11
GENÉTICA HERENCIA

Genética de la herencia

Embed Size (px)

Citation preview

Page 1: Genética de la herencia

GENÉTICA

HE

RE

NC

IA

Page 2: Genética de la herencia

UN POCO DE HISTORIA ORIGEN DE LA GENÉTICO MODERNA

esde la antigüedad se seleccionaban los animales o las plantas con ciertas características para que la heredaran sus descendientes, estos mejoramientos se Diniciaron con procesos al azar, como por ejemplo cruce por colores, tamaños,

producciones de leche, carne, entre otros., que se lo dominó selección artificial.

Posteriormente, los filósofos antiguos propusieron la primera la primera teoría genética de las mezclas, que fue el primer concepto de la herencia biológica.

Gregory Johann Mendel, (1822-1884), interesado por conocer los mecanismos de transmisión de las características en unos cultivos de guisantes, denominado su investigación “Experimentos sobre híbridos de plantas”; en esa investigación explicaba los mecanismos básicos de herencias; estos estudios no tuvieron la acogida de los científicos de la época.

UN POCO DE HISTORIA

En 1886, el botánico holandés Hugo de Vries cuando cultivaba prímulas americanas, obtuvo accidentalmente resultados similares a los de Mendel. Sin embargo, observó que en algunas generaciones aparecían variaciones, no explicadas por las leyes de la genética conocidas hasta el momento, lo cual creó bases para que más adelante descubriera el fenómeno conocido como Mutación.

Walther Fleming, Edward Stransburger y Van Beneden, en 1879, comprobaron la

existencia de unos cuerpos filiformes (cromosomas) que acompañaban la división celular. Walther Sutton, biólogo norteamericano descubrió en 1902 el lugar donde estaban situadas las estructuras celulares encargadas de la transmisión genética. En 1907, el biólogo estadounidense Thomas Morgan verificó las ideas de Sutton a partir de la experimentación con la Drosophila melanogaster (la mosca de la fruta). El biólogo danés Wilhem Johannsen, en 1909, comenzó a utilizar la palabra gen, la cual deriva de las ultimas silabas del termino pangeno, establecido por Charles Darwin.

Page 3: Genética de la herencia

El bioquímico Erwin Chargaff, en 1949, descubrió la estructura química del ADN estudiada en diferentes organismos. en 1 9 5 3 , J a m e s Wa t s o n , c i e n t í f i c o norteamericano y Francis Crick, físico británico, descubrieron la estructura del ADN en forma de espiral, conocimiento que ayudaría a desentrañar los secretos más profundos de la genética. La comunidad científica consideró este descubrimiento como el avance más significativo en el campo de la biológica, y premia a sus gestores con el Premio Nobel en 1962.

Actualmente se experimenta en diferentes campos de la genética para descubrir las características estructurales d e l o s g e n e s y s u comportamiento bioquímico. Ademas, su aplicabilidad en e l t r a t a m i e n t o d e enfermedades y en el mejoramiento de plantas y animales fundó un nuevo campo científico: La Ingeniería Genética

Page 4: Genética de la herencia

Biografía

Gre

gor

Joha

nn

Men

del

ació el 22 de julio de 1822, en Heinzendorf (hoy Hyncice, República Checa). Hijo de un veterano de Nlas guerras napoleónicas que explotaba una pequeña

granja. En 1841 su padre fue aplastado por el tronco de un árbol y se vio obligado a vender sus propiedades. Su hermana le entregó su parte para ayudarle en sus estudios eclesiásticos.

Durante dos años estudió física y matemáticas en el Instituto Filosófico Olmütz. Ingresó en el monasterio de agustinos de Brünn (hoy Brno, República Checa) y a los veintiún años se convirtió en un novicio agustino y adoptó el nombre de Gregor. Inició un curso de cuatro años de estudios en el Colegio Teológico de Brünn en 1845 y fue ordenado sacerdote en 1847.

Le asignaron el puesto de profesor

delegado de matemáticas avanzadas

en 1849. En el año 1850 suspende

biología en el examen de cualificación

para el profesorado. Fue enviado a la

Universidad de Viena durante dos años

para estudiar física práctica y

matemáticas, química, zoología,

paleontología, botánica sistemática y

fisiología vegetal, que incluía las nuevas

teorías celulares.

Pasado algún tiempo comenzó a trabajar como profesor suplente en la Escuela Técnica de Brünn donde se dedicó

de forma activa a investigar la variedad, herencia y evolución de las plantas en un jardín del monasterio destinado a los

experimentos. Entre 1856 y 1863 cultivó y estudió al menos 28.000 plantas de guisante analizando con detalle

siete pares de características de la semilla y la planta.

Gracias a sus numerosos experimentos logró el enunciado de dos principios

que más tarde serían conocidos como leyes de la herencia. Sus

observaciones le llevaron también a acuñar dos términos que siguen

empleándose en la genética de nuestros días: dominante y recesivo.

Informó de sus hallazgos en una reunión de la Sociedad para el estudio de la

Ciencias Naturales en Brno, y publicó sus resultados en las actas de dicha

sociedad, en el año de 1866. La importancia de sus hallazgos no fue

apreciada por otros biólogos de su época, y fueron despreciados por espacio

de 35 años. Sólo obtuvo el debido reconocimiento en 1900 por

parte de tres investigadores, uno de los cuales fue el botánico holandés Hugo de Vries, y sólo a finales de la década

de 1920 y comienzos de 1930, se comprendió su verdadero alcance, en especial en lo que se refiere a la teoría

evolutiva. Sus experimentos posteriores con la vellosilla Hieracium, no fueron concluyentes, y debido a la presión de

otras ocupaciones, en la década de 1870 había abandonado ya sus experimentos sobre la herencia.

Page 5: Genética de la herencia

Gre

gor

Joha

nn

Men

del

El núcleo de sus trabajos,que comenzó en el año 1856 a partir de experimentos de cruzamientos con guisantes efectuados en el jardín del monasterio, le permitió descubrir las , gracias atres leyes de la herencia leyes de Mendelo las cuales fue posible describir los mecanismos de la herencia y que fueron explicadas con posterioridad por el padre de la genética experimental moderna, el biólogo estadounidense Thomas Hunt Morgan.

En el siglo XVIII se había desarrollado una serie de importantes estudios acerca de hibridación vegetal, entre los que destacaron los llevados a cabo por Kölreuter, W. Herbert, C. C. Sprengel y A. Knight, y en el siglo XIX, los de Gärtner y Sageret (1825).

La culminación de todos estos trabajos corrió a cargo, por un lado, de Ch. Naudin (1815-1899) y, por el otro, de Gregor Mendel, quien llegó más lejos que Naudin.

Mendel falleció el 6 de enero de 1884 en Brünn, a causa de una nefritis crónica.

Page 6: Genética de la herencia

LAS LEYES DE LA HERENCIALa genética mendeliana ha sido para la biología lo que en su día fueron

las leyes de Newton para la física clásica.

¿Por qué el hijo se parece a la madre en ciertos rasgos y al padre en

otros?

Preguntas similares han sido desde épocas remotas de una gran

importancia práctica para los criadores de plantas y animales que

intentaban obtener variedades con ciertas características

beneficiosas para el ser humano.

¿Por qué ciertos caracteres parecen saltar de una

generación y el niño se parece más a su abuelo que a su padre?

Charles Robert Darwin, en su extraordinaria teoría de la

evolución, nunca pudo explicar empíricamente los

mecanismos de la herencia. Darwin apoyaba la

“pangénesis“, un concepto que propone que las

características de cada uno de los progenitores se fusionan

en la descendencia, sin embargo, estaba tan equivocado

como la teoría. Quién podría imaginar que un

monje austriaco de su misma época forjaría la

solución en la huerta de su abadía (Abadía de

Santo Tomás de Brno, República

Checa).

A mitad del

s i g l o X I X , Gregor Johann

Mendel comenzó a e x p e r i m e n t a r c o n

guisantes ¿Por qué con

alverjas?, porque son especies:1) Fáciles de conseguir y cultivar.

2) De rápido crecimiento.

3)Transmiten fielmente sus genes a las

generaciones sucesoras.

Como resultado a sus estudios,

formuló una serie de principios que

constituyen actualmente la base de

la genética moderna.

Leyes de Mendel (1865)

Las tres leyes de Mendel explican y

predicen cómo van a ser los caracteres físicos (fenotipo) de un nuevo individuo.

Frecuentemente se han descrito como «leyes

para explicar la transmisión de caracteres» (herencia genética) a la descendencia. Desde

este punto de vista, de transmisión de caracteres,

estrictamente hablando no correspondería

considerar la primera ley de Mendel (Ley de la

uniformidad). Es un error muy extendido suponer

que la uniformidad de los híbridos que Mendel observó

en sus experimentos es una ley de transmisión, pero la

dominancia nada tiene que ver con la transmisión, sino

con la expresión del genotipo. Por lo que esta

observación mendeliana en ocasiones no se

considera una ley de Mendel.

Page 7: Genética de la herencia

Así pues, hay tres leyes de Mendel que explican los caracteres de la

descendencia de dos individuos, pero solo son dos las leyes

mendelianas de transmisión: la Ley de segregación de caracteres

independientes (2ª ley, que, si no se tiene en cuenta la ley de

uniformidad, es descrita como 1ª Ley) y la Ley de la herencia

independiente de caracteres (3ª ley, en ocasiones descrita como 2ª

Ley).

LAS TRES LEYES DE MENDEL RESUMIDAS

Primera Ley: “Principio de uniformidad”

“Al cruzar dos razas puras, la descendencia será heterocigótica y dominante”.

Para descubrir este principio, Mendel cruzó guisantes de color amarillo (color dominante) con una especie más escasa de guisantes verdes (recesivo). El resultado de este cruce, generó una descendencia 100% amarilla:

Segunda Ley:

“ P r i n c i p i o d e d i s t r i b u c i ó n independiente”

“Al cruzar dos razas híbridas, la d e s c e n d e n c i a s e r á homocigótica e híbrida al 50%”.

Con una gran intuición científica, Mendel cogió los guisantes de la generación F1 (del experimento anterior) y los cruzo entre sí.

Figura 2. Segunda ley de Mendel: Para su sorpresa, el 25% de la descendencia de esos guisantes amarillos ¡fueron verdes! Por esta razón, aunque dos miembros de una pareja tengan los ojos marrones, si ambos guardan un gen recesivo para el color azul, existe un 25% de posibilidades de que sus hijos hereden ojos azules (como los de sus abuelos).

Figura 1. Primera ley de Mendel: Se observa efectivamente que se ha producido un cruce entre los

progenitores (Aa), la genera-ción F1 ha salido a salido

amarilla. Esto es debidoa la dominancia del

alelo “A” respectoal alelo “a”. Cu-ando ambos es-

tán juntos,s o l o s eexpresa

el domi-nante.

Page 8: Genética de la herencia

Tercera Ley: “Principio de la independencia de los caracteres”

“Al cruzar varios caracteres, cada uno de ellos se transmite de manera independiente“

Para comprobar este principio, Mendel tomó dos híbridos diferentes y homocigóticos para dos caracteres. De esta manera, cruzó guisantes amarillos y lisos (dominantes) con guisantes verdes y rugosos (recesivos):

Figura 3. Tercera ley de Mendel (I):

Esa descendencia “AaRr” a su vez se autofecundó para dar lugar a la siguiente generación:

Figura 4. Tercera ley de Mendel (II)

De esta manera, comprobó que las características de los guisantes no interfieren entre sí, y se distribuyen individualmente. De dos guisante amarillos y lisos crecieron:

9 guisantes amarillos y lisos

3 guisantes amarillos y rugosos

3 guisantes verdes y lisos

1 guisante liso y rugoso

Ÿ

Ÿ

Ÿ

Ÿ

En ese caso, para los heterocigóticospara dos o más caracteres, cadacarácter se transmite a la siguiente

generación filial independiente de cualquier otro carácter.

“Por tanto,intervinieronla descendenccaracteres ese una serie de coseries de des diferenciales.”

no hay duda de que a todos los caracteres queen los experimentos se aplica el principio de que

ia de los híbridos en que se combinan varios nciales diferentes, presenta los términos dembinaciones, que resulta de la reunión de las

arrollo de cada pareja de caracteres

Gregor Mendel

Page 9: Genética de la herencia

Experiencias de Mendel l trabajo de Mendel en guisantes determino en las siguientes Eobservaciones en caracteristicas

sencillas como: de la semilla la forma y el color, de las segumbres, el color y la posicion de las flores; y de los tallos , la longitud. Los resultados del experimento fueron los siguientes:

1. Primero que observó fue el color de las semillas que podían ser amarillas o verde, obteniendo una cepa pura de cada clase.

2. Cruzó una cepa pura de semillas amarillas con otra cepa pura de semillas verdes y las denominó generación paterna o P.

3. Los descendientes del cruce paterno los llamó primera generación filial o F , presentaron todas sus 1

semillas de color amarillos.

4. Cruzó las plantas , entre sí, obteniendo una generación denominada segunda generación filial o F 2

que presentaba tres individuos con semillas amarillas y uno semillas verdes. F1

Page 10: Genética de la herencia

Historieta sobre las leyes de Gregor

Mendel

Page 11: Genética de la herencia

Historieta sobre las leyes de Gregor

Mendel