14
Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite Per il comfort ambientale di Edifici civili laureando: Tosin Nora relatore: prof. LucaSchenato 19 10 2009 1

Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

Embed Size (px)

Citation preview

Page 1: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

Università degli studi di PadovaFacoltà di ingegneria

Corso di laurea in Ingegneria informatica, v.o.

Tecniche di controllo centralizzate e distribuite Per il comfort ambientale di

Edifici civili

laureando: Tosin Nora relatore: prof. LucaSchenato

19 10 2009

1

Page 2: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

Motivazioni ed Applicazioni

• onerosità crescente approvigionamenti energetici necessità riduzione consumi• 40% spreco energetico dal settore dell’edilizia civile

tendenze attuali:• contenimento dei disperdimenti termici• ottimizzazione delle risorse

2

Page 3: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

Sistemi adottati negli edifici civili di piccole dimensioni:Sistema di termostatizzazione semplice:• controllo di tipo bang-bang;• cronotermostato per la programmazione oraria;• comparatore ad isteresi per il segnale di retroazione.

Stato dell’arte in letteraturatecniche di linearizzazione via feedback con controllo:• di tipo predittivo;• di tipo P.I.D.

Contributo del lavoro• modellizazione dell’edificio e delle dispersioni termiche;• applicazione di tre tipi controllo centralizzato locale regionale

3

Page 4: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

Modello dell’edificio

Ipotesi regime stazionario: tempearura interna costante (ambiente termostatizzato), ma condizioni esterne variabili.

Temperatura: equazione differenziale del primo ordine non lineare bilancio energetico variazione dell’energia termica differenziata nel tempo come sommatoria degli scambi energetici

Umidità : equazione differenziale del primo ordine non lineare basata sull’equilibrio di massa.

Flusso termico attraverso involucro edilizio, (murature ed infissi):

U= trasmittanza termicah= coefficienti liminari per convezionek= conduttività termica

4

Page 5: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

Temperatura Aria-sole: temperatura fittizia per tener conto della radiazione solare

α assorbanza, I intensità radiazione solare

Effetto serra: radiazione entrante tra 0.2 e 0.55μm, radiazione da oggetti e pareti interni lunghezza d’onda di massima emissione cira 10μm (legge di Wien)

5

Page 6: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

Produzione media di vapore acqueo

g/h

Persone attività leggera 30-60

Bagno doccia 2600Bagno vasca da bagno 700

Cucina 600-1500

fiori 5-10

Pianta da vaso 7-15

apparecchio elettrico carico [Watt]televisore 300frigorifero 320

congelatore 540lavapiatti 50lavatrice 50computer da 90 a 530

singola persona 64luce artificiale 50

Tasso di ricambio d’aria

differenza di pressione: vento differenza di temperatura

dove: Rs costante dei gas ideali per l’aria 287.1 in J/(kgK) pm pressione media atmosferica 100 kPa

Fonti interne:

6

Page 7: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

Transitorio termico

Le equazioni precedenti sono valide in regime stazionario.Prima approssimazione del transitorio termico:

h= cofficiente diconvezione; ρ = densità c = calore specifico

7

Page 8: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

Disturbi: v1 intensità radiazione solare [W]; Ingressi: u1 riscaldamento [W] v2 temperatura esterna [K]; u2 deumidificazione [gr/min] v3 umidità esterna percentuale [grH2O/gr aria]; v4 velocità del vento in [m/min]; tterreno temperatura suolo [K].

Equazioni di stato: temperatura bilancio energetico

Termini non lineari

8

Page 9: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

Equazioni di stato: umidità equilibrio della massa

Uscite: temperatura e umidità di ogni stanza, con ritardo di misura

Termini non lineari

9

Page 10: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

Il controllo ottimo LQ

La teoria del controllo ottimo con indice di costo quadratico permette di risolvere in modo efficiente il problema di sintesi del regolatore in sistemi multivariabili lineari, ma esso si presta anche al progetto di un sistema di retroazione per sistemi non lineari, come in questo caso, attorno ad un punto di equilibrio con lo scopo di garantire che le deviazioni da tale punto ideale restino piccole.

Dato il sistema non lineare

Calcolo del punto di equilibrio:

Linearizzazione attorno al punto di equilibrio:

con

Minimizzare l’indice di costo:

10

Page 11: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

Date R e Q il controllo ottimo si ottiene tramite la soluzione dellaequazione di Riccati ad orrizzzonte infinito:

Scelta di Q ed R:

αi , βi coefficienti di importanza relativa xi max . ui max campi di variabilità (ammissibili o prevedibili)

Correzione feed-forward: misurati disturbi esterni di umidità e temperatura usato per compensare gli effetti dei disturbi a catena aperta:

11

Page 12: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

Controllo centralizzato Deve essere disponibile intero modello, elevate dimensioni del modello;Sono disponibili tutte le misure;Controllori di dimensioni elevate;Difficile e costoso portare tutte le misure dei sensori in un unico punto di elaborazione;Problemi di affidabilità;

Controllo decentralizzato

Modello ridotto, più semplice;Controllori di struttura semplificata;Controllori indipendenti, meno sensibile ai guasti;

Tipi di controllo applicati: ipotesi attuatore e sensore per ogni ambiente• centralizzato controllore unico, riceve misure di tutti i sensori e calcola gli ingressi per gli attuatori;• decentralizzato un controllore per ogni ambiente, temperatura e umidità delle stanze adiacenti non note;• regionale edificio diviso in zone a cui si applica un controllore.

12

Page 13: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

min

Controllo centralizzato Controllo decentralizzato Controllo regionaleC°

C° C°

min

min

min

min

min

min

minmin

min

min

min

WW

W

Gr H2O

Gr H2O

Gr H2O

Gr/minGr/min

Gr/min

13

Page 14: Università degli studi di Padova Facoltà di ingegneria Corso di laurea in Ingegneria informatica, v.o. Tecniche di controllo centralizzate e distribuite

ConclusioniDifficoltà nel trovare adeguati R e Q per il controllo regionale e decentralizzato;Maggiore sensibilità ai disturbi per i controlli regionale e decentralizzato, a causa del modello semplificato;

Sviluppi futuri:• applicazione di tecniche di controllo più avanzate, ad esempio controllo predittivo;• simulazione su edifici di più grandi dimensioni.

14