,E o Mnn = ww

    ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )=

    ==

    =

    +=+==n

    i

    n

    i

    n

    i

    n

    i

    neininneiidin1

    o1

    oH

    1

    Hoo

    1

    uwuuuwuuz

    ( ) ( ) ( )=

    +=n

    i

    nein1

    oo uw

    ( )n=

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )=

    =

    +=+==n

    i

    n

    i

    neinneinnnn1

    o1

    o1

    o1

    o1 uwuwzw

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 35

    Mean-Squared Tap-Weight Error

    Two independence assumptions: The input vectorsu(1),u(2),...,u(n) are IID and jointly Gaussian.

    The covariance matrix K(n) = E[(n)H(n)] of thefilter tap-weight error vector

    is

    Proof: See [1, pp. 576578].

    Consequences:

    1. MSE is magnified by 1/min.

    Ill-conditioned matricescause problems.

    2. MSE decreases linearly over time.

    ( ) ( ) . oww = nn

    ( ) ( )[ ] .1,E 11

    112 +>==

    MnnnMn

    RK

    ( ) ( )[ ] ( )[ ] .1,trE1

    11

    H 2 +>== =

    Mnnnn

    M

    iMn i

    K

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 36

    Learning Curve The Output MSE

    Two kinds of filter output MSE measures: a prioriestimation error (n)

    Large value (MSE ofd(1)) at time n=1, then decays.

    a posterioriestimation error e(n) Small value at time n=1, then rises.

    A prioriestimation error (n) is more descriptive:

    Proof: See [1, pp. 578579].

    ( ) ( )[ ] ( )[ ] .1,1trE'1

    222 2 +>+=+==

    MnnnnJMn

    MRK

  • 8/8/2019 TLSK1_8_RLS

    10/11

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 37

    Learning Curve The Output MSE:Consequences

    1. The learning curve converges in about 2Miterations about an order of magnitude faster than the LMSalgorithm.

    2. As the number of iterations approaches infinity MSEapproaches the variance 2 of the optimummeasurement error eo(n) zero excess MSE in WSSenvironments.

    3. MSE convergence is independent of the eigenvaluespread of the input data correlation matrix.

    Remarkable convergence improvements over LMSalgorithm with the price of increased complexity.

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 38

    Application Example Equalization

    Transmitted signal: randomsequence of1s.

    Channel:

    11-tap FIR equalizer.

    Two SNR values:

    SNR = 30 dB SNR = 10 dB.

    ( ) .

    otherwise

    3,2,1,22

    cos1

    ,02

    1

    =

    += nnWhn

    Channel response

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 39

    Example: Impact of Eigenvalue Spread atHigh SNR = 30 dB

    Convergence inabout 20 (2M)iterations.

    Relatively insensitiveto eigenvaluespread.

    Clearly fasterconvergence andsmaller steady-stateerror than those ofthe LMS algorithm.

    ( ) { }46,21,11,6 R

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 40

    Example: RLS and LMS AlgorithmComparison at Low SNR = 10 dB

    The RLS algorithmhas clearly fasterconvergence andsmaller steady-stateerror than those ofthe LMS algorithmwith less oscillations.

    ( ) { }11 R

  • 8/8/2019 TLSK1_8_RLS

    11/11

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 41

    Relation to Kalman Filter

    The RLS algorithm has many similarities to theKalman filtering, but also some differences. RLS: derivation by a deterministic mathematical model.

    Kalman: derivation by a stochastic mathematical model.

    Unified approach based on stochastic state-spacemodels.

    The Kalman filtering approaches in the literature arereadily available for RLS algorithms.

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 42

    Relations of RLS Algorithms and KalmanFilter Variables

    Communication Signal Processing I

    8. Recursive Least Squares Algorithm

    M. Juntti, Universityof Oulu, Dept. Electricaland Inform. Eng.,

    Telecomm. Laboratory & CWC 43

    Summary

    RLS algorithm derived as a natural application ofthe method of least squares to the linear filteradaptation problem. Based on matrix inversion lemma.

    Difference to the LMS algorithm: step-sizeparameter is replaced by P(n) = 1(n).

    The rate of convergence of the RLS alg. is typically1. an order of magnitude better than that of the LMS alg.

    2. invariant to eigenvalue spread.

    3. the excess MSE converges to zero

    The case 1 is considered later change in the lastproperty.