7
8/20/2019 WJ_1974_02_s59 http://slidepdf.com/reader/full/wj197402s59 1/7 Strength of Transverse Fillet Welded Joints Analysis yields a design formula that is more rational than the method of treating all fillets as though loaded in the weakest direction BY  BEN KATO  AND  KOJI  MORITA SUMMARY. The resultant force on a fillet weld may be transverse to the axis of the weld,  inclined to the axis or parallel to the axis. The stress dis tribution in the weld and its static re sistance vary materially with the rela tive orientation of load and weld axis. Most of the basic investigations on the static strength and behavior of fil let welds were conducted during 1920's  and  1930's  (Ref. 1). It has been shown that breaking loads for transversely-loaded fillets were of the order of 40 % greater than those for longitudinally-loaded fillets of the same size and length. In this paper the term transverse fillet w ill be used to describe the former, while longitu dinal fillet will be used for the latter. A few design specifications  (e.g., Ref. 2) and design methods take these differences into account, but most do not, treating all fillet welds as though oriented in the weakest direction.  The main reasons for neglecting the greater strength of transverse fillet welds are probably an interest in simplifying design and BEN KATO is Professor and KOJI MORITA is Assistant Professor in the Faculty of Engineering,  Department of Architecture, University of Tokyo, Tokyo, Japan. the fact that the performance of a transverse fillet  weld is complex. Recently, in recognition of the re markable improvement in quality of steel, electrode and welding  tech niques, extensive investigations on fillet welded joints were conducted to obtain more rational design formulas (Refs. 3,4). Regardless of whether or not one distinguishes between the different types of fillet weld loads in design, it is desirable to make a study of their performance. It should aid in assess ing the true effectiveness of connec tions proportioned by conventional methods. In this report, the static strength and behavior of transverse fillet welds are studied theoretically. An approximate solution based on the theory of elasticity is reviewed and supplemented by an elastic-plastic- strain hardening analysis performed numerically using the finite element technique. The results are compared with available test results. An Approximate Approach from the Theory of Elasticity An approximate theory on the strength of transverse fillet welds was presented by a senior writer (Ref. 5),  based on the following assump tions:: 1.  The direct stress (q) on the tensile face of the weld is uniformly distributed (Fig. 1). 2.  The pattern of the elastic stress distribution remains unchanged until the breaking of the  weld. 3. Breaking will occur when the shear stress at a point of the fillet reaches Cmax.= <*>/£ where  <7 T  = the tensile strength of th e  weld metal. For simplicity, a fillet we ld with equal legs is considered. The elastic stress components in a fillet are expressed in a polar coordi nate system with the origin 0 at the toe of the fillet, as shown in Fig. 1. The compatibility equation is (Ref. 6). (fWa7*r^)(^TeT^l£)=0 (D The general solution for this equation is I = a 0 lo g  r  +  b 0 r 2 <-c 0 r 2 log  r •  d 0 r 2 e *  a^e • (a, re sine)/2'(b,r 3 *a;  r-Ub,'r  logr)cos9 -(c, re cose)/2+(d,r 3 tc,' r-'.d,' r log r)sin 9  £,( a„r% b nr n - 2  a'  r   b; r- - 2 )cos  ne  S (c n r n *d n r n * 2 -.Cnr- n *dnr- n, 2 )sin  ne n »2 (2) WELDING RESEARCH SUPPLEMENT I 59-s

WJ_1974_02_s59

Embed Size (px)

Citation preview

Page 1: WJ_1974_02_s59

8/20/2019 WJ_1974_02_s59

http://slidepdf.com/reader/full/wj197402s59 1/7

Strength of Transverse Fillet W elded Jo ints

Analysis yields a design formu la that is more rational

than the method of treating all fillets as though loaded

in the weakest direction

B Y  B E N K A T O  A N D  KOJI  M O R I T A

S U M M A R Y . T h e r e su l t a n t f o r ce o n a

f i l l e t w e l d m a y b e t r a n sve r se t o t h e

ax is o f the

  w e l d ,

  i n c l i ned to the ax is

o r pa ra l le l to the ax is . The s t ress d i s

t r i bu t ion in the we ld and i t s s ta t i c re

s i s t a n ce va r y m a t e r i a l l y w i t h t h e r e l a

t i ve o r ien ta t ion o f l oad and we ld ax is .

M o s t o f t h e b a s i c in ve s t i g a t i o n s o n

t h e s t a t i c s t r e n g t h a n d b e h a v i o r o f  f i l

l e t w e l d s w e r e co n d u c t e d d u r i n g

1920's  a n d  1930's  (Ref. 1). I t h as

been sh ow n tha t b reak ing loads fo r

t r a n sve r se l y - l o a d e d f i ll e t s w e r e o f

the o rde r o f 40 % g rea te r th an th ose

fo r long i tud ina l l y - lo aded f i l l e ts o f the

sam e s ize and leng th . In th i s pape r

the te r m t ransv e rse f i l l e t w i l l be used

t o d e sc r i b e t h e f o r m e r , w h i l e l o n g i t u

d in a l f i l le t w i l l be used fo r th e la t te r .

A f e w d e s i g n sp e c i f i ca t i o n s  (e .g . ,

Ref . 2 ) and des ign m e th ods take

t h e se d i f f e r e n ce s i n t o a cco u n t , b u t

mo st do no t , t rea t ing a l l f i l l e t we lds

a s t h o u g h o r i e n t e d i n t h e w e a ke s t

d i r e c t i o n .

  T h e m a i n r e a so n s f o r

n e g l e c t i n g t h e g r e a t e r s t r e n g t h o f

t r a n sve r se f i l l e t w e l d s a r e p r o b a b l y

a n i n t e r e s t i n s i m p l i f y i n g d e s i g n a n d

BEN KATO is Professor and KOJI MORITA

is Assistant Professor in the Faculty of

Engineering,  Department of Architecture,

University of Tokyo, Tokyo, Japan.

t h e f a c t t h a t t h e p e r f o r m a n ce o f a

t r a n s v e r s e  f i l let  w e l d i s co m p l e x .

Recen t l y , i n recogn i t i on o f the re

m a r ka b l e i m p r o v e m e n t i n q u a l i t y o f

s t e e l ,  e l e c t r o d e a n d w e l d i n g   t e c h

n i q u e s , e x t e n s i ve i n ve s t i g a t i o n s o n

f i l l e t w e l d e d j o i n t s w e r e co n d u c t e d t o

o b t a i n m o r e r a t i o n a l d e s i g n f o r m u l a s

(Re fs .

  3,4).

Rega rd less o f wh e t he r o r no t one

d i s t i n g u i sh e s b e t w e e n t h e d i f f e r e n t

types o f f i l l e t we ld loads in des ig n , i t

i s des i ra b le to make a s tudy o f the i r

p e r f o r m a n ce . It sh o u l d a i d i n a sse ss

i n g t h e t r u e e f f e c t i ve n e ss o f co n n e c

t i o n s p r o p o r t i o n e d b y co n ve n t i o n a l

m e t h o d s .

In th i s repo r t , the s ta t i c s t r eng th

a n d b e h a v i o r o f t r a n sve r se f i l l e t

w e l d s a r e s t u d i e d t h e o r e t i ca l l y . A n

a p p r o x i m a t e so l u t i o n b a se d o n t h e

theo ry o f e las t i c i t y i s rev iewed and

su p p l e m e n t e d by a n e l a s t i c - p l a s t i c -

s t r a i n h a r d e n i n g a n a l ys i s p e r f o r m e d

n u m e r i ca l l y u s i n g t h e f i n i t e e l e m e n t

t e ch n i q u e . T h e r e su l t s a r e co m p a r e d

w i th ava i lab le tes t resu l ts .

A n A p p r o x i m a t e A p p r o a c h f r o m

t h e T h e o r y o f E l a s t i c i t y

A n a p p r o x i m a t e t h e o r y o n t h e

s t r e n g t h o f t r a n sve r se f i l l e t w e l d s

w as p resen te d by a sen io r w r i te r (Re f .

5),   b a se d o n t h e f o l l o w i n g a ssu m p

t ions: :

1 .  T he d i rec t s t ress (q ) on the tens i le

face o f the we ld i s un i fo r m ly

d ist r ibu ted (F ig . 1 ) .

2 .  The pa t te rn o f the e las t i c s t res s

d i s t r i b u t i o n r e m a i n s u n ch a n g e d

un t i l the b reak ing o f the

  w e l d .

3 . B r e a k i n g w i l l o ccu r w h e n t h e

shea r s t re ss a t a po in t o f the f i l l e t

reaches

Cmax.=  <*>/£

where  <7

T

  = the tens i le s t re ng t h o f

th e  w e l d m e t a l .

Fo r s im p l i c i t y , a f i l l e t we ld w i t h equa l

legs i s cons ide red .

T h e e l a s t i c s t r e ss co m p o n e n t s i n a

f i l l e t a re exp ressed in a po la r coo rd i

n a t e sys t e m w i t h t h e o r i g i n 0 a t t h e

toe o f the f i l l e t , as shown in F ig . 1 .

The com pa t i b i l i t y e qua t ion i s (Re f. 6 ) .

( f W a 7 * r ^ ) ( ^ T e T ^ l £ ) = 0

(D

T h e g e n e r a l so l u t i o n f o r t h i s e q u a t i o n

is

I =

a

0

log

  r +

 b

0

r

2

<-c

0

r

2

log

 r •

 d

0

r

2

e

 * a^e

• ( a , r e s i n e ) / 2 ' ( b , r

3

* a ; r-Ub,'r  logr)cos9

- (c , re cose ) /2+(d , r

3

tc, ' r- ' .d, ' r log r)sin 9

  £,( a„r%

 b

n

r

n

-

2

 a '

 r

 

 b; r- -

2

)cos

 ne

•  S (c

n

r

n

*d

n

r

n

*

2

-.Cnr-

n

*dnr-

n, 2

)sin  ne

n

 »2

(2)

W E L D I N G R E S E A R C H S U P P L E M E N T I 5 9 - s

Page 2: WJ_1974_02_s59

8/20/2019 WJ_1974_02_s59

http://slidepdf.com/reader/full/wj197402s59 2/7

Tak ing in to acco un t the boun da ry

co n d i t i o n s , s t r e ss co m p o n e n t s a r e o b

t a i n e d f r o m E q . (2)  as

=

  I S i ,  i aft

(3)

1

 -»M

(y2sinecos(e-t/4)t(e-7r/A))

l i t

sr*

(4 )  q * —

9 — [J2  c o s e  s in (e -» /4 ) - (8 - * /4 ) ]  « —

j . 3 i  .1  d x

r9

~  r

2

 36 rarae

- q

(5)

1  -v/A

/2 sin9sin(e-n:/4))

T h e co o r d i n a t e  9  w h i c h y i e l d s m a x i

m u m s h e a r

  T

0.

m

ax  i s ob ta ined as

  f o l

l o w s :

From Eq. (5 ) ,

f^=

:

T

L

£T(

sin6cos

(

6

-'

r

'

A

)

6  1 -* /A

4-cose

 sin(e-»/4))=

  o

F r o m w h i c h ,

  0

  =   " 7 8 .  I n t r o d u c i n g  d

  -

TT/Q   in to Eq. (5).

•^rs max.=/2q(1-t/A) 'sin

2

f/8

The exp ress ion in te rm s o f the ex te r

nal  l oadT , pe r one f i l l e t we ld i s

-<=re

 max. =

 <

1

  * /4)- ' (

  s in

2

 * /8

  )(   T,/A

w

  )

(6)

T h e m a x i m u m s t r e n g t h o f a t r a n s

ve rse f i l l e t we ld i s ob ta in ed by in t ro

duc ing

T

r

0.max.=

  ff

T

  / / 3 i n E q . ( 6 ) :

h

  m a

x . =

 (1 - '

r

^ ) fe in -

2

* /8 )A

v v

f f

T

/ /3

(7)

The ob l ique p lane RP in F ig . 1 wh ich

is no rm a l to the coo rd ina te l i ne

  $

  =

n

/8  th ro ugh the roo t o f the we ld c an

b e co n s i d e r e d t h e f r a c t u r e p l a n e , t h a t

is ,  b reak ing w i l l occu r a long the p lane

RP mak ing the ang le  6

  -  f / 8

  w i t h

the shea r face .

Fig. 1

 —

  Transverse fillet weld

For the case o f the long i tud in a l

f i l l e t we ld the c r i t i ca l sec t ion i s c lea r

ly the th roa t (RQ in F ig . 1 ) . Th en th e

m a x i m u m s t r e n g t h o f a l o n g i t u d i n a l

f i l l e t we ld o f the same s ize and leng th

is

T

l .max.  A

w

  0-

T

/73

From Eqs. (7 ) and  (8),

T,max.

 =  ( 1 - * / 4 ) ( s i n -

2

* / 8 ) T , .

=  1.46 T,

  m

(8)

(9)

T h u s , t h e p r e se n t m e t h o d p r e d i c t s

t h a t t r a n sve r se f i l l e t w e l d s a r e 4 6 %

s t r o n g e r t h a n l o n g i t u d i n a l f i l l e t w e l d s

o f the sam e s ize and le ng t h .

Tsrr

1

sxq

^C

JSL

~

AQQ

flhfl

4 0 0

r_d

(a ) TEST  SPECIMENS  Cin mm.

Fig. 2— Test specimens (Test No. 1)

Compar ison wi th Test Resu l ts

T h e t h e o r e t i ca l p r e d i c t i o n o b t a i n e d

i n t h e p r e v i o u s se c t i o n i s n o w co m

pa red w i t h ava i lab le tes t resu l ts .

O n e t e s t w a s p e r f o r m e d u s i n g sp e c

imens o f the fo rm shown in F ig . 2 (a ) ,

w h e r e s l i ce - cu t sp e c i m e n s w i t h l a r g e

s ize f i l l e ts we re adop ted (Re f . 5 ) .

Mechan ica l p rope r t ies o f s tee l p la tes

a n d w e l d m e t a l a r e sh o w n i n T a b l e  1;

t h o se o f w e l d m e t a l w e r e o b t a i n e d

f r o m sm a l l t e n s i l e t e s t p i e ce s m a

ch ined ou t o f the ac tua l f i l l e ts as

sh ow n in F ig . 2 (b ). The exp e r im en ta l

m a x i m u m s t r e n g t h o f j o i n t s i s co m

p a r e d w i t h t h e t h e o r e t i ca l p r e d i c t i o n

in Tab le 2 . F igu re 3 com pare s theo re t

i ca l and tes t resu l ts fo r the ang le the

b r e a k i n g p l a n e m a ke s w i t h t h e sh e a r

f ace .

A d d i t i o n a l t e s t s w e r e p e r f o r m e d

u s i n g sp e c i m e n s of t h e f o r m sh o w n

in F ig . 4 , cons is t ing o f seve ra l s i zes o f

f i l l e ts and a l im i ted f i l l e t l eng th (Re f .

7).   M e ch a n i c a l p r o p e r t i e s of p l a t e s

a n d w e l d m e t a l s a r e sh o w n i n T a b l e

3 . Tes t resu l ts a re com pare d w i t h the

theo re t i c a l p red ic t ions in F ig . 5 and

Tab le 4 . F igu re 5 com par es the max

i m u m s t r e n g t h w h i l e t h e a n g l e o f

b reak ing p lane i s com pare d in Tab le

4 .

  In bo th cases , the co r re la t ion be

tw ee n tes ts and theo ry i s qu i te good .

T h e a p p r o x i m a t e t h e o r y a l so se e m s

to be ab le to g ive a good exp lana t ion

fo r the resu l ts o f g roup tes ts c i ted

ear l ie r (Refs. 3 , 4 ) . The resu l ts o f tests

ca r r ied ou t by the task commi t tee o f

A W S S t ru c t u r a l W e l d i n g C o m m i t t e e

shows tha t fo r tes t spec imens o f A

4 4 1 s t e e l w e l d e d w i t h E 7 0 X X t yp e

( b ) T E S T P I E C E S M I L L E D O U T

OF THE WELD METAL  (in  mm. )

N o t a t i o n  „ .

A

W

  =  I * a  =  t h r o a t a r e a

a =  s / / 2  =  t h r o a t

D

P

  = e l a s t i c - p l a s t i c m a t e r i a l

s t i f f n e ss m a t r i x

E = Young 's modu lus

H ' = s t r a i n h a r d e n i n g m o d u l u s

I

  = len gth o f a f i l l e t

q = u n i f o r m l y d i s t r i b u t e d s t r e ss o n

the ten s i le face o f a f i l l e t

s  =  size  o f a f i l le t

T,

  = ex te rna l l oad pe r one long i tu

d ina l f i l l e t we ld

T t = ex te rna l l oad pe r one t ra ns

ve rse f i l l e t w e ld

Af  = i n c r e m e n t o f s t r a i n ve c t o r

A*  = equ iv a len t p las t i c s t ra in i n

c r e m e n t

<•  = Po iss on 's ra t io

rj,,o"

8

  ,o~

x

 'Cfy

  =

  n o r m a l s t r ess co m p o

nen ts

o-

x

,<r

y

  =  dev ia to r i c s t ress

a  = equ iv a len t s t ress

o-

T

  = t e n s i l e s t r e n g t h o f t h e w e l d

me ta l

?

  =

  i n c rem en t o f s t ress vec to r

T  ,r

r8

i

 r

xv

  = sh e a r s t re ss co m p o n e n t s

<E>  = s t ress func t ion de f ined by Eq . (2 )

6 0 - s  I F E B R U A R Y 1 9 7 4

Page 3: WJ_1974_02_s59

8/20/2019 WJ_1974_02_s59

http://slidepdf.com/reader/full/wj197402s59 3/7

e l e c t r o d e s ,

  t he

  a v e r a g e r a t i o

  of th e

s t r e n g t h  o f  t r a n s v e r s e f i l le t w e l d s  t o

t h a t  o f  l o n g i t u d i n a l f i l le t w e l d s  is  1.56

a n d  f o r  s p e c i m e n s  o f A 5 1 4  s t e e l

w e l d e d w i t h  E 1 1 0 X  t y p e e l e c t r o d e ' s ,

t h e a v e r a g e r a t i o  is  1.45  (F i e f .  3 ). It

h a s a l s o b e e n f o u n d t h a t  t he  r e s u l t s

o f  t he  i n t e r n a t i o n a l t e s t s c o n d u c t e d

u n d e r  t he  a e g i s  of the  I n t e r n a t i o n a l

I n s t i t u t e

  o f

  W e l d i n g , i n c o r p o r a t i n g

r e s u l t s f r o m m o r e t h a n  t e n  c o u n t r i e s ,

c o u l d

  b e

 w e l l i n t e r p r e t e d

  o n the

  b a s i s

o f t h i s t h e o r y ( R e f s . 4 , 8) .

A n a l y s i s  by t h e  F i n i t e

E l e m e n t M e t h o d

T h e a s s u m p t i o n s m a d e

  in the  d e r i

v a t i o n  of the  m e n t i o n e d s o l u t i o n  a r e

n o t p r e c i s e .  In  c o n j u n c t i o n w i t h

  ( 1 ) ,

  i t

i s k n o w n t h a t  t he d i r e c t s t r e s s  o n th e

t e n s i l e f a c e  o f th e  w e l d v a r i e s a p p r o x

i m a t e l y l i n e a r l y f r o m  the to e to the

r o o t .  A s f o r t h e  a s s u m p t i o n  (2) , the

p e a k s t r e s s p r e d i c t e d  b y  e l a s t i c

t h e o r y s h o u l d  b e  r e l i e v e d  b y  p l a s t i c

d e f o r m a t i o n

  a s

 s o o n

  as i t

  e x c e e d s

 the

y i e l d s t r e s s  a n d t h u s  a  r e d i s t r i b u t i o n

o f  t he s t r e s s w i l l o c c u r . W i t h r e s p e c t

t o  the t h i r d a s s u m p t i o n ,  t he  b r e a k i n g

s t r e s s s h o u l d  b e  e v a l u a t e d a c c o r d i n g

t o  a n a p p r o p r i a t e f a i l u r e t h e o r y .

I n a d d i t i o n ,  t he  s h e a r s t r e s s a l o n g

t h e a s s u m e d b r e a k i n g p l a n e   RP is e x

p r e s s e d a s

-c =, _2i=_£L

 s i n 2

r j  _ t;

r e  C

os 2(3

|3=

  5 * / 8

  - 9

10)

F r o m  Eqs.  ( 3 ) , ( 4 ) ,  (5) a n d

  ( 1 0 ) ,

  t he d i s

t r i b u t i o n  o f  s h e a r s t r e s s a l o n g  the

p l a n e  RP is g i v e n  a s  s h o w n  i n  Fig. 6 .

T h i s m e a n s t h a t rr fl. ma x.  is no t the

m a x i m u m s h e a r s t r e s s a l o n g   the

o b l i q u e p l a n e  RP.  O b v i o u s l y t h i s

r e s u l t c o m e s m a i n l y f r o m  the  a s s u m p

t i o n

  (1 )

  m e n t i o n e d a b o v e .

I n s p i t e  o f  t h o s e s h o r t c o m i n g s ,  the

p r e d i c t i o n f r o m t h i s a p p r o x i m a t e

t h e o r y  ha d s h o w n s a t i s f a c t o r y a g r e e

m e n t w i t h v a r i o u s t e s t s r e s u l t s . M o r e

p r e c i s e s t u d y  on the p e r f o r m a n c e  o f

t h e t r a n s v e r s e f i l l e t w e l d  in  e l a s t i c -

p l a s t i c r a n g e  is  d e s i r a b l e  i n  o r d e r  to

k n o w

  h o w

  t h i s a p p r o x i m a t e s o l u t i o n

c a n p r e d i c t

  t he

 a c t u a l b e h a v i o r

  a n d

 to

a s s e r t  the g e n e r a l i t y  o f t h i s s o l u t i o n .

F o r t h i s p u r p o s e ,   a  n u m e r i c a l

  a n a l

y s i s  by the  f i n i t e e l e m e n t m e t h o d ,

e x t e n d e d  to the  e l a s t i c - p l a s t i c - s t r a i n

h a r d e n i n g r a n g e  b y  P o p e  a n d  o t h e r s

( R e f s .  9, 10) , is  a p p l i e d h e r e i n . A n a l

y s i s  is  p e r f o r m e d  o n the  b a s i s  o f i n

c r e m e n t a l s t r a i n t h e o r y   a n d a n  i s o

t r o p i c  a n d d u c t i l e m a t e r i a l a s s u m e d

t o o b e y

  the vo n

 M i s e s y i e l d c o n d i t i o n

w i t h

  P r a n d t l - R e u s s

  l o a d i n g f u n c t i o n .

T h e p r i n c i p a l f e a t u r e  o f  t h i s p r o b l e m

l i e s  in the  e v a l u a t i o n  of the  e l a s t i c -

p l a s t i c m a t e r i a l s t i f f n e s s m a t r i x

  D

p

w h i c h r e l a t e s

  t he

 s t r a i n i n c r e m e n t

  to

t h e s t r e s s i n c r e m e n t  of the  m a t e r i a l .

D°  is g i v e n  in R e f s .  9,  1 0 ,  a s  f o l l o w s :

D  =  - P -

  m u l t i p l i e d

  b y

( 1 1 )

°x  •

r

r

J

.2c,  - t f j ^ v e ,

  - S f i ^ h :

cr ;

2

*  2 c ,

xy

r S t i - i S L y r -

(SYM.)

A < T = D

P

A 6 , A O = { AO „,AO~y,,&Xxy}

A €

  =

 { A €

X

  , AGy ,Ar

X

y}

w h e r e ,

2H =2

T a b l e  1 —  M e c h a n i c a l P r o p e r t i e s  o f  P l a t e  a nd W e l d M e t a l ( T e s t  No. 1)

W e l d m e t a l

P r o p e r t y

Y i e l d  point

( UN / c m * )

1

T e n s i l e s t r e n g t h ,

( k N / c m

2

)

E l o n g a t i o n ,

 %

Reduc t i on

 o f

a rea (%)

S t e e l

p l a te

27.54

45.86

29.0

|_(b)

37.73

47.33

3 7 , 8

56 .1

D4316

T(b )

40.47

4 8 . 2 2

2 8 . 9

4 5 . 8

(a)

D5011

(a)

M e a n

3 9 . 1 0

4 7 8 2

3 3 . 4

5 1 . 0

L

4 0 . 6 7

5 1 . 7 4

3 2 . 9

4 1 . 2

T M e a n

3 9 . 4 9 4 0 . 0 8

5 0 . 2 7  51 .06

33.4  33.2

39.4

  40.3

(a) Type  of  electrode;

  D4316 :

  low hydrogen type;  D 5 0 1 1 ;  high cellulose

  type,

lb)  L -  long i tud ina l .  T = t ransverse;  see

 Fig 2(b)

(c)  1 k N / c m

J

  = 1 45

 ksi

c

2

  =

 o

x

'

2

 • 2

  u c - ' o -

y

'

  ~y

 

2 ( 1

 -  l-

2

  ) (

<s;   =  2 c r

x

  -  o -

y

) / 3

cr

y

'

  = ( 2 c r

y

  - < T

x

) / 3

d e v i a t o r i c s t r e s s

E  =  Y o u n g ' s m o d u l u s

=  P o i s s o n ' s r a t i o

cr

  =  Jcr

x

2

  • (5-

y

2 _  o-

x

 cr

y

  3 t

x y

2

= e q u i v a l e n t s t r e s s

H ' =  A C T /

  A £

P

=  s t r a i n h a r d e n i n g m o d u l u s

A

g P

=

  l i t ( ( c r

x

' t * o - y ' ) A e

x

* ( o - ^ * < 5 -

x

Hey

3

 c

2

• ( 1 - > ) t

x y

A l '

x y

)

= e q u i v a l e n t p l a s t i c s t r a i n i n c r e

m e n t .

T h e c o m p u t a t i o n a l p r o c e d u r e  of th e

p r o b l e m  is  o u t l i n e d  in the  f l o w c h a r t

o f  F ig . 7 . The d e t a i l e d d e s c r i p t i o n   o f

t h e a n a l y t i c a l p r o c e s s  fo r the  s i m i l a r

p r o b l e m

  is

 g i v e n e l s e w h e r e ( R e f.

  1 1 ) .

Fig.  3 — Breaking planes, theory  and  tests

T a b l e  2 —  M a x i m u m L o ad s  b y T e s t s  a nd T h e o r y ( T e s t  No . 1)

Tes ts

T h e o r y

M a x i m u m

  load,

kN

L1  L2 L3  M e a n  H I  H2 H3  M e a n  L H

3 0 1 . 8 4 2 8 6 1 6 3 1 9 .4 8  3 02 8 2  3 4 3 . 0 3 1 1 . 6 4  3 3 8 . 1  3 3 1 . 2 4 3 0 7 . 7 2 3 2 9 . 2 8

W E L D I N G R E S E A R C H S U P P L E M E N T 6 1 - s

Page 4: WJ_1974_02_s59

8/20/2019 WJ_1974_02_s59

http://slidepdf.com/reader/full/wj197402s59 4/7

r b 1

f

-nSi*

T^

2t

JL.

40

4.

s

b

t

S 5B

S 5 R

5

2 7

9

S 1 0 B

1 0

49.5

16 .5

5 1 5 B

S 1 5 R

1 5

7 2

2U

B:

 Basic type elec trod e

 ,

  R:

b=4.5(s*1) .  t = 1.5(s*1),  s,b

S 2 0 B

2 0

9 4 .5

31 .5

S30B

3 0

13 9.5

4 6.5

S 4 0 B

S 4 0 R

4 0

18 4.5

61.5

fut i le

  type electrode

. t.  in mm.

Fig. 4

 —

 Test specimens (Test No. 2)

2.0 +

r a l ' - C m a x .

1.5

. 1 . 0 -

 

m

 — B -—re gres sion  curve

o —   R  f r o m  Eq.(4)

a  —throat

I  — l e n g t h o f w e l d

10 2 0 3 0

a

  ( m m )

Table 4 — Ang le of Breaking Plane w it h

Shear Face

Speci

men

S5 B

S5 R

S1 B

S15B

S15R

Angle,

deg

21.0

20.5

20.5

21.9

21  8

Speci

men

S2 B

S3 B

S4 B

S4 R

Theory

Angle,

deg

22.0

21.5

21.0

20.5

22.5

Fig. 5

 —

 Comp arison betwe en tests and theory (Test No. 2)

T h e sp e c i m e n i s m o d e l e d b y

  t r i a n

gular  e lemen ts as shown in F ig . 8 .

The imp o r ta n t resu l ts ob ta ined a re

co m p a r e d w i t h e xp e r i m e n t a l r e su l t s

a n d w i t h p r e v i o u s a p p r o x i m a t e

  s o l u

t i o n i n t h e f o l l o w i n g .

Elastic Behavior

T h e d i s t r i b u t i o n o f p r i n c i p a l

s t resses in the f i l l e t and i t s v i c in i t y in

the e las t i c range i s shown in F ig . 9 .

M e a su r e d s t r e sse s a n d t h o se ca l cu

l a t ed b y t h e f i n i t e e l e m e n t m e t h o d

a r e co m p a r e d i n t h i s f i g u r e . M e a

su red s t resses a re ob ta ined f rom e lec

t r i c r e s i s t a n ce w i r e s t r a i n g a g e s i n

s t a l l e d o n t h e t e s t sp e c i m e n S 4 0 B

men t ioned ea r l i e r (Re f . 12 ) . In the

a c t u a l sp e c i m e n , so m e f r i c t i o n b e

tw ee n the inne r p la te and ou te r p la te

is inev i ta b le , w h i le in the ana ly t i ca l

m o d e l n o f r i c t i o n b e t w e e n t h e m i s

a s s u m e d .

  C o n s i d e r i n g t h i s d i f f e r e n c e

o f co n d i t i o n , t h e co r r e l a t i o n b e t w e e n

tes t and theo ry seems to be good .

A n o t h e r co m p a r i so n o f e xp e r i

me n ta l and ca lcu la ted s t resse s i s

g iven in F ig .  1 0 .  The c i ted tes t resu l ts

a re take n f rom Re fe rence B . Th is

tes t cons is ts o f tw o types o f spec

i m e n ;  one has s l i t s a long the con tac t

faces o f j o ined p la tes as seen in F ig .

10(a) ,

  the o the r has jo in ed p la tes

c lose ly in con tac t as seen in F ig .

10(b) .

  S t res ses g iven in the f igu re a re

a lso those

  at

  the load leve l

  T=441

  kN .

S t r e ss m e a su r e m e n t s w e r e ca r

r ied ou t us ing an ex tenso me te r .

P r inc ipa l s t resses a re shown in the

r i g h t s id e of e a ch f i g u r e , w h e r e m a g -

Table 3

Steel  )

platesf

used  t

with '

Weld

metals

—   Mechanical Properties

B-type

(a

>

electrode

R-type

(a)

electrode

S5 B

S10B

S15B

S20B

S30B

S40B

S5 R

S15R

S40R

of Plates  a

Yield

point,

k N / c m

2

33.22

34.30

44.88

44.39

44.59

47.04

47.04

47.04

46.35

44.59

45.77

nd Weld Metals (Test No.

Tensile

st rength,

k N / c m

2

56.25

55.17

57.62

58.80

58.31

59.49

59.49

59.49

56.35

54.19

54.59

2 )

Elonga

t ion,

%

32.4

37.4

21.0

21.0

21.7

19.3

19.3

19.3

17.5

18.5

16.4

\ \

ty

\

\

v

x/8

s^v

§H

{a) B = basic; R = rutile

R

Fig.

 6—Shear

 stress distribution by Eq.(10)

6 2 - s F E B R U A R Y 1 9 7 4

Page 5: WJ_1974_02_s59

8/20/2019 WJ_1974_02_s59

http://slidepdf.com/reader/full/wj197402s59 5/7

n i tudes a re g iven i r respe ct i ve o f the i r

o r i e n t a t i o n .a

x

  ,

 <r

y

  a n d   T ^   in the

le f t s ide of each f igu re a re the no r ma l

s t r e ss co m p o n e n t p e r p e n d i cu l a r t o

the tens i le face , the no r ma l s t res s

co m p o n e n t p e r p e n d i cu l a r t o t h e

shea r face , and the shea r s t ress

a long tens i le face and shea r face ,

respect i ve ly .

In tes t spec ime n (b) , f r i c t io na l

f o r ce s w i l l b e i n d u ce d w h e n t h e sp e c

im en i s sub jec t to ten s io n ; no f r i c t i on

w i l l appea r in sp ec i me n (a) , bu t som e

a d d i t i o n a l b e n d i n g d u e t o e cce n t r i c i t y

w i l l appea r in th i s case . In the ana ly t

i ca l m o d e l f o r t h e f i n i t e e l e m e n t

ca l cu l a t i o n , h o w e ve r , t h e co n d i t i o n o f

n o g ap b ut n o f r i c t i o n b e t w e e n

con ta c t faces i s assum ed , as seen in

Fig.  8 . The resu l t f rom the f in i te

e lem en t me tho d , F ig . 10 (c ), sh ow s a n

i n t e r m e d i a t e f e a t u r e b e t w e e n t e s t

resu l ts o f (a ) an d (b) , and ta ki ng in to

a cco u n t a b o ve m e n t i o n e d s i t u a t i o n ,

the theo re t i c a l bas is o f the f in i te

e l e m e n t co m p u t a t i o n se e m s t o b e

r e a so n a b l e .

Plastic Behavior

F igu re

  11

  sh o w s t h e sp r e a d o f t h e

p las t i c zone fo r inc r eas ing load ing

s teps . W he n a ce r ta in load leve l

(T=849 kN) i s exceed ed th e sp rea d o f

t h e y i e l d - f l o w r e g i o n e xp a n d s n o f u r

the r , wh i le the rap id p rog ress o f p las

t i c d e f o r m a t i o n i n t o s t r a i n h a r d e n i n g

range i s obse rved a long a loca l i zed

a r e a ,

  w h i ch a p p r o x i m a t e l y co i n c i d e s

w i t h t h e f o r m e r l y p r e d i c t e d b r e a k i n g

p lane .

D is t r ibu t ions o f shea r s t ress a long

the assumed b reak ing p lane RP a re

sh o w n i n F i g .  12  fo r va r iou s load ing

s teps . R

 vsults frorr

  t h e f i n i t e

  :

^ment

method a re g iven in so l id

  l i nes ,

  fhese

a re d i f fe r en t f ro m the pa t te rn g ive n in

Fig.  6 th e resu l t f ro m the e las t i c

theo ry , and p resen t no s t ress peaks

a t the ends. Ra the r , the y sh ow good

a g r e e m e n t u p t o t h e u l t i m a t e s t a g e

w i th the p red ic t ion g iven by Eq .

  (6),

sh ow n by dash ed l i nes in the f igu re .

T h e a b o ve o b se r va t i o n s se e m t o e x

p l a i n t h e r e a so n w h y t h e a p p r o x i m a t e

so lu t io n g iven by Eq . (7 ) can p r ov ide a

sa t i s f a c t o r y e s t i m a t i o n o f t h e a c t u a l

s t r e n g t h o f t h e t r a n sve r se f i l l e t

w e l d e d j o i n t s .

Conclusion

I t h a s b e e n sh o w n t h a t t h e s t r e n g t h

o f t r a n sve r s e f i l l e t w e l d e d j o i n t s

cou ld be es t ima ted by Eq . (7 ) sa t i s fac

to r i l y i n sp i te o f theo re t i c a l sho r t

com ings inv o lved in the bas is o f i t s a r

g u m e n t . A n e l a s t i c - p l a s t i c a n a l ys i s b y

t h e f i n i t e e l e m e n t t e ch n i q u e m a d e

he re in seems to exp la in the reason

w hy the p re d ic t i on by Eq . (7 ) ag rees

w i th tes ts resu l ts and thus to suppo r t

the va l id i t y o f Eq . (7 ) f ro m th e the o re t

ica l s ide .

y>

Start)

fpata

  I n p u t

  I

  —

] P r in t  InputJ jataJ

S e t u p  Overall  S t i f f n e ss

Ma t r i x  K

T

4_

Setu p Load Vector F.

Modify

  K

T

  by Su ppo r t

I C o n d i t i o n

T

S o lve S t i f f n e ss E q u a t i o n

K T - * *

  = F

Calcu la te  £  .  a<T

Determ ine Load Incr em ent — •

Factor,

  U

Subrou t ine Inpu t

Subrout ine

  D£M(Calculate

  D* )

Subrout ine   DPM (Ca lcu la te  D*  )

•Sub rou t ine

  QSRM

 (Ca lcu la te e lem en t

s t i f f n e ss m a t r i x

  K e (

e m

  s u p e r p o s e

K

e l e m .

 o n K

i )

Subrout ine SOLVE

S u b r o u t i n e  LDINCR

Determine Stress, Str a in ,

D isp lac eme nt, e tc . a t th is S tep

<r=<r» ( j * f f ' .

  t = E» |j «e

•  s

  =

  s \ i S.

  etc. ,

1

Output  ResuJisJ  Subrout ine PRINT

£ " <r

« » ^ - ~ ~

t

  y

e s

1

jt_——

. yes

Stop

  Step2>>

' yes

no

 ..

\

n o ,

— ^  N

<

Output Data Cards

fo r the Next Run

y e s

H  1

N o t a t i o n s .

p

  = equivalen1  p las t i c s t ra in

e^s  p las t i c s t ra in a t the

b e g i n n i n g o f n e c k i n g

f  = e q u i va l e n t s t r e s s

0~,

  = t ru e s t re ss a t the be g in n in g

o f n e ck i n g

S = d i sp l a c e m e n t ve c t o r

Fig. 7 — Flow chart for computational procedure

T/8

Fig. 8 —  Subdivision of the

 spec/men

  into triangular elements

W E L D I N G R E S E A R C H   S U P P L E M E N T l  6 3 - s

Page 6: WJ_1974_02_s59

8/20/2019 WJ_1974_02_s59

http://slidepdf.com/reader/full/wj197402s59 6/7

0 t(

  20

^ T

Elast ic Range

(  T=44t  kN )

«-

  -->

  tens ion

>-  -^compression

observed

by  Fini te Element M ethod

Fig. 9

  —

  Distribution of principal stress

L .

  J

  I  ;

(a) Slits Along Contact Faces (b) Plates Closely Contacted (c) Calc ulate d by Finite Elem ent Method

Fig.

  10  —

  Comparison of stress distributions

985kN

T = 7 7 8 k N

T=840  k N

Ta 849 kN

3 Y i e l d - f l o w R e g i o n

Fig.  11 —   Spread of plastic region in a fillet

64-s  I F E B R U A R Y 1 9 7 4

Sirain-hardening

  Region

6A8kN

5 3 0 k N

319 kN

from  Finite Element Method

from  Eq.(6)

i

  Fig.

  12  —

  Shear stress distribution ob

tained

  by

  finite element method

References

1.  S p r a r a g e n ,  W.  and Claussen , G. E . ,

S ta t i c Tes ts o f F i l l e t and P lug W e ld s , a

Re v i e w o f L i t e r a t u r e f r o m  1932  t o J a n u a r y

1,   1 9 4 0 ,  Welding Journal,  A p r i l , 1 9 4 2 .

2 .  A m e r i c a n W a t e r w o r k s A s s o c i a t i o n

S t a n d a r d f o r S t e e l T a n k s , S t a n d a r d P i p e s ,

Re s e r v o i r s a n d E l e v a t e d T a n k s f o r W a t e r

S t o r a g e ,  1 9 5 9

  ed . ,

  (fo r exam p le ) .

3 . H ig g ins , T . R. an d Preece , F . R., " P r o

p o s e d W o r k i n g S t r e s s f o r F i l le t W e l d s i n

B u i l d i n g C o n s t r u c t i o n , "  Engineering  Jour

nal,

  A I S C , V o l . 6 , No .

  1,   1 9 6 9 .

4 .

  L i g t e n b e r g , F. K ., I n t e r n a t i o n a l T e s t

S e r i e s , F i n a l Re p o r t , Do c . X V - 2 4 2 - 6 8 ,

I.I.W.,

  1 9 6 8 .

5 . K a t o , B . a n d Na k a , T . , " De f o r m a t i o n

a n d S t r e n g t h o f E n d F i l l e t W e l d s , " Jour,

  of

the Faculty of Engineering,  Un i v e r s i t y o f

T o k y o , V o l . X X V I I I , No . 3 , 1 9 6 6 .

6 . T i m o s h e n k o , S . ,

  Theory of Elasticity,

M c G r a w - H i l l  Book  Co .

7 . Ka to , B . , e t  a l . ,  " U l t i m a t e S t r e n g t h o f

F i l le t W e l d e d J o i n t s , " T r a n s , o f A r c h i t e c

t u r a l I n s t i t u t e o f J a p a n , O c t . 1 9 6 8 , ( i n J a p

anese) .

8 . K a t o , B . a n d M o r i t a , K „ T h e S t r e n g t h

o f F i l l e t W e l d e d J o i n t s , Do c . X V - 2 6 7 - 6 9 ,

I.I.W.,  1 9 6 9 .

9 . Pope , G. G. , "T he App l i ca t i o n o f the

M a t r i x D i s p l a c e m e n t M e t h o d i n P l a n e

E las to -P las t i c P rob lems , " P roc . o f  the  C o n

f e r e n c e h e l d a t W r i g h t - P a t t e r s o n A i r

Fo rce Base , Oh io , Oc t . 19 65 .

1 0 .  Y a m a d a , Y „ e t a l , "P l a s t i c S t r e s s -

S t r a i n M a t r i x a n d i t s A p p l i c a t i o n f o r t h e

So lu t i on o f E las t i c -P las t i c P rob lems by the

F i n i te E l e m e n t M e t h o d , International  Jour

nal of Mechanical Sciences,  Vo l . 10 , No .

5 , M a y , 1 9 6 8 .

1 1 .  K a t o , B . a n d A o k i , H . , "D e f o r m a t i o n

Ca p a c i t y o f S t e e l P l a t e E l e m e n t s , " P u b l i c a

t i o n s o f I A B S E , V o l . 3 0 - I , Z u r i c h ,

  1 9 7 0 .

1 2 .  K a t o , B . , e t a l , "U l t i m a t e S t r e n g t h o f

T r a n s v e r s e F i l l e t W e l d e d J o i n t s , "  Trans,

of Architectural Institute of Japan,  A u g u s t ,

1 9 6 9 ,

  ( i n Japanese ) .

1 3 .

  B i e r e t t , G . a n d G r i i n i n g , G . , " S p a n -

n u n g s z u s t a n d u n d F e s t i g k e i t v o n S t i r n -

k e h l n a h t v e r b i n d u n g e n ,

  Stahlbau,

  1 0 ,

1 9 3 3 .

Page 7: WJ_1974_02_s59

8/20/2019 WJ_1974_02_s59

http://slidepdf.com/reader/full/wj197402s59 7/7

WRC Bul le t in

No.  184

Ju n e

  1973

" S u b m e r g e d - A r c - W e l d H a r dn e s s a n d

Crack ing in W et Sul f ide Se rv ice "

by D. J. Kotecki and D. G. How den

This s tudy was under taken to dete rmine:

(1) The causes of higher-than-normal  hardness in submerged-arc welds in p la in-

carbon steels

(2) The levels of st rength or hardness which will not be susceptible to sulf ide-

cor rosion c racking

(3) Welding proc edur es whic h will ass ur e tha t nonsusc eptible welds will be

produced.

Concent ra t ion i s p r imar i ly on weld metal , though some considera t ion to the

weld heat-affected zone is given. The study covered a two-year period. The f i rst

year was concerned wi th a macroscopic v iew of the weldments . In that f i r s t -year

s tudy, some inhomogenei t ies were observed in weldments which a re not obvious

in a macroscopic view of the weldment. It appeared l ikely that these

inhomogeneit ies could affect the behavior of the weldment in aqueous hydrogen-

sulf ide serv i ce . Ac cor dingly , thei r p r esenc e and effec ts w ere invest igated dur in g

the second year .

The price of WRC Bullet in 184 is $3.50 per copy. Orders should be sent to the

Welding Researc h Counc il , 345 Ea st 47th Stree t , New York, N.Y. 10017.

WRC Bul le t in

No.

  185

July

  1973

" I m p r o v e d D i s c o n t in u i t y D e t e c t i o n U s in g

 Computer-

Aided U l t rasonic Pulse -Echo Techniques"

by

 J.

 R. Frederick an d J. A. Seydel

The purpose of th is p ro jec t , sponsored by the Pressure Vessel Research Com

mit tee of the Welding Research Counci l , was to invest igate means fo r obta in ing

improved charac te r izat ion of the s ize , shape and locat ion of subsurface d is

cont inui t ies in metals . This objec t ive was met by applying computer ized data-

processing techniques to the s ignal obta ined in convent ional u l t rasonic pulse-

echo sy stems. The pr inc ipal benef i t s w ere improved s ignal- to-noise ra t io and

resolution.

The price of WRC Bullet in 185 is $3.50 per copy. Orders should be sent to the

Welding Resear ch Counc il , 345 E as t 47th Str eet , New York, N.Y. 10017.