23
ZASTOSOWANIE ENERGETYKI REAKCJE JĄDROWE Sebastian Rawski

zastosowanie energetyki REAKCJE JĄDROWE

Embed Size (px)

DESCRIPTION

zastosowanie energetyki REAKCJE JĄDROWE. Sebastian Rawski. Reakcje jądrowe W SKRÓCIE. Reakcje jądrowe. - PowerPoint PPT Presentation

Citation preview

Page 1: zastosowanie energetyki REAKCJE JĄDROWE

ZASTOSOWANIE ENERGETYKI

REAKCJE JĄDROWESebastian Rawski

Page 2: zastosowanie energetyki REAKCJE JĄDROWE

Reakc je jądrowe

W SKRÓCI E

Page 3: zastosowanie energetyki REAKCJE JĄDROWE

Re

ak

cje

jąd

ro

we

Reakcją jądrową nazywamy proces wynikający z oddziaływania cząstki jądrowej (może nią być cząstka elementarna, jak np. nukleon, mezon, foton lub

cząstka złożona, np. deuteron, cząstka α czy też każde inne jądro atomowe, tzw. ciężki jon) z jądrem atomowym. W wyniku zajścia reakcji jądrowej

bombardowane jądro tarczy może pozostać bez zmiany, może zostać wzbudzone lub też może powstać inne jądro atomowe w stanie podstawowym czy też wzbudzonym. Procesowi temu towarzyszy zwykle emisja jednej lub

wielu cząstek elementarnych lub złożonych. Reakcje jądrowe zachodzą stosunkowo szybko - w czasie od 10-23s do 10-15s. Stosują się do nich wszystkie

klasyczne prawa zachowania obowiązujące powszechnie w fizyce (prawo zachowania energii, pędu, momentu pędu, ładunku), ponadto kwantowy

charakter procesu, wynikający z małych rozmiarów oddziałujących obiektów oraz małych wartości wymienianej energii, narzuca dodatkowe prawa

zachowania (np. parzystości funkcji falowej).

Page 4: zastosowanie energetyki REAKCJE JĄDROWE

REA

KC

JE JĄ

DR

OW

E - S

ZYB

KIE

Reakcje jądrowe mogą przebiegać w bardzo różny sposób. Są reakcje szybkie - zachodzące w czasie bliskim czasowi przejścia cząstki przez jądro (10-22 do 10-

23s), w innych reakcjach może się tworzyć stan pośredni, trwający stosunkowo długo (10-17 do 10-16s), i dopiero w trakcie jego rozpadu emitowana jest cząstka

- produkt reakcji.Cechą charakterystyczną reakcji szybkich, o małych opóźnieniach emisji, jest

gładka zależność przekroju czynnego od energii wynikająca ze słabej zależniści energetycznej przesunięć fazowych. W przypadku tworzenia się długożujących

stanów pośrednich sytuacja jest odwrotna - w krzywej wzbudzenia muszą występować silne zmiany, wąskie rezonanse, zdające sprawę z dużych

opóźnień.

Page 5: zastosowanie energetyki REAKCJE JĄDROWE

PR

ZEB

IEG

REA

KC

JI JĄD

RO

WEJ

Cząstka pochłonięta przez jądro przekazuje mu pewną energię. Wówczas jądro przechodzi ze stanu podstawowego do stanu wzbudzonego (lub jeżeli jądro znajdowało się w stanie

wzbudzonym, dochodzi do kumulacji energii - jądro przechodzi do wyższego stanu wzbudzenia). Jeżeli energia przekazana przez cząstkę jest na tyle duża, że układ staje się

niestabliny, może dojść do rozpadu jądra (reakcja rozszczepienia) bądź emisji cząstek (np. cząstka α). Może jednak dojść do takiej sytuacji, kiedy cząstka (np. nukleon) po

wniknięcu do jądra może zderzyć się z innym nukleonem przekazując mu część swej energii i następnie może opuścić wzbudzone jądro. Przekazana energia może być jednak na tyle duża, że cząstka nie będzie mogła pokonać sił jądrowych i opuścić jądra - zamiast

niej może być wysłany uderzony nukleon, który zyskał sporą porcję energii. Istnieje jednak taka możliwość, że zderzenie nastąpi z jednym z "głębiej" położonych, silniej

związanych nukleonów. wówczas może się zdarzyć, że żaden z obu nukleonów nie będzie miał energii wystarczającej do opuszczenia jądra. Powstaje jak gdyby "związany" stan wzbudzony, nie mogący się rozpaść przez emisję cząstki (choć całkowita energia stanu

jest większa niż energia wiązania przez jądro jednego nukleonu). Dopiero w wyniku dalszego oddziaływania między wzbudzonymi nukleonami jeden z nich może uzyskać

energię dostateczną do pokonania przyciągających sił jądrowych. Jednak znacznie bardziej prawdopodobne będzie zderzenie wzbudzonego nukleonu z jednym z wielu pozostałych nukleonów jądra i przekazanie mu kolejnej porcji energii, jaką posiadała cząstka. Prawdopodobieństwo emisji nukleonu jest teraz mniejsze, gdyż energia jest rozłożona na większą liczbę cząstek. W wyniku dalszych oddziaływań coraz więcej

nukleonów zostaje wzbudzonych i w końcu ustala się pewna równowaga. Jest to stan jądra złożonego, który może trwać bardzo długo w skali oddziaływań jądrowych. Najbardziej dogodne rozłożenie energii między wzbudzonymi nukleonami zachodzi przy pewnych

określonych jej wartościach.

Page 6: zastosowanie energetyki REAKCJE JĄDROWE

REA

KC

JA ŁA

ŃC

UC

HO

WA

Page 7: zastosowanie energetyki REAKCJE JĄDROWE

REA

KC

JE JĄ

DR

OW

E Z

AC

HO

DZ

ĄC

E

W R

EA

KTO

RZ

E

Neutron, jako cząstka obojętna, odgrywa szczególną rolę w reakcjach jądrowych, ponieważ w przeciwieństwie np. do cząstek α lub protonów wnikając do jądra nie

musi pokonywać sił odpychania elektrostatycznego. Neutrony o bardzo nawet małej energii kinetycznej mogą więc łatwo wywoływać reakcje jądrowe. Do

najważniejszych reakcji jądrowych z neutronami zachodzących w reaktorze należą: rozpraszanie sprężyste, rozpraszanie niesprężyste, wychwyt radiacyjny i

rozszczepienie.Reakcja rozpraszania sprężystego nie przechodzi przez etap jądra złożonego i polega na zderzeniu neutronu z jądrem przy spełnieniu zasad zachowania energii kinetycznej

i pędu. Rozpraszanie sprężyste zachodzi głównie na lekkich jądrach.W pozostałych trzech reakcjach pierwszy etap jest taki sam i polega na utworzeniu

jądra złożonego. Rozpraszanie niesprężyste zachodzi w wypadku rozpraszania neutronów o dużych energiach (powyżej kilkuset keV) na ciężkich jądrach. Energia

wzbudzenia jądra złożonego jest wówczas na tyle duża, że następuje powtórna emisja neutronu o energii niższej od energii neutronu padającego, a nadwyżka energii jest wypromieniowana w postaci kwantu γ. W tej sytuacji nie jest zachowana energia

kinetyczna.Jeśli energia wzbudzenia jest za mała, aby spowodować wyrzucenie neutronu z jądra, w drugim etapie reakcji jądro przechodzi do stanu podstawowego wypromieniowując

kwant γ, a w wyniku powstaje jądro o liczbie masowej o jeden większej. Jest to reakcja wychwytu elektronowego.

Jeśli chodzi o reakcję rozszczepienia, to jądru trzeba dostarczyć energię równą co najmniej energii krytycznej (energii aktywacji), potrzebną na pokonanie

krótkozasięgowych sił jądrowych. Energia krytyczna maleje wraz z liczbą masową jądra i osiąga zero przy liczbie równej ok. 260. Tak więc dopiero jądra o liczbach

masowych większych niż 260 są rzeczywiście niestabilne ze względu na spontaniczne rozszczepienie.

Page 8: zastosowanie energetyki REAKCJE JĄDROWE

REA

KC

JE JĄ

DR

OW

E Z

AC

HO

DZ

ĄC

E

W R

EA

KTO

RZ

E

Jądro pochłaniające neutron uzyskuje energię równą różnicy energi wiązania jądra złożonego i jądra pochłaniającego neutron (energia ta jest w

przybliżeniu równa energii wiązania na 1 nukleon w powstałym jądrze złożonym) powiększoną o energię kinetyczną padającego neutronu. Jeśli energia krytyczna jądra złożonego jest mniejsza niż energia wiązania na 1

nukleon, wówczas rozszczepienie można wywołać za pomocą neutronów o dowolnie niskich energiach. Taka sytuacja zachodzi w wypadku jądra 235U,

Które ulega rozszczepieniu zgodnie ze schematem:235U+1n—236U—rozszczepienie

Jeżeli energia kinetyczna pochłoniętego neutronu jest równa zeru, to energia wzbudzenia jądra złożonego 236U jest równa różnicy energii

wiązania jąder 236U i 235U, tj. ok. 6,8MeV, podczas gdy energia krytyczna 236U wynosi jedynie 6,6MeV.

Obok 235U drugim izotopem uranu występującym w przyrodzie jest 238U, który stanowi 99,3% uranu naturalnego. Energia krytyczna 238U wynosi

7,0MeV, natomiast różnica energii wiązania jąder 239Ui 238U tylko 5,5MeV. Tak więc minimalna energia kinetyczna neutronu potrzebna do

rozszczepienia jądra 238U, czyli tak zwany próg rozszczepienia powinna być równa 1,5MeV. Ze względu na przybliżony charakter przytoczonego

rachunku liczba ta nie jest dokładana, a w istocie jak stwierdzono doświadczalnie, próg rozszczepienia 238U wynosi ok. 1,1MeV, tzn.

rozszczepienie 238U mogą wywołać neutrony, których energia kinetyczna jest co najmniej równa 1,1MeV.

Page 9: zastosowanie energetyki REAKCJE JĄDROWE

REA

KC

JE JĄ

DR

OW

E Z

AC

HO

DZ

ĄC

E W

R

EA

KTO

RZ

E

Reakcja rozszeczpienia jądra uranu czy też innego pierwiastka rozszczepialnego prowadzi prawie zawsze do podzieału jądra na dwa fragmrnty o mniej więcej równych masach. Liczby

masowe większości jąder powstających z rozszczepienia są zawarte pomiędzy 80 a 100 i pomiędzy 125 a 155. Obserwuje się również tzw. rozszczepienia potrójne, ale ich udział jest niewielki, tak, że nie mają one istotnego znaczenia w łańcuchowej reakcji rozszczepienia. W

miarę zwiększania się liczby masowej rośnie stosunek liczby neutronów do liczby protonów w jądrach trwałych, tak, że podział jądra na dwa fragmenty prowadzi do nadmiaru neutronów i emisji swobodnych neutronów w liczbie od 1 do 6 na jeden akt rozszczepienia. średnia liczba

neutronów rozszczepieniowych dla 235U wynosi 2,44, jeśli neutrony, które wywołały rozszczepienie, miały energię 0,025eV. Wraz ze wzrostem energii neutronów liczba ta rośnie i

osiąga wartość 2,50 przy energii neutronów 1MeV. Maksymalna energia neutronu równa się ok. 10MeV, natomiast obliczona na podstawie tego rozkładu średnia energia wynosi ok. 2MeV. Dla neutronów wtórnych pochodzących od innych jąder rozszczepialnych wartości parametrów są

podobne.Emisja neutronów swobodnych w procesie rozszczepienia nie wyczerpuje ich nadmiaru, tak, że fragmenty rozszczepienia również zawierają zbyt wielką w stosunku do liczby protonów liczbę neutronów. W związku z tym są z reguły β-promieniotwórcze, tzn. emitują elektrony. Poza tym niektóre fragmenty lub nuklidy powstające z fragmentów rozszczepienia emitują neutrony. Ze

względu na to, że neutrony te nie są wydzielane w momencie rozszczepienia jądra, nazywają się neutronami opóźnionymi w przeciwieństwie od pozostałych neutronów rozszczepieniowych, zwanych neutronami natychmiastowymi. Udział neutronów opóźninych jest bardzo mały i w wypadku 235U wynosi ok. 0,7%, natomiast średnie opóźnienie, z jakim pojawiają się one w

reakcji łańcuchowej, równe jest ok. 12,5s. W skali procesów zachodzących w reaktorze jest to czas bardzo długi i neutrony opóźnione odgrywają zasadniczą rolę w praktycznej realizacji

łańcuchowej reakcji rozszczepienia.W reakcji rozszczepienia 235U ok. 0,1% masy jądra zamienia się w energię dając ok. 200MeV.

Największa część tej energii przypada na energię kinetyczną fragmentów rozszczepienia, reszta zaś na energię promieniowania β i γ. Podobne relacje liczbowe występują w odniesieniu do

innych jąder rozszczepialnych.

Page 10: zastosowanie energetyki REAKCJE JĄDROWE

WA

ŻN

IEJS

ZE R

EA

KC

JE D

WU

CIA

ŁOW

E

Reakcje niskoenergetyczne - przy niskich energiach emitowana jest jedna cząstka.

Przy wyższych energiach następuje emisja dwóch lub więcej cząstek

a, 2n a, n

p,2n p, n d, np, g

a, p

JĄDRO

d, pn, g

p, a n, dg , p

n, p

n, a

Z

N

Page 11: zastosowanie energetyki REAKCJE JĄDROWE

WA

ŻN

IEJS

ZE R

EA

KC

JE JĄ

DR

OW

E

Page 12: zastosowanie energetyki REAKCJE JĄDROWE

WA

ŻN

IEJS

ZE R

EA

KC

JE JĄ

DR

OW

E

Page 13: zastosowanie energetyki REAKCJE JĄDROWE

WA

ŻN

IEJS

ZE R

EA

KC

JE JĄ

DR

OW

E

Page 14: zastosowanie energetyki REAKCJE JĄDROWE

BO

MB

A A

TO

MO

WA

Page 15: zastosowanie energetyki REAKCJE JĄDROWE

CYK

L WO

DO

RO

WY

Page 16: zastosowanie energetyki REAKCJE JĄDROWE

BR

TER

MO

JĄD

RO

WA

Page 17: zastosowanie energetyki REAKCJE JĄDROWE

KO

NTR

OLO

WA

NA

FUZ

JA JĄ

DR

OW

A

Page 18: zastosowanie energetyki REAKCJE JĄDROWE

ZIM

NA

SYN

TEZ

A - M

ION

OW

A

Page 19: zastosowanie energetyki REAKCJE JĄDROWE

BA

RIE

RA

KU

LOM

BO

WS

KA

Aby naładowana cząstka mogła wniknąć w jądro musi pokonać barierę kulombowską. Przymniejszej energii odbija się od jądra. Po wniknięciu do jądra zaczynają działać siły jądrowe i

tworzy się wzbudzone jądro złożone.Istnieje także prawdopodobieństwo, że cząstka o mniejszej energii niż bariera kulombowska

wniknie do jądra w wyniku efektu tunelowegoCząstki bombardujące to protony, a (4He), deuterony 2H, ciężkie jony (12C, 18O, 20Ne) itd.

Page 20: zastosowanie energetyki REAKCJE JĄDROWE

ZA

STO

SO

WA

NIE

IZO

TO

W

PR

OM

IEN

IOTW

ÓR

CZ

YCH

Pierwiastek IzotopWykorzystywanepromieniowanie

Czaspółrozpadu

(T1/2)Zastosowanie

Ameryk 241Am α (alfa) 432,7 lat czujniki dymu (instalacje przeciwpożarowe)

Cez 137Cs γ (gamma) 30 latradiografia przemysłowa, bomba cezowa, pomiary

grubości

Fosfor 32P β (beta) 14,3 dnia medycyna: leczenie białaczki

Iryd 192Ir γ (gamma) 73,8 lat radiografia przemysłowa

Jod 131I γ (gamma) 8 dni medycyna: leczenie tarczycy

Kobalt 60Co γ (gamma) 5,26 lat

medycyna: terapia przeciwrakowa (bomba kobaltowa), radiografia przemysłowa, urządzenia radiacyjne, waga

izotopowa, sprzęt do pomiaru grubości i poziomu cieczy w zbiornikach.

Pluton 238Pu α (alfa) 87,7 lat stymulatory serca (źródło energii), czujniki dymu

Pluton 239Pu α (alfa) 2,4 * 104 lat czujniki dymu

Rad 226Ra γ (gamma) 1600 lat aplikatory radowe

Rubid 87Rb β (beta) 5 * 1010 lat datowanie promieniotwórcze

Siarka 35S β (beta) 87,32 dniaatom znaczony, głównie w badaniu związków

organicznych

Tal 204Tl β (beta) 3,8 lat sprzęt do pomiaru grubości

Węgiel 14C β (beta) 5570 latokreślanie wieku wykopalisk (zabytków, etc.), badanie

mechanizmów złożonych reakcji (atom znaczony)

Wodór 3H β (beta) 12,46 latfarby świecące, badanie mechanizmów reakcji (atom

znaczony)

Page 21: zastosowanie energetyki REAKCJE JĄDROWE

FUN

KC

JE W

ZB

UD

ZEN

IA P

RZ

ED

STA

WIA

WYD

AJN

CI R

EA

KC

JI W Z

ALE

ŻN

CI

OD

EN

ER

GII C

STK

I

Page 22: zastosowanie energetyki REAKCJE JĄDROWE

WYB

UC

H

Dnia 30 października 1961 roku tuż nad powierzchnią wyspy Novaya Zemlya wybuchła największa i najmocniejsza bomba wodorowa jakąś kiedykolwiek skonstruowano. Zbudowana została przez inżynierów ze

Związku Radzieckiewo w zaledwie 15 tygodni, którzy sztucznie ograniczyli jej moc o połowę aby samolot, który ją zrzucił miał czas uciec przed falą

uderzeniową. Po tej detonacji już nikt nigdy nie skonstruował tak niszczycielskiego ładunku... i całe szczęście.

Page 23: zastosowanie energetyki REAKCJE JĄDROWE

KO

NIE

C

DZIĘKUJE ZA PRZEGLĄD MOICH SLAJDÓW

Sebastian RawskiKl. I „C”

Wykorzystane źródła:

- S. Hejwowska, R.Marcinkowski „Chemia” Zakres podstawowy oraz rozszezony.

- Lech Pajdowski „Chemia ogólna” wydana w 1985 roku.- Strony internetowe z kategorii „chemia”