51
UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE INGENIERIA QUIMICA AREA DE CINETICA Y REACTORES EJERCICIOS RESUELTOS CINETICA APLICADA Y REACTORES QUIMICOS Profesor Aldo Saavedra Fenoglio E-mail: [email protected] II SEMESTRE 2008

Guia problemas-resueltos-cinetica-reactores

Embed Size (px)

Citation preview

Page 1: Guia problemas-resueltos-cinetica-reactores

UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE INGENIERIA QUIMICA AREA DE CINETICA Y REACTORES

EJERCICIOS RESUELTOS CINETICA APLICADA Y REACTORES QUIMICOS

Profesor Aldo Saavedra Fenoglio E-mail: [email protected]

II SEMESTRE 2008

Page 2: Guia problemas-resueltos-cinetica-reactores

Capítulo 2: CINETICA DE LAS REACCIONES HOMOGENEAS Ejemplo 2.1 (Problema 1, Guía 1) El siguiente mecanismo ha sido propuesto para la descomposición térmica de la acetona. La etapa (1) de iniciación es muy lenta comparada con las otras. Obtener la expresión cinética y la energía de activación global.

13 3 3 3 1

23 3 2

33 3 3 4 2 3 3

kCH COCH CH + CH CO E = 84 Kcal/molkCH CO CH + CO E = 10 Kcal/mol

kCH + CH COCH CH + CH COCH E = 15 Kcal/mol

C

⎯⎯→

⎯⎯→

⎯⎯→4

2 3 3 2 4

53 2 3 2 5 3 5

kH COCH CH + CH CO E = 48 Kcal/molkCH + CH COCH C H COCH E = 5 Kcal/mol

⎯⎯→

⎯⎯→

Solución: Sean:

3 3

3

3

4

32

2

2 5 3

A CH COCH

R C H

S CH C OU COV CH

W CH COC HT CH COZ C H COCH

=

=

===

===

Reacciones:

molKcalEZWR

molKcalETRW

molKcalEWVAR

molKcalEURS

molKcalESRA

k

k

k

k

k

/5

/48

/15

/10

/84

5

4

3

2

1

5

4

3

2

1

=⎯→⎯+

=+⎯→⎯

=+⎯→⎯+

=+⎯→⎯

=+⎯→⎯

Las expresiones cinéticas para cada reacción elemental son:

Page 3: Guia problemas-resueltos-cinetica-reactores

WRWRAW

SAS

WRWRASAR

RAAA

CCkCkCCkd

dC

CkCkd

dC

CCkCkCCkCkCkd

dC

CCkCkd

dC

543

21

54321

31

)4(

)3(

)2(

(**))1(

−−=

−=

−+−+=

−−=

θ

θ

θ

θ

Suponiendo que la acumulación de las especies radicales libres (R, S, W) es despreciable:

0===∴θθθ d

dCd

dCd

dC WSR

Luego:

0)4(0)3(

0)2(

543

21

54321

=−−=−

=−+−+

WRWRA

SA

WRWRASA

CCkCkCCkCkCk

CCkCkCCkCkCk

Sumando las ecuaciones (2), (3) y (4), se obtiene:

(*)0225

151

R

AWWRA C

CkkCCCkCk =⇒=−

Reemplazando la ecuación (*) en (4):

00)()(

0

/0

41512

53

51412

53

515

143

=−−⇒=−−⇒

=−−⇒

=−−

zyxCkkCCkkCCkk

CCkkCkkCCkk

CkCkCC

kkkCCk

ARARA

RAARA

RAR

ARA

Como la etapa (1) es muy lenta, k1 es muy pequeña y la etapa de terminación es muy rápida, k5 es alta.

3

1

512

53 0

kk

C

CCkkCCkkzyx

R

RARA

=⇒

=−⇒

>>−∴

Reemplazando CR en (**) se obtiene:

AA

AA

AAA

kCd

dCkkSea

Ckd

dC

CkkkCk

ddC

=−∴

=

−=⇒

−−=

θ

θ

θ

1

1

3

131

2

2

El mecanismo propuesto representa una cinética de primer orden respecto a la concentración de acetona. A

Page 4: Guia problemas-resueltos-cinetica-reactores

partir de la constante de velocidad obtenida en la cinética se deduce que la energía de activación global corresponde a:

molKcalEE Aglobal /841 == Ejemplo 2.2 La descomposición del NO2 es una reacción de segundo orden. Datos tomados a diferentes temperaturas entregan los siguientes resultados:

T (K) 592 603 627 651,5 656 k (cm3/gmol s) 522 755 1700 4020 5030

Calcule la energía de activación a partir de los datos entregados. La estequiometría de la reacción es: 2NO2 → 2NO + O2

Solución: La energía de activación se encuentra a partir de la relación de Arrhenius: k = ko e-E/RT. Linealizando la ecuación anterior, ln k vs. 1/T se obtiene una recta cuya pendiente es (–E/R) donde: E es la energía de activación y R es la constante universal de los gases.

T (K) 592 603 627 651,5 656 k (cm3/gmol s) 522 755 1700 4020 5030 1/T (K-1) 0,001689 0,001658 0,001595 0,001535 0,001524 ln k 6,257668 6,626718 7,438384 8,299037 8,523175

A partir de los resultados, se dibuja el siguiente gráfico, y el valor de la pendiente es -13633.

1/T vs Ln k

Pendiente: -13633

55,5

66,5

77,5

88,5

9

0,0015 0,00155 0,0016 0,00165 0,0017

1/T [K-1]

Ln k

Por lo tanto: E/R = 13633 E = 13633 ·1,987 = 27088,8 (cal/mol) Ejemplo 2.3 En fase gas se está estudiando la descomposición del azometano, (CH3)2N2, para obtener etano y nitrógeno de acuerdo con la siguiente estequiometria:

262223 )( NHCNCH +→ . Cuando se realiza una reacción partiendo de azometano (A) puro, los resultados experimentales indican que la velocidad de formación del N2 es de primer orden a altas presiones y de segundo orden a bajas presiones. Demostrar estos resultados, considerando el siguiente mecanismo de reacción, con:

molKcalENHCA

molKcalEAAA

molKcalEAAA

k

k

k

/1,17

/3,272

/0,302

3262*

22*

1*

3

1

=+⎯→⎯

=⎯→⎯+

=+⎯→⎯

Calcular las energías de activación aparentes para cada caso. Solución:

Page 5: Guia problemas-resueltos-cinetica-reactores

De las reacciones propuestas en el mecanismo, las velocidades de formación de N2 y A*:

][][

][][][

0][]][[][

][

23

213

23

21*

*3

*2

21*

*3

2

2

AkkAkkr

AkkAkA

AkAAkAkr

Akr

N

A

N

+=

+=

=−−=

=

a) A bajas concentraciones (bajas presiones) : k2[A] << k3

2

21[ ] 30,0 / Segundo OrdenN Ar k A E Kcal mol∴ = =

b) A altas concentraciones (altas presiones) : k2[A] >> k3

2

1 3

2

[ ] [ ] Primer OrdenNk kr A k Ak

∴ = =

( )

molKcalE

EEERTk

kkkkk

RTEkk

kkk

k

ACTIV

/8,193,270,301,17

1lnln

lnln

21302

0103

2

13

0

2

13

=−+=∴

−+−⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

−=

=

Ejemplo 2.4 (Levenspiel 2.6) Demuéstrese que el siguiente mecanismo de reacción:

1

2

3

4

*2 5 2 3

* *3 2

* *3 22

k

k

k

k

N O NO NO

NO NO O

NO NO NO

+

⎯⎯→ +

+ ⎯⎯→

propuesto por Ogg (1947) puede explicar satisfactoriamente la descomposición de primer orden observada para el N2O5. Solución:

2 5

2* *

3

* *

2

A: N OB: NO

C : NO

D : NOE: O

1

2

3

4

*

* *

* * 2

k

k

k

k

A B C

C D ED C B

+

⎯⎯→ +

+ ⎯⎯→

De las cinéticas elementales:

Page 6: Guia problemas-resueltos-cinetica-reactores

*

* * * * *

* * * *

1 2

1 2 3 4

3 4

( )

( )

( )

A A B C

A BC C C D C

D C D C

r k C k C C

r k C k C C k C k C C

r k C k C C

− = −

− = − − −

− = −

Como C* y D* son intermediarios, en el equilibrio rC*=rD*=0, luego:

* * *

*

*

1 2 3 4

1

2 3 4

( ) ( ) 0A BC C D

AC

B D

r k C C k C k k C

k CCk C k k C

− = − + + =

=+ +

* * * *

* *

*

*

3 4

3 4

3 4

3

4

( ) 0

( ) 0D C D C

C D

D

D

r k C k C C

C k k C

k k C

kCk

− = − =

− =

=

=

Luego CC* es:

*1

2 32A

CB

k CCk C k

=+

Reemplazando en la ecuación cinética para la descomposición de A:

1 21 2 1

2 3 2 3

2 3 2 1 31

2 3 2 3

1 3

2 3

( ) 12 2

2 2( )2 2

2( )2

A BA A B A

B B

B B AA A

B B

AA

B

k C k Cr k C k C k Ck C k k C k

k C k k C k k Cr k Ck C k k C k

k k Crk C k

⎡ ⎤− = − ⋅ = −⎢ ⎥+ +⎣ ⎦

⎡ ⎤ ⎡ ⎤+ −− = =⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

− =+

Si k3 >>> k2, entonces: 1( )A Ar k C− = Bajo tales condiciones la reacción es irreversible de 1º orden.

Page 7: Guia problemas-resueltos-cinetica-reactores

Capítulo 3: INTERPRETACIÓN DE LOS DATOS OBTENIDOS EN UN REACTOR DISCONTINUO Ejemplo 3.1 Una alimentación gaseosa entra en un reactor a 720 K y 1,2 atm. Las concentraciones a la entrada para los reactivos son CA0 = 100, CB0 = 150, CR0 = 50 y Ci0 = 100. Los gases que salen del reactor se introducen en un intercambiador del cual salen a 320 K y 1 atm con CA = 160. Calcular CB, CR y XA a la salida del intercambiador. La reacción que tiene lugar es:

A + 3B → 2R. Solución:

25,010050150100

100 =+++

=+++

=+++

=IoRoBoAo

Ao

o

Io

o

Ro

o

Bo

o

Ao

o

Ao

Ao CCCCC

VN

VN

VN

VN

VN

Y

21

)13()2( −=+−=δ

εA = YAo - δ = -0,5 Po = 1,2 atm To = 720 K CA = 160 T = 320 K P = 1 atm

Ao AA

0A A

0

C (1 X )C PT(1 X )T P

ε

−=+

; A 0 A0 0A

A 0 A A0 0

( C PT C PT )X 0,256( C PT C PT )ε

− += =+

Bo Ao AB

0A A

0

C ( 3C X )C 157,5PT(1 X )PT

ε

−= =+

; Ro Ao AR

0A A

0

C 2C XC 217,5PT(1 X )PT

ε

+= =+

Ejemplo 3.2 Considerar la siguiente reacción irreversible y no elemental: A → R. El reactante A reacciona de acuerdo con la siguiente ecuación: m= 4,5·θ4, donde mR es la masa de R que reacciona (que aumenta en el tiempo) y θ es el tiempo de reacción. Determinar: a) El orden de reacción b) La constante de velocidad Solución

A → R mR= 4,5·θ4

mR

θ

Page 8: Guia problemas-resueltos-cinetica-reactores

a) En general:

( )( )

n

A R

w

n0 0

m1 n

00

1 n

11 n

11 n

4

dm k·m , se postula una reacción de orden " n"d

dm dm dmd d d

Integrando :dm k dm

m k1 n

m 1 n k

m 1 n k

m k'pero m 4,5·De la ecuación dada :k ' 4,5

1 41 nLuego : n 0,75

θ

θ

θ

θ θ θ

θ

θ

θ

θ

θθ

=

− = =

=

=−

= −

= −⎡ ⎤⎣ ⎦

==

=

=−

=

∫ ∫

b) Cálculo de la constante de velocidad:

( )

826,525,05,4

5,4·)75,01(14

1

4

4411

11

=⎥⎦

⎤⎢⎣

⎡=⇒

=−=− −−

k

kkn nn

Ejemplo 3.3 (Problema 48, Guía 2) Leyes y Ohtmer estudiaron la formación de acetato de butilo en un reactor batch operando a una temperatura 100° C, con ácido sulfúrico como catalizador. La alimentación original contenía 4,97 moles de butanol por mol de ácido acético, y la concentración del catalizador era de 0,032% en peso de H2 SO4. Se encontró que la siguiente ecuación de velocidad correlacionaba los datos al usar un exceso de butanol:

2A A( r ) kC− =

Donde CA es la concentración de ácido acético, en moles por mL, y r es la velocidad de reacción, en moles de ácido que desaparece por mL por minuto. Para una relación de butanol a ácido de 4,97, y una concentración de ácido sulfúrico de 0,032 en peso, la constante de velocidad de reacción era:

)(min)(4,17 3

gmolcmk =

Las densidades de la mezclas de ácido acético, butanol y acetato de butilo no se conocen. Los valores reportados para los tres compuestos a 100°C son:

Page 9: Guia problemas-resueltos-cinetica-reactores

Ácido acético = 0,958 g/cm3 Butanol = 0,742 g/cm3 Acetato de butilo = 0,796 g/cm3 Si bien la densidad de la mezcla reaccionante varia con la conversión, el exceso de butanol reducirá la magnitud del cambio. Como una aproximación, la densidad de la mezcla se supondrá constante e igual a 0,75 g/cm3. a) Calcule el tiempo requerido para obtener una conversión de 50%. b) Determine el tamaño del reactor y la masa de reactantes que deben cargarse en el reactor para producir el

éster a una velocidad promedio de 100 lb/h. Se usará un reactor que deberá estar inactivo durante 30 min entre cada etapa de reacción para extraer el producto, limpiar el equipo y volver a iniciar la operación.

Solución: a) Realizando un balance para el componente A (CH3COOH) o o

Entra - Sale + Produce = Acumula La velocidad de reacción es:

22,

2

)1( AoAA

AA

XkCr

kCr

−=−

=−

Expresando el balance del componente A en función de la conversión se tiene:

⎪⎩

⎪⎨⎧

=⇒=

−+=

00

)1( 2,

A

AoAA

Xt

XkCdt

dX

∫ ∫=−

5,0

,2)1(o

t

ooA

A

A dtkCX

dX

Resolviendo analíticamente la ecuación diferencial:

1121

1 5,0

0=−=

− AX

oAkCt

,

1=

Calculo de la concentración inicial de CH3COOH. Inicialmente entra (CH3COOH) según la relación,

COOH)(CH97,4

3

94

molOHHCmol

La densidad de la mezcla es:

solucióncmsolucióng

Mezcla 3

.75,0=ρ

De lo cual se obtiene: solucióncm

solucióngCOOHCHmol 33 75,0*1

Dividiendo la anterior expresión por los g. de solución se tiene:

solucióngCOOHmolCHCOOHCHgCOOHmolCH

OHHmolCOHHCgOHHmolC .78,427

1.601

174*97,4

3

33

94

9494 =+

Page 10: Guia problemas-resueltos-cinetica-reactores

Se obtiene la concentración inicial de CH3COOH.

0,333 0018,0

.·.78,427.·75,0

ACcmmol

SolucióncmSolucióngSolucióngCOOHCHmol ==

La constante de la velocidad de reacción es dato:

min4,17

3

molcmk =

Por tanto reemplazando en la expresión del tiempo de reacción se tiene: oAkC

t,

1=

min32=t (Para una conversión del 50%)

b) El volumen del reactor es: Mezcla

totalR

mV

ρ=

Primero se debe determinar la carga total para una producción del ester (C) de 100 lb/h.

hlbw cmasa 100, =

La expresión que permite obtener la producción tomando en cuenta el tiempo muerto es:

m

cc

m

ccmasa tt

PMntt

mw+

=+

=,

Expresando la anterior ecuación en función de (A) sabiendo que los moles de ester producido es igual a los moles de CH3COOH multiplicado por la conversión.

AA

AAAc X

PMmXnn ==

Reemplazando, se tiene: A

c

m

AAcmasa PM

PMttXmw *

)(, +=

Por lo que se obtiene la carga de CH3COOH

C

Am

A

cmasaA PM

PMttX

wm *)(*, +=

El tiempo muerto es de 30 minutos entre lote y lote y la conversión deseada es del 50%; por tanto la carga de A es:

COOHCHA mlbm3

5,106 ==

La carga total es: OHHCCOOHCHtotal mmm943

+= La relación entre CH3COOH y C4H9OH es:

COOHCH

OHHC

COOHCH

OHHC

mm

PMPM

COOHCHmolOHHCmol

3

94

3

94*97,4

3

94 =

Entonces, la carga es: COOHCHCOOHCH

OHHCCOOHCHtotal m

PMPM

mm3

3

94

3**97,4+=

Page 11: Guia problemas-resueltos-cinetica-reactores

De lo cual se obtiene:

lbm

lbmlbm

OHHC

COOHCH

total

8,652

5,1063,759

94

3

=

==

Y el volumen del reactor es:

36

33

101*

159,453**

75,03,759

cmm

lbg

gcmlbV =

35,0 mV ≅ Ejemplo 3.4 (Problema 3, Guía 2) En un reactor batch se realiza una reacción de primer orden reversible en fase líquida a 85°C, según la siguiente estequiometría:

1 2 A,0A B k ,k C 0,5 mol / L= Determinar los valores de las constantes de velocidad si en 8 minutos se obtiene una conversión XAdel 33%. La conversión de equilibrio XAE es 66,7%. Solución: La cinética es: (-rA) = k1CA - k2CB Reemplazando la ecuación cinética en la ecuación de diseño del batch:

( )0 01 2

A AA A

A A B

dX dXC Cr k C k C

θ = =− −∫ ∫

La constante de equilibrio es: B

A EQ

CK 0C

⎛ ⎞= =⎜ ⎟⎝ ⎠

Integrando con CBo = 0, se obtiene:

1 ,,

1 AA e

A e

Xk X LnX

θ⎛ ⎞

= −⎜ ⎟⎜ ⎟⎝ ⎠

-11

0,667 0,331 0,0567 min8min 0,667

k Ln ⎛ ⎞= − − =⎜ ⎟⎝ ⎠

En el equilibrio (-rA) = 0 La cinética química es: ( ) 20,0567A A Br C k C− = −

eBeA CkCk ,2,1 =

2

, ,1

, ,

1

2

112

1

0,667 21 0,667

0,02835 min2

B e A e

A e A e

C Xkk C X

kk

kk −

= =−

= =−

= =

Page 12: Guia problemas-resueltos-cinetica-reactores

Capítulo 5: REACTORES IDEALES Ejemplo 5.1 (Problema 5, Guía 3) En una industria se utiliza un RFP de volumen 10,3 L, con el objeto de producir un compuesto R en fase gas, de acuerdo con la siguiente estequiometría:

2 A R→ El reactor opera isotérmicamente y a presión constante. La alimentación del mismo consiste en una mezcla de 50% de A y 50% de inerte (% volumen), con CA0 = 0,5 mol/L. No se conoce la cinética de la reacción. Se desea saber si en estas condiciones el reactor es capaz de producir 5000 Kg/día de R con una conversión final de 80 %. El peso molecular del producto R es igual a 80 g/mol. Se determinó además la velocidad de reacción para distintos valores de la concentración CA a la misma temperatura a que operará el reactor industrial.

CA ( mol/L ) 0,5 0,381 0,273 0,174 -rA ( mol/L s )×100 6,25 3,55 1,86 0,76

Solución:

Se tiene: ( )n

AA

AnA

nAA X

XkCkCr ⎟⎟⎠

⎞⎜⎜⎝

⎛+−==−ε1

10

Cálculo de εA. Se realiza un balance de masa: Sustancia VXA=0 VXA=1

A 50 0 R 0 0,5x50=25 I 50 50

Total 100 75 Se obtiene εA=-0,25 Aplicando logaritmo a la ecuación de velocidad de reacción:

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛+−+=−

AA

AnAA X

XnkCrε1

1lnlnln 0 AA

A0

CX 1C

= −

Obteniendo la siguiente tabla: ( )Aln r− -2,77 -3,34 -3,98 -4,88

XA 0 0,238 0,454 0,652

A

A A

1 Xln1 Xε

⎛ ⎞−⎜ ⎟+⎝ ⎠

0

-0,21

-0,48

-0,88

Correlacionando los datos se obtiene:

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−

−+−=−A

AA X

Xr25,01

1ln38,281,2ln

Entonces el orden de la reacción es n = 2,38 y la constante de velocidad k es igual a 0,3131.38mol 1

L S

−⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

.

Para el diseño del RFP se tiene:

Page 13: Guia problemas-resueltos-cinetica-reactores

∫⎟⎟⎠

⎞⎜⎜⎝

⎛+−

== AFX

AA

AA

AAp

XXkC

dXCvV

0 38,238,20

00

11

ε

τ

Entonces

∫ ⎟⎟⎠

⎞⎜⎜⎝

⎛−

−⋅

==8,0

0

38,2

38,100 1

25.011A

A

A

Ap dX

XX

CkvVτ

Resolviendo la integral por el método de Romberg, se obtiene:

[ ]sCkv

V

Ap 15,33986,31

38,100

=⋅⋅

==τ

Con esto se obtiene v0=0,311 [L/s] Se pide producir 5000 Kg/d que es equivalente a 0,723 gmol/s, el reactor produce; De la extensión se tiene:

( )

( )

0 0

0

00

1 212

112 (1 )

0,1875[ / ]

R R A A

R A A

A AR A

A A

R

C C C C

C C C

C XC C

XC gmol L

ε

− −=

= −

−⎛ ⎞= −⎜ ⎟+⎝ ⎠

=

Reemplazando luego en CRF se obtiene que CRF= 0,1875 gmol/L. Luego ( )0 1 0, 25F A Av v X L sε= + = , entonces FRF = vFCRF=0,047 gmol/s El reactor pistón de 10,3 L con v0=0,311 L/s no puede producir lo requerido. Ejemplo 5.2 (Problema 7, Guía 3) La estequiometría del cracking del hidrocarburo A en fase gaseosa es:

A R + S + T + U + V→ Se estima que la reacción es de 1° orden. Se hicieron experiencias en un RFP de laboratorio de 2 L de capacidad operando a 400°C. Se alimentó el RFP con una mezcla de A e inertes en proporción molar del 50 %, a una presión total de 6 atm, obteniéndose los siguientes datos:

Caudal alimentación( L/min ) 2,5 1,0 0,476 0,233 0,146 XA 0,2 0,4 0,6 0,8 0,9

Si se dispone de un RFP piloto de 41,62 L al cual se alimenta A e inerte I, también en proporción equimolar a 6 atm con v0 = 10 L/min. Calcule la velocidad diaria de producción de R a 400°C. Datos: PM (A) = 338 g/gmol; PM (R) = 170 g/gmol. Solución: Se supone cinética de la forma

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛+−=−

AA

AAA X

XkCrε1

10

De acuerdo a la ecuación de diseño de un reactor flujo pistón:

Page 14: Guia problemas-resueltos-cinetica-reactores

∫ ⎟⎟⎠

⎞⎜⎜⎝

⎛−

+== AFX

A

AAp X

Xkv

V0

0 111 ετ

Cálculo de εA: Sustancia VXA=0 VXA=1

A 50 0 R 0 50 S 0 50 T 0 50 U 0 50 V 0 50 I 0 50

Total 50 300 Con esto se tiene que εA =2 Reemplazando εA en la ecuación de τp se obtiene:

Yk

dXXX

kvV

A

X

A

Ap

AF 11

2110

0

=⋅⎟⎟⎠

⎞⎜⎜⎝

⎛−

+== ∫τ

Evaluando τp como 0vV y la integral Y en forma numérica para cada XAF se forma la siguiente tabla: τp (min) 0,8 2 4,202 8,584 13,699 Y 0,269 0,732 1,649 3,228 5,108

Aplicando una regresión lineal se tiene

Yp ⋅+⋅= − 662,21007,3 2τ Luego

⎥⎦⎤

⎢⎣⎡==min

1376,0662,21k

Operando ahora con las siguientes características: V = 41,62 L P = 6 atm

εA = 2 V0 = 10 L/min Se tiene τp = 4,162 min Utilizando la ecuación de diseño de un pistón cuya solución es:

AAp XXk 2)1ln(3 −−−=τ Con XAF =0,603

Luego se tiene ( )

( )AA

ARRF XV

XNCε++=

11

0

0 pero NR0 = 0 entonces NA0XA = NR0XR, donde finalmente:

( )( )AA

A0ARF X1

XCC

ε+=

Ahora bien

( ) ( ) 00 2121

vXXXCF A

A

AARF +

+=

Con CA0=5,43·10-2mol/L se tiene que FRF=0,327 mol/min La producción de R es 80,1 Kg/día. Ejemplo 5.3 (Levenspiel 5.13)

Page 15: Guia problemas-resueltos-cinetica-reactores

La reacción homogénea en fase gaseosa A 3R se ajusta a una cinética de segundo orden. Para un caudal de alimentación de 4 m3/h de A puro a 5 atm y 350ºC se obtiene una conversión del 60% de la alimentación en un reactor experimental constituido por un tubo de 2,5 cm de diámetro y 2 metros de longitud. En una instalación comercial se han de tratar 320 m3/h de una alimentación constituida por 50% de A y 50% de inertes, a 25 atm y 350ºC para obtener una conversión del 80%. ¿Cuántos tubos se necesitan, de 2,5 cm de diámetro y 2 m de longitud?. Supóngase flujo en pistón, despréciese la perdida de presión y admítase que el gas presenta comportamiento ideal. Solución: En el reactor experimental se tiene: v0 = 4 m3/h XA0 = 0 XAf = 0,6 D = 2,5 cm L = 2 m P = 5 atm T = 350ºC La cinética es: -rA= k·CA

2

El volumen del reactor experimental es el del cilindro:

2 2 2 4 30,025 2 9,82 10 [ ]4 4

V r L d L mπ ππ −= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅

Ecuación de diseño para el RFP experimental:

0 00

AfXA

AA

dXV Cv r

τ = =−∫ (a)

El valor de τ es: 4

4

0

9,82 10 2, 455 10 [ ]4

V hv

τ−

−⋅= = = ⋅

Para la reacción gaseosa experimental se tiene además:

1 0

0

3 1 21

A A

A

X XA

X

V VV

ε = =

=

− −= = =

Como la reacción tiene una cinética de orden 2, la solución a la ecuación (a) es (Ec. 5.23 Levenspiel):

2 20

4 2 20

0

2 (1 ) ln(1 ) ( 1)1

0,62,55 10 2 2 (1 2) ln(1 0,6) 2 0,6 (2 1)1 0,6

19979,6[ / ] ( )

A

AA A A A A A

A

A

A

XC k X XX

C k

C k L h b

τ ε ε ε ε

⋅ ⋅ = ⋅ ⋅ + ⋅ − + ⋅ + + ⋅−

⋅ ⋅ ⋅ = ⋅ ⋅ + ⋅ − + ⋅ + + ⋅−

⋅ =

Considerando gas ideal, se determina CA0:

2 30

5 9,79 10 [ / ] 97,9[ / ]0,082 623A

PC mol L mol mRT

−= = = ⋅ =⋅

Despejando k de la Ec. (b):

Page 16: Guia problemas-resueltos-cinetica-reactores

22

19979,6 204081,7[ / ]9,79 10

k L mol h−= = ⋅⋅

a 350 ºC

En el reactor comercial se tiene: v0 = 320 m3/h XA0 = 0 XAf = 0,8 D = 2,5 cm L = 2 m P = 25 atm T = 350ºC La cinética es : -rA= k·CA

2

Además la alimentación contiene inertes, por lo tanto εA varía: 1 0

0

(3 1) (1 1) 1(1 1)

A A

A

X XA

X

V VV

ε = =

=

− + − += = =+

La concentración inicial de A será:

30

25 0,5 0, 2447[ / ] 244,7[ / ]0,082 623

AA

P yC mol L mol mRT⋅ ⋅= = = =

Si los tubos se colocan en serie, el tiempo espacial necesario para que la reacción suceda hasta la conversión esperada será la suma de los volúmenes de cada reactor dividido por el caudal, así para un arreglo en serie se tiene:

0

,V n donde n corresponde al número de RFP en seriev

τ ⋅= (c)

Reemplazando en la Ec. 5.23:

2 20

2 2

4

2 (1 ) ln(1 ) ( 1)1

0,80, 2447 204081,7 2 1 (1 1) ln(1 0,8) 1 0,8 (1 1)1 0,8

2,075 10 [ ]

A

AA A A A A A

A

XC k X XX

h

τ ε ε ε ε

τ

τ −

⋅ ⋅ = ⋅ ⋅ + ⋅ − + ⋅ + + ⋅−

⋅ ⋅ = ⋅ ⋅ + ⋅ − + ⋅ + + ⋅−

= ⋅

De la relación (c) se tiene:

40

4

2,075 10 320 689,82 10

vn tubos en serieV

τ −

⋅ ⋅ ⋅= = ≈⋅

Si los tubos se colocan en paralelo, cada rama deberá tener igual conversión, por lo tanto por cada una de ellas el tiempo espacial deberá ser el mismo, así si todos los tubos son del mismo volumen los caudales serán iguales para cada rama, así:

1 201 0

.... ,( )RAMA RAMA RAMA n

V V donde n corresponde al número de RFP en paralelov v n

τ τ τ= = = = =

Finalmente, la ecuación se mantiene igual a la Ec. (C) y un arreglo en serie o paralelo no presenta ninguna ventaja una sobre otra.

Page 17: Guia problemas-resueltos-cinetica-reactores

Ejemplo 5.4 (Levenspiel 5.18) La reacción en fase gaseosa homogenea A 2B se efectua a 100ºC a la presión constante de 1 atm en un reactor discontinuo experimental, obteniendose los datos de la tabla que se adjunta cuando se parte de A puro. Calculese el tamaño del reactor de flujo en pistón operando a 100ºC y 10 atm con una conversión del 90% de A para un caudal de alimentación de 10 mol/s conteniendo un 40% de inertes.

Tiempo [min] V/V0 Tiempo [min] V/V0

0 1,00 8 1,82 1 1,20 9 1,86 2 1,35 10 1,88 3 1,48 11 1,91 4 1,58 12 1,92 5 1,66 13 1,94 6 1,72 14 1,95 7 1,78

Solución: A partir de los datos obtenidos para el Reactor batch experimental, permiten determinar la cinética de la reacción: Para la reacción gaseosa experimental se tiene:

1 0

0

2 1 11

A A

A

X XA

X

V VV

ε = =

=

− −= = =

Se sabe también que: 0

0

0

(1 ), 1

1

1

A A A

A

A

V V X comoV XV

VXV

ε ε= + =

= +

= −

Ensayando una cinética de primer orden:

A

para reaccionesen fasegasse tiene:(1 ) ln(1 )

ya queε =1, se tiene:2 ln(1 )

A A

A A A A

A A

r k C

k t X X

k t X X

ε ε

− = ⋅

⋅ = − + ⋅ − −

⋅ = − ⋅ − −

Construyendo una tabla de t v/s (-2·Ln(1-XA)-XA)

t [min] XA -2·Ln(1-XA)-XA

0 0 0 1 0,2 0,246 2 0,35 0,512 3 0,48 0,828 4 0,58 1,155 5 0,66 1,498 6 0,72 1,826

7 0,78 2,248 t [min] XA -2·Ln(1-XA)-

XA 8 0,82 2,610 9 0,86 3,072

10 0,88 3,361 11 0,91 3,906 12 0,92 4,131 13 0,94 4,687

Page 18: Guia problemas-resueltos-cinetica-reactores

14 0,95 5,041 De la correlación de los datos, se obtiene:

R2=0,997 A A-2·Ln(1-X )-X =k

k0,3675

ty ty t

⋅= ⋅= ⋅

Así la constante de velocidad es: k = 0,3675 [1/min] Para el reactor RFP, CA0 es:

010 0,6 0,1962[ / ]

0,082 623A

AP yC mol LRT⋅ ⋅= = =

La alimentación de A que entra al reactor se calcula:

0

0 0

10[ / ] 600[ / min]0,6 0,6 600 360[ / min]A

F mol s molF F mol

= == ⋅ = ⋅ =

El caudal de alimentación se calcula como:

0 0 0

00

0

360 1834,9[ / min]0,1962

A A

A

A

F v CFv LC

= ⋅

= = =

Para determinar el nuevo tiempo espacial es necesario calcular εA. Por cada mol de A existen 0,666 moles de inerte que corresponden al 40% que ingresa en la alimentación. Con la estequieometría y estos datos se calcula εA:

1 0

0

2,666 1,666 0,61,666

A A

A

X XA

X

V VV

ε = =

=

− −= = =

Ingresando a la Ec. (5.21)

(1 ) ln(1 )(1 0,6) ln(1 ) 0,61,6 ln(1 ) 0,6

90%.3,144

A A A A

A A

A A

k X Xk X Xk X XComo la conversión final necesaria esk

τ ε εττ

τ

⋅ = − + ⋅ − −⋅ = − + ⋅ − −⋅ = − ⋅ − −

⋅ =

Como la reacción en el RFP se produce a la misma temperatura, k es igual a 0,3675 [1/min]. Luego:

τ = 8,56 [min] Ya que se conoce τ y v0 es posible calcular el volumen del reactor:

Page 19: Guia problemas-resueltos-cinetica-reactores

03

8,56

8,56 1834,9 15698, 4[ ] 15,7[ ]

Vv

V L m

τ = =

= ⋅ = =

Ejemplo 5.5 (Levenspiel 5.7) En un reactor de mezcla completa se efectúa la reacción en fase líquida homogénea:

2A AA R r kC→ − =

Y tiene lugar una conversión del 50%. a) Calcúlese la conversión si el reactor se sustituye por otro seis mayor, sin modificar las demás condiciones. b) Calcúlese la conversión si se sustituye el reactor primitivo de mezcla completa por un reactor en flujo

pistón de igual tamaño, sin modificar las demás condiciones.

Solución: a) XA Cuando se usa un RTAC de V2=6V1

De la Ec. de diseño para un RTAC:

0

0

A A

A

C XVv r

τ = =−

Ya que ρ es constante, entonces εA=0, así la cinética de la reacción es, en función de XA: 2 2

0· ·(1 )A A Ar k C X− = − Combinando ambas ecuaciones:

02 2 2

0 0 0· ·(1 ) · ·(1 2 )A A A

A A A A A

C X XVv k C X k C X X

τ = = =− − +

Ya que la conversión final es 50%, se tiene:

0 02 2

0 0

0

0

0

0

0,5· ·(1 2 ) · ·(1 2·0,5 0,5 )

0,50, 25· ·2·

A

A A A A

A

A

X v vVk C X X k C

vVk C

vVk C

= =− + − +

=

=

Ya que el volumen del reactor inicial es V1, y el reactor de volumen V2, se calcula la conversión de este reactor de la relación V2=6V1, así:

01

0

0 02

0 0

2 126·· ·

A

A A

vVk C

v vVk C k C

=

= =

Relacionando este valor con la Ec de diseño se tiene:

Page 20: Guia problemas-resueltos-cinetica-reactores

2

0 02

0 0

2

2

12 ·· · ·(1 2 )

12(1 2 )

12 25 12 00,75

A

A A A A

A

A A

A A

A

v v Xk C k C X X

XX X

X XX

=− +

=− +

− + ==

b) XA Cuando se usa un RFP de volumen V1. De la Ec. de diseño para un RFP:

00 0

02 2

0 0

0 0

0

· , reemplazando la cinética

·· (1 )

1 1· 1

1 1 1· (1 )

AF

AF

AF

XA

RFP AA

XA A

RFPA A

X

RFPA A

RFPA AF

dXV Cv r

C dXk C X

k C X

k C X

τ

τ

τ

τ

= =−

=−

⎛ ⎞= ⎜ ⎟−⎝ ⎠

⎡ ⎤= −⎢ ⎥−⎣ ⎦

Ya que el volumen del RTAC es el mismo que el RFP, sus tiempos espaciales son iguales, así:

0 0

1 1 21· (1 ) ·

1 1 2(1 )

13(1 )

0,667

A AF A

AF

AF

AF

k C X k C

X

XX

⎡ ⎤− =⎢ ⎥−⎣ ⎦

⎡ ⎤− =⎢ ⎥−⎣ ⎦

=−

=

Resumiendo: RTAC, V1, XAF = 0,5; RTAC, 6V1, XAF = 0,75; RFP, V1, XAF = 0,667 Ejemplo 5.6 (Levenspiel 5.8) Hemos calculado que el tamaño de un reactor de flujo en pistón necesario para un fin determinado (99% de conversión de la alimentación de A puro) era 32 litros, suponiendo que la estequiometría era A R para una reacción de primer orden fase gaseosa. Sin embargo, la estequiometría de la reacción es A 3R. Calcúlese el volumen del reactor necesario para la estequiometría correcta. Solución De la estequiometría de la reacción y la inexistencia de inertes, εA=0. Cinética: 0· · (1 )A A A Ar k C k C X− = = −

Page 21: Guia problemas-resueltos-cinetica-reactores

De la ecuación de diseño y la Ec. (5.21), se tiene:

0

0

0

0

· (1 ) ln (1 )0

· ln (1 )

1· ln1

1· ln1

3 2 1· ln1 0 , 9 9

0 , 1 4 4 1

A A A A

A

A

A

A

k X X

k X

kX

Vv

Vkv X

kv

kv

τ ε εε

τ

τ

τ

= − + − −=

= − −

⎛ ⎞= ⎜ ⎟−⎝ ⎠

=

⎛ ⎞= ⎜ ⎟−⎝ ⎠

⎛ ⎞= ⎜ ⎟−⎝ ⎠

=

Para la reacción, A 3R, se asume la misma cinética de primer orden, esta vez el valor de εA no es cero; por lo tanto:

1 0

0

3 1 21

A A

A

X XA

X

V VV

ε = =

=

− −= = =

Utilizando nuevamente la ecuación de diseño, considerando que se mantiene la cinética, la misma temperatura y el mismo caudal de alimentación, se tiene:

0

0

· (1 ) ln(1 )· (1 2) ln(1 0,99) 2·0,99

· 11,8355

· 11,8355

·0,1441 11,835582,13

A A A Ak X Xk

VkvkVv

VV L

τ ε ετ

= − + − −= − + − −

=

=

==

Ejemplo 5.7 (Levenspiel 5.12) A partir de los siguientes datos, dedúzcase la ecuación cinética para la descomposición en fase gaseosa A R + S que se efectúa isotérmicamente en un reactor de mezcla completa.

Nº Experiencia 1 2 3 4 5 τ [s] basado en las condiciones de la alimentación 0,423 5,10 13,5 44,0 192

XA (para CA0=0,002 mol/L) 0,22 0,63 0,75 0,88 0,96

Page 22: Guia problemas-resueltos-cinetica-reactores

Solución: Ya que la reacción es en fase gas, εA se calcula:

1 0

0

2 1 11

A A

A

X XA

X

V VV

ε = =

=

− −= = =

La ecuación de diseño para el RTAC: 0

0

·A A

A

C XVv r

τ = =−

Despejando la cinética de esta ecuación: 0 ·A A

AC Xr

τ− =

Además se puede conocer el valor de CA de la relación, donde el valor de CA0=0,002 [mol/L]: 0 (1 )

(1 )A A

AA A

C XCXε

−=+

A partir de los datos entregados se genera una tabla para la velocidad de reacción y la concentración de A, a partir de las ecuaciones anteriores:

Nº τ XA -rA CA[mol/L] 1 0,423 0,22 1,03·10-3 1,278·10-3

2 5,1 0,63 2,47·10-4 4,539·10-4 3 13,5 0,75 1,11·10-4 2,857·10-4 4 44,0 0,88 4·10-5 1,277·10-4 5 192 0,96 1·10-5 4,082·10-5

Se ensaya una cinética del tipo:

· nA Ar k C− =

Se obtiene para esta correlación, un R2=0,998, la ecuación obtenida es: 1,35

0,351

8,014·1,35

8,014 ·

A Ar Cn

molk hL

−−

− ==

⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

Ejemplo 5.8. (Levenspiel 5.15) Se han obtenido los datos de la Tabla en la descomposición de reactante A en fase gaseosa en un reactor discontinuo de volumen constante a 100ºC. La estequiometría de la reacción es 2A R + S. Calcúlese el tamaño de reactor de flujo en pistón (en litros) para que, operando a 100ºC, pueda tratar 100 moles de A/h de una alimentación que contiene 20% de inertes, para obtener una conversión del 95% de A.

t (s) pA (atm) t (s) pA (atm)0 1,00 140 0,25

20 0,8 200 0,14 40 0,68 260 0,08 60 0,56 330 0,04 80 0,45 420 0,02

100 0,37

Page 23: Guia problemas-resueltos-cinetica-reactores

Solución: De los datos entregados es posible determinar el valor de CA mientras transcurre la reacción, a través de la relación para gases ideales:

[ / ]0,082·373 3,586

A A AA

p p pC mol LRT

= = =

Una vez obtenidos los valores de CA se puede ensayar alguna cinética, la primera prueba se realizará para n=1. Cinética ensayada:

0

·

:

ln

AA A

A

A

dCr k Cd

Integrando

C kC

θ

θ

− = − =

⎛ ⎞− =⎜ ⎟

⎝ ⎠

La tabla de resultados es la siguiente: t(s) pA (atm) CA (mol/L) -ln(CA/CA0)0 1 3,27·10-2 0

20 0,8 2,62·10-2 0,222 40 0,68 2,22·10-2 0,387 60 0,56 1,83·10-2 0,580 80 0,45 1,47·10-2 0,799 100

0,37 1,21·10-2 0,994

140

0,25 8,17·10-3 1,387

200

0,14 4,58·10-3 1,966

260

0,08 2,62·10-3 2,254

330

0,04 1,31·10-3 3,217

420

0,02 6,54·10-4 3,912

La correlación obtenida arroja un R2=0,9994, la relación obtenida es:

2 3

0

3

ln 3,518·10 9,455·10

9,5·10

A

A

A A

CC

r C

θ− −

⎛ ⎞− = +⎜ ⎟

⎝ ⎠− =

Obtenida la cinética, podemos calcular el volumen necesario para que esta reacción transcurra en un RFP con una conversión final del 95%, con un 20% de inertes, P= 1 atm y un FA0=100 mol/h. De la ecuación de diseño para el RFP y una cinética de orden uno, se tiene (Ec. 5.21):

· (1 ) ln(1 )A A A Ak X Xτ ε ε= − + − − (*) Para el cálculo de εA se utiliza la relación:

1 0

0

A A

A

X XA

X

V VV

ε = =

=

−=

Para ello se determinan los volúmenes ocupados por las especies en la reacción:

Page 24: Guia problemas-resueltos-cinetica-reactores

0AXV = 1AXV =

A 80 0 R 0 40 S 0 40 I 20 20

Total 100 100 Reemplazando en la ecuación:

1 0

0

100 100 0100

A A

A

X XA

X

V VV

ε = =

=

− −= = =

Reemplazando ahora en (*): 39,5·10 · ln(1 0,95)

315,34( )sτ

τ

− = − −=

De la definición de τ: 0

0 0

· A

A

V CVv F

τ = =

El valor de FA0 en segundos es: FA0= 2,78·10-2 (mol/s). Despejando de la definición de τ, el valor de v0, se tiene:

00

0

A0 A2

00 2

0

El valor de C corresponde a una p de 0,8 atm.

2,78·10 1,061( / )2,62·10

A

A

A

A

FvC

Fv L sC

=

= = =

Luego el volumen del reactor será: 0· 315,34·1,061 334,6( )V v Lτ= = =

Ejemplo 5.9 (Levenspiel 5.16) Para efectuar la reacción indicada en el problema anterior se emplea un tanque de 208 litros, que puede considerarse como un reactor de mezcla completa. Para idénticas condiciones de la alimentación y funcionamiento, calcúlese la conversión de A que puede lograrse en este reactor. Solución: Condiciones de operación del problema anterior: v0=0,85 L; -rA=9,5·10-3CA ; εA=0 Condiciones para el problema propuesto: V=208 L; RTAC De la ecuación de diseño, cuando εA=0 se tiene:

Page 25: Guia problemas-resueltos-cinetica-reactores

0

0

0

3

(1 )

(1 )

(1 )2089, 5·100,85 (1 )

2, 32 2, 322, 32 3, 32

0, 7

A A

A A

A

A

A

A

A

A

A A

A

A

X CkC X

XkX

XVkv X

XX

X XX

X

τ

τ

=−

=−

=−

=−

− ==

=

Capítulo 6: DISEÑO PARA REACCIONES SIMPLES Ejemplo 6.1. (Problema 14, Guía 4) Una reacción exotérmica A 2 R→ ocurre en un solvente orgánico en dos RTAC en serie, de igual tamaño. Con el fin de igualar la carga térmica en ambos reactores se les operará a temperaturas diferentes. Las velocidades de reacción serán las mismas en ambos reactores. El segundo reactor operará a 120°C (k = 1,5 m3/Kmol Ks ). Si el efluente del 2° reactor está 90 % convertido y el flujo molar que entra al sistema es de 28 (mol/Ks) con CA0 = 1 Kmol/m3. ¿De que tamaño deben ser los reactores? ¿A qué temperatura debe operar el primer reactor? Dato: EA = 84 KJ/mol. Solución: De acuerdo con las dimensiones de k, la reacción es de 2º orden

Figura 6.1: Esquema para el ejemplo 6.1

Se tiene ( ) ( )2

12

'12

11 11 AAAA XCkCkr −==−

( ) ( )22 22 2 2 0 22

1A A A Ar k C k C X− = = − Las ecuaciones de diseño para cada reactor:

( )110

1A

AA

rXC

−⋅=τ

( )0 2 1

22

( )A A A

A

C X Xr

τ ⋅ −=−

Ya que ( ) ( )2A1A rr −=− y 1 20

V ctev

τ τ= = = se tiene:

( ) 10120 AAAAA XCXXC =−

Page 26: Guia problemas-resueltos-cinetica-reactores

Resultando XA1=0,45. Luego: ( )

( ) [ ]0 2 12 2

0 2 0 2

30 1

A A A

A A

C X XV Ksv k C X

τ−

= = =−

Además

30FCV

0A

0A22 ==τ despejando V2=0,84 [m3]=V1.

De las ecuación ( )1A

1A0A1 r

XC−

⋅=τ se tiene que el valor de k1=4,96E-2 3( )m Kmol Ks⋅

Utilizando Arrhenius

101

RTEA

ekk−

= y 202

RTEA

ekk−

= Aplicando logaritmo natural, se obtiene:

( ) ( )1

01 lnlnRTEkk A−= y ( ) ( )

202 lnln

RTEkk A−=

Restando ambas expresiones se tiene:

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

122

1 11lnTTR

Ekk A

De esto se obtiene EA = 84 molKJ y reemplazando este valor se obtienen las temperaturas:

⎟⎟⎠

⎞⎜⎜⎝

⎛−=⋅ −

1

2 13931

987,120096

5,11096,4ln

T

Entonces T1=347 K Ejemplo 6.2 (Problema 5, Guía 4) El compuesto R (PM = 63 g/gmol ) se obtiene mediante la reacción elemental:

A + B k 2R + S⎯ →⎯ La reacción es en fase líquida con una constante de velocidad k de 2 L/gmol min. La producción se hará en 2 RFP en paralelo y luego un RTAC en serie. La alimentación al sistema contiene CAO = CBO = 1 mol/L y está bifurcada de modo que el sistema funcione en la forma mas eficiente posible. Si se requiere una conversión final del 90%: a) Calcule la velocidad de producción de R en Kg/h. b) Si el sistema se invierte (RTAC primero seguido de dos RFP en paralelo), calcule la velocidad de

producción de R en Kg/h.

Figura 6.2: Esquema para el ejemplo 6.2 parte (a) Solución: a) Si el sistema tiene la alimentación bifurcada en la forma mas eficiente posible se tiene:

Page 27: Guia problemas-resueltos-cinetica-reactores

02

2

01

1

vV

vV pp =

Donde la ecuación de diseño para el RTAC es: ( )( )2

120

0 A

AAAM

rXXC

vV

−−

=

( ) ( ) ( )0 0 01A A B A A B B Br kC C kC X C C X− = = − −

Por la ley de proporciones definidas BBAA XCXC 00 = y como 100 =AB CC , reemplazando en (-rA) se obtiene:

( ) ( )220 1 AAA XkCr −=−

Luego si el sistema de dos RFP cumple la condición de máxima eficiencia, entonces el sistema de 2 RFP se comporta como 1 RFP de volumen total Vp1+ Vp2 Ecuación de diseño del RFP:

( )∫−

=+

10 22

00

0

21

1AX

AA

AA

pp

XkCdX

Cv

VV

⎥⎦

⎤⎢⎣

⎡−

−=

+1

111

100

21

AA

pp

XkCvVV

Finalmente:

1

1

0

00

0

21

1 A

AATA

pp

XX

vkCVkC

vVV

−==

+

De la ecuación de diseño de RTAC se tiene: ( )

)(1

120

22

20

0AAA

AAM

XXCXkCVv

−−=

De la ecuación de diseño de RFP se tiene: ( )

)(1

1

200

A

AAT

XXkCVv −=

Igualando las expresiones y reemplazando los datos se tiene:

877,00273,1

1

1

=′′=′

A

À

XX

Entonces v0 será: ( )

min04,13

)(1

120

22

20

0L

XXCXkCVv

AAA

AAM =−−=

Por ley de proporciones definidas:

( )0 12R A AC C C= − y ( ) ⎥⎦⎤

⎢⎣⎡=−=

LgmolXCC AAA 1,01 202 ,

Con esto se tiene que CR =1,8 gmol/L Luego: min472,230 gmolvCF RFRF == b)

Page 28: Guia problemas-resueltos-cinetica-reactores

Figura 6.3: Esquema para el ejemplo 6.2 parte (b)

Nuevamente los dos RFP se comportan como 1 RFP de volumen VT

( ) ⎥⎦

⎤⎢⎣

⎡−

−−

=⎥⎦

⎤⎢⎣

⎡−

=∫−

=120

2

10

10 22

00

0 11

111

111

1 AAA

AX

AXAA

AX

AA

AA

T

XXkCXkCXkCdX

CvV

Ecuación de diseño de RTAC:

( )21

20

10

0 1 AA

AAM

XkCXC

vV

−=

Igualando v0 se tiene ( )

1

210

12

0 1

11

11 A

AAM

AA

AT

XXkCV

XX

kCV −=

⎥⎦

⎤⎢⎣

⎡−

−−

Reemplazando se obtiene:

543,0657,1

1

1

=′′=′

A

À

XX

Con esto se tiene que v0: ( )

⎥⎦⎤

⎢⎣⎡=

⎥⎦⎤

⎢⎣⎡=−=

min77,20

min54,111

1

210

0

molF

LX

XkCVv

RF

A

AAM

Ejemplo 6.3 (Levenspiel 6.9) Se investiga la cinética de la descomposición de A en fase acuosa en dos reactores de mezcla completa conectados en serie, el segundo de los cuales tiene doble volumen que el primero. En el estado estacionario, cuando la concentración de la alimentación es de 1 mol A/L y el tiempo medio de residencia es de 96 segundos en el primer reactor, la concentración en este es de 0,5 moles de A/L y en segundo 0,25 mol de A/L. Determínese la ecuación cinética para la descomposición. Solución: A Productos Fase líquida: εA=0 CA0=1 mol/L τ1=96 s CA1=0,5 mol/L CA2=0,25 mol/L

Page 29: Guia problemas-resueltos-cinetica-reactores

Para el primer RTAC:

0 1 01

1 0

0 11

1

13

1

( )

( )0,596

( )

( ) 5,2·10 [ / · ]

A A A ARTAC A

A A

A ARTAC

A

A

A

C X C CXr C

C Cr

r

r mol L s

τ

τ

−= =−

−=−

=−

− =

De la relación entre los volúmenes es posible calcular el tiempo de residencia para el segundo RTAC, así:

1 2 11 2

0 0 0

1 012 1

0 0

2

Del estado estacionario se sabe que el caudal se mantiene en ambos tanques.

2· ·2 2· 192[ ]

RTAC RTAC

RTACRTAC RTAC

V V Vv v v

vV sv v

τ τ

ττ τ

= = =

= = = =

Para el segundo RTAC:

0 2 1 0 22 2

2 0

1

0 2 12

2

23

2

( ) 1 0, 25 0,75( ) 1

0,5( )( )

1·(0,75 0,5)192( )

( ) 1,3021·10 [ / · ]

A A A A ARTAC A

A A

A

A A ARTAC

A

A

A

C X X C CXr C

XC X X

r

r

r mol L s

τ

τ

− − −= = = =−

=−=

−−=

− =

Del resultado de la velocidad de reacción en cada tanque, se tiene:

Page 30: Guia problemas-resueltos-cinetica-reactores

31 0 1

32 0 2

1

2

( ) 5, 2·10 · (1 )

( ) 1,3021·10 · (1 )

Dividiendo ambas expresiones, asumiendo que la temperatura en cada reactor es la misma:

13,994=1

1 0,53,994=1 0,75

3,9

n nA A A

n nA A A

n

A

A

n

r k C X

r k C X

XX

− = = −

− = = −

⎡ ⎤−⎢ ⎥−⎣ ⎦

−⎡ ⎤⎢ ⎥−⎣ ⎦

[ ]94= 2ln 3,994 ·ln 2

1,998 2

n

nn

== ≈

Reemplazando el orden de reacción en la primera ecuación de velocidad:

30 1

3 2

1 1

5, 2·10 · (1 )

5, 2·10 ·1(0,5)0,0208( )

n nA Ak C X

kk L s mol

− −

= −

==

Luego la cinética de la reacción es: 20,0208·A Ar C− =

Page 31: Guia problemas-resueltos-cinetica-reactores

Capítulo 7: DISEÑO PARA REACCIONES MÚLTIPLES Ejemplo 7.1 (Problema 1, Guía 5) El reactante A se descompone según la reacción:

SRA kk ⎯→⎯⎯→⎯ 21 Con k1=0,1 min-1 y k2=0,2 min-1. La alimentación para la producción de R consiste en 1000L/h en la cual CA0=1 mol/L, CR0=CS0=0. a) ¿Cuál es el tamaño del reactor de flujo pistón que maximizara el rendimiento de R y cual será la concentración a la salida de este reactor? b) ¿Cuál será el tamaño del reactor tanque agitado que maximizará el rendimiento de R y cual será la concentración a la salida de este reactor? Solución:

SRA kk ⎯→⎯⎯→⎯ 21 a) Para flujo pistón:

RS

RAR

AA

CkrCkCkr

Ckr

2

21

1

=−=

−=

Teniendo esto se tiene:

( )

1

1

1 2

2 1

1

2 1

de la cinética de R

Ec. diferencial lineal de 1º orden

Cuya solución es:

kA AO

kRR AO

y

k kR AO

C C edC k C k C edt

dy P Qdt

kC C e ek k

τ

τ

τ τ

− −

=

+ =

+ =

⎛ ⎞= −⎜ ⎟−⎝ ⎠

Luego, para maximizar CR :

( )1 2

1 2

1

2 1

1 2

0k kRAO

k k

dC kC e ed k k

k e k e

τ τ

τ τ

τ− −

− −

⎛ ⎞= − =⎜ ⎟−⎝ ⎠

=

Luego, ( ) ( )1212max ln kkkk −=τ es el tiempo espacial que maximiza CR. Entonces

( )ττ 21

12

1max,

kkAOR ee

kkkCC −− −⎟⎟

⎞⎜⎜⎝

⎛−

=

Luego

0max min93,6

1,02,01,02,0ln

vVp==

⎟⎠

⎞⎜⎝

Por lo tanto

Page 32: Guia problemas-resueltos-cinetica-reactores

( )LC

eeC

R

R

mol25,01,02,0

1,01

max,

93,62,093,61,0max,

=

−⎟⎠

⎞⎜⎝

⎛−

⋅= ×−×−

Como

min67,16

min60110000

LhhLv =×=

Entonces LvVP 5,11567,1693,60max =⋅==τ

b) Balance de masa Entrada = Salida + descomposición por Rx Para A:

VCkvCvCVrFF

AAA

AAA

10

0 )(+=−+=

Como

mvV τ=

Entonces ( )mAA kvCvC τ10 1+= ,

Por lo que se tiene

m

AA k

CCτ10

1 += .

Para R:

( )0

0 2 1

2 1

( )

0

R R R

R R R A

R R A

F F r VvC vC k C k C VvC k C V k C V

= + −= + −

+ − =

Luego

( )mRm

A kvCk

CVk ττ 2

1

01 1

1+=

+

Pues m

AA k

CCτ1

0

1 += ,

Entonces se tiene

( )( )mm

mAR kk

kCCττ

τ21

10

11 ++=

Luego para encontrar CRmax se hace

0=m

R

ddC

τ.

Se obtiene: ( ) ( ) ( )2

1 1 2 1 2

2 21 2 1

1 2

1 1 1 0

01

m m m m

m

m

k k k k k

k k k

k k

τ τ τ τ

τ

τ

+ + − + =

+ =

⇒ =

Page 33: Guia problemas-resueltos-cinetica-reactores

Y CRmax de acuerdo a min07,71,02,0

1 =⋅

=mτ es:

( )( ) LmolCR 172,0

07,72,0107,71,0107,71,01 =

⋅+⋅+⋅⋅=

Y LvV mm 86,11707,767,160 =⋅== τ .

Con

2

1

2

0AmaxR

1kk

CC

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

Ejemplo 7.2 (Problema 3, Guía 5) Considérese

S

k

⎯→⎯

⎯→⎯2k

1

A

R A

Con la cinética A2S

A1R

CkrCkr

==

Siendo k1= k2

Si se dispone de una alimentación con CA0=1 gmol/L y se desea alcanzar una conversión del 90%, encuentre el rendimiento de R cuando se opera: a) En un RTAC. b) En un RFP. Solución: a)

( ) ( )

RF 1

A0 AF 1 2

AF A0 A

RF

2A0 AF1

Ctodo R formadotodo A que ha reaccionado C C

gmolC C 1 X 1 1 0.9 0,1L

C 1 0, 5C C 1

Por lo tanto 0, 5

R AF

A AF AF

dC k CdC k C k C

kk

φ

φ

= = = =− − +

= − = − =

= =− +

=

b)

( )

( )0

1

1 0 2

1 1

1 2 1

0.1

10

oles de R formadomoles de A que ha reaccionado

0,52

1 0,5 0,5 0,1 11 0,1 0,9

0,5

AF

A

R RF

A A AF

C

P A ACA AF

P

r k Cmr k C k C

k kk k k

dC dCC C

ϕ

ϕ

φ ϕ

φ

= = =− +

= = =+

= − = − = − −− −

=

∫ ∫

Ejemplo 7.3 (Problema 4, Guía 5)

Page 34: Guia problemas-resueltos-cinetica-reactores

Las siguientes reacciones elementales se realizan en un RTAC alimentándose con concentraciones iniciales de CA0 = 1mol/L, CB0=2 mol/L y CD0=1 mol/L.

SDB

RBA

k

k

⎯→⎯+

=⎯→⎯+

2

2

11 4kkcon

Determine la composición del efluente si: a) Se consume el 50% de A alimentado. b) Se consume el 50% de B alimentado. Solución:

( )( )( )( )( )

1

1 2

1

2

2

A A B

B A B B D

R A B

S B D

D B D

r k C C

r k C C k C C

r k C C

r k C C

r k C C

− =

− = +

=

=

− =

a) En RTAC:

( )

0

1

1

R

11 0,5C 0,5

R R

A A A

R A B

A B

RA

C dCC C dC

C k C Ck C C

φ ϕ=

=− −

= =−

=

De la ecuación de diseño:

( ) ( )

( )

0 1 0 0 0 0

0 1 2

1 2

( )

11 0,5·0,5·

4 11

0,8

A A A A A A D D

A A A A B D B

D

B B D

D

D

D

C X C C C C C C Cr r C k C C k C C

Ck C k C C

CC

C mol L

τ − − −= = = =− −

−− =

−=

=

La conversión en la segunda reacción es: 0

20

1 0,8 0,21

D D

D

C CXC

− −= = =

Luego del balance de masa al componente B, (llamamos X1 a la conversión de la primera reacción y X2 a la de la segunda, basadas en el reactivo limitante).

0 0 1 0 2· ·2 1·0,5 1·0, 2

1,3

B B A D

B

C C C X C XCB

C

= + += + +

=

Para S, se tiene:

Page 35: Guia problemas-resueltos-cinetica-reactores

0 2· 1·0, 20, 2

S D

S

C C XC

= ==

Entonces: CA=0,5 ; CB=1,3; CD=0,8; CR=0,5; CS=0,2

b) CB=1

( )

( )( )

0

1

1 2

R

0 0 20 1 1 2

0 0 1

2 1

1C 1 14

0, 25· 1 1 Entonces X 0,333 y X 0,170

R R

B B B

R A B

A B B D

D

A

D BB

A B

RB

C dCC C dCC k C C

k C C k C C

CC

C C XC X

C C X

φ ϕ=

=− −

=− +

⎡ ⎤+ =⎢ ⎥

⎣ ⎦⎡ ⎤−

+ = = =⎢ ⎥−⎣ ⎦

Ejemplo 7.4 (Levenspiel 7.29) Se trata el reactante A en un reactor de mezcla completa de 20L, descomponiéndose del modo siguiente:

11

12

, (4 )

, (1 )R A A

S A A

A R r k C h C

A S r k C h C

→ = ⋅ = ⋅

→ = ⋅ = ⋅

Calcúlese el caudal de alimentación y la conversión del reactante para que el beneficio global sea máximo. ¿Cuál es este beneficio tomando como base la hora? Datos: La materia prima A cuesta 67 ptas/mol para CA0=1 mol/L; el producto R se vende a 375 ptas/mol y S no tiene valor. El coste total de funcionamiento del reactor y el de la instalación para separar los productos es de 1875 ptas/h + 95 ptas/mol de A que entra al reactor. El A no convertido no se recircula. Solución: Se genera una función beneficio del tipo: B = I – C B: beneficio, I: ingreso, C: costos Según los datos entregados los costos totales son por hora:

0 067[ / ] 1875[ / ] 95[ / ]A AC F ptas mol ptas h F ptas mol= ⋅ + + ⋅ Los ingresos totales son por hora:

375[ / ]RI F ptas mol= ⋅ La función beneficio resulta entonces:

0375 1875 162R AB F F= ⋅ − − ⋅ Para dejar las ecuaciones en función de la conversión del componente A, se usaran las siguientes ecuaciones:

Page 36: Guia problemas-resueltos-cinetica-reactores

0

0 0 0

0

0

00

( )

R R

A A

A A

A

A

A A

F C vF C v

C XVv rV rvC X

τ

= ⋅= ⋅

⋅= =−

⋅ −=⋅

La cinética para la descomposición del componente A es:

1 2

1 2

0 1 2

( )(1 ) ( )

A A A

A A

A A A

r k C k Cr C k kr C X k k

− = ⋅ + ⋅− = ⋅ +− = ⋅ − ⋅ +

Así y recordando que CA0=1M:

0 1 20

0

0

(1 ) ( ) 20 (1 ) (5) 100 (1 )

100 (1 )

A A A A

A A A A

AA

A

V C X k k X XvC X X X

XFX

⋅ ⋅ − ⋅ + ⋅ − ⋅ ⋅ −= = =⋅

⋅ −=

Para el cálculo de CR, se tiene:

0

1

0 1 2

2 1 0

0 1 2

0

0 0 0

2 1

0

2 1

0

2 1

11

(1 )(1 )

1

1

100(1 )·1

100(1 ) 80·(1 )1 0,25

R R

R R A

A A A A A

R

A A

A A

A A A

A A A AR

A AR

A A AR

A

AR A

F C vC dC k CR

A C C dC k C k CCR

A k k C C

C C X XC C X

C C C XCk k

C XCk k

C X XFk k X

XF X

φ

φ

= ⋅

⎛ ⎞ = = =⎜ ⎟ − − +⎝ ⎠

⎛ ⎞ = =⎜ ⎟ + −⎝ ⎠

= − −= −

− +=+

=+

−=+

−= = −+

Page 37: Guia problemas-resueltos-cinetica-reactores

Reemplazando en la Ec de beneficio: 100 (1 )375 80 (1 ) 1875 162

16200 (1 )30000(1 ) 1875

1620030000(1 ) 1875 16200

AA

A

AA

A

AA

XB XXXB X

X

B XX

⋅ −= ⋅ ⋅ − − − ⋅

⋅ −= − − −

= − − − +

Derivando la Ec. podemos encontrar el beneficio máximo y la conversión óptima:

2

2

1620030000

0, ;

162000 37500

0,7348

A A

AA

A

A

dBdX X

dBHaciendo encontramos el valor X óptimodX

XX

= − +

=

= − +

=

Conocido XA es posible calcular v0 y el beneficio máximo:

0 36,1[ ]234,18[ / ]

v LB pta h

==

Page 38: Guia problemas-resueltos-cinetica-reactores

Capítulo 8: EFECTOS DE LA TEMPERATURA Y DE LA PRESIÓN Ejemplo 8.1. La descomposición de A → R + S, se lleva a cabo en fase gaseosa y con las siguientes condiciones iniciales: To= 300 K, P = 5 atm y Vo = 0,5 m3. El calor de reacción es de -1500 Kcal/Kmol. Los calores especifícos de A, R y S son respectivamente 30, 25 y 20 Kcal/Kmol K. La constante cinética vale 1014exp(-10000/T) (1/h). Si la reacción se lleva a cabo en un reactor discontinuo en condiciones adiabáticas, calcular el tiempo necesario para que reaccione el 80% de A. Solución: - Cálculo del número de moles iniciales.

Aplicando la ley de los gases ideales:

molesRT

VPNo

ooAo 626,101==

- Cálculo de la temperatura como función de XAS. Balance de energía:

∑ Δ−= )()( rAii HVrdtdTCpN

Balance de materia:

dtdXNVr A

AoA =− )(

Combinando ambos balances:

)( rA

Aoii Hdt

dXNdtdTCpN Δ−=∑

Sustituyendo queda: )()1( ASAAoRAAoAAAoii XsumaCpXNCpXNCpXNCpN =++−=∑

⎥⎦

⎤⎢⎣

⎡Δ−+= ∫

ASX

AA

rAoAS dXXsuma

HNToXT0 )(

1)()(

T(XAS) = 333,647 K - Cálculo de la velocidad de reacción como función de la conversión.

AA CTkr )()( =− V

XNXT

r AAo

ASA

)1()(

10000exp10)( 14 −⎟⎟⎠

⎞⎜⎜⎝

⎛ −=−

- Ecuación de diseño.

∫ −= ASX

AA

AoAS dXVr

NX0 )(

1)(θ

∫ −⎟⎟⎠

⎞⎜⎜⎝

⎛ −= ASX

AAAo

AS

AoAS dXV

VXN

XT

NX0

14 )1()(

10000exp10

1)(θ

Simplificando

∫−⎟⎟

⎞⎜⎜⎝

⎛ −= ASX

A

AAS

AS dXX

XT

Xt0

14 )1()(

10000exp10

1)(

Page 39: Guia problemas-resueltos-cinetica-reactores

θ(XAS) = 0,823 horas. - Solución analítica del balance de energía.

⎟⎠⎞

⎜⎝⎛ ++=

301530ln

151500)( A

AXToXT

Ejemplo 8.2 Se quiere llevar a cabo la siguiente reacción elemental irreversible y exotérmica:

A → B + C En un reactor tubular que funcione a presión atmosférica de forma adiabática con una temperatura de entrada de 250 ºC. Calcular el volumen necesario para obtener una conversión del 80% de A sabiendo que se quieren tratar 100 mol/s de una alimentación constituida por 10% de A en inertes. ¿Qué volumen de reactor sería necesario si se llevara a cabo la reacción en condiciones isotérmicas a 250ºC? ¿Qué cantidad de calor será necesario retirar para mantener las condiciones isotermas? DATOS: k=6000exp (-2000/T) s-1. Los valores de las capacidades caloríficas pueden considerarse constantes en el rango de temperatura de trabajo y son 7, 20, 20 y 15 cal/mol K para A, B, C e inertes respectivamente. El calor de reacción es -10 Kcal /mol. Solución: a) Para el reactor adiabático se tiene que:

KTe 523273250 =+=

9,08,0

1,0

==

=

IO

AS

AO

YXY

Además se sabe que:

smol 100=tOF

mol/s AOtOAO YFF ⋅= Luego, se tiene:

mol/s 101,0100 =⋅=AOF Con atm 10 =P , KmolLatm 0,082 R gas ⋅⋅= Como mol/s IOtOIO YFF ⋅= Luego,

mol/s 909,01000 =⋅=IF Como 1=aδ , entonces se tiene que:

1,01,010 =⋅=⋅= AAA Yδε Ahora como se sabe que el calor de reacción y los calores específicos de los compuestos son:

K cal/mol 10000=Δ rH

K cal/mol 15C K cal/mol 20CK molcal/ 20C K cal/mol 7C

PIPC

PBPA

====

Page 40: Guia problemas-resueltos-cinetica-reactores

Además, la energía de activación es cal/mol 2000=aE . Se sabe que:

( ) ( ) eAsX

APIIAPCAAPBAPAAA

rAAss TdXCFXCFXCFCXF

HFXT +⎟⎟⎠

⎞⎜⎜⎝

⎛⋅+⋅⋅+⋅⋅+⋅−

Δ⋅= ∫00000

0 11

Luego, se obtiene: ( ) K 67,574=Ass XT

Así entonces por otro lado se tiene que la constante de velocidad a esta temperatura y conversión es:

( )

( ) ⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

+⎟⎟⎠

⎞⎜⎜⎝

⎛⋅+⋅⋅+⋅⋅+−⋅

Δ⋅

−⋅=

∫ eAsX

PIIPCAAAPBAAPAArA

aAs

TdXACFCXFXCFXCF

HF

EXk

00000

0 11

exp6000

Como atm 1,01,01000 =⋅=⋅= AA YPP Por gases ideales se tiene:

egas

AA TR

PC

⋅= 0

0

Luego:

mol/L 0023,052308206,0

1,00 =

⋅=AC

Con y 8,0=AX

( ) ( ) eAsX

APIIAPCAAPBAPAAA

rAAss TdXCFXCFXCFCXF

HFXT +⎟⎟⎠

⎞⎜⎜⎝

⎛⋅+⋅⋅+⋅⋅+⋅−

Δ⋅= ∫00000

0 11

El volumen es entonces:

( )( )

( ) ( )A

AX

As

e

AA

AA

As

aA dX

XTT

XX

CXTE

FVolumen ∫⋅⎥

⎤⎢⎣

⎡⋅+

−⋅⎟⎟⎠

⎞⎜⎜⎝

⎛ −⋅

⋅=0

0

0

11

exp6000

1

ε

Resultando: LVolumen 983,46= b) Reactor isotermo: Se tiene que

K 523=eT , mol/L 10332,2 30

−⋅=AC , mol/s 100 =AF y ⎟⎟⎠

⎞⎜⎜⎝

⎛ −⋅=eT

k 2000exp6000

Luego como:

( ) ( )( )

A

AsX

AA

AA

As dX

XXCk

XI ∫⋅+

−⋅⋅

=0

0 11

1

ε

Entonces:

( )mol

Ls 533,5 ⋅=AsXI

Page 41: Guia problemas-resueltos-cinetica-reactores

Entonces ( ) L 326,550 =⋅= AsAnoiso XIFVol . Ahora, se calculará el tiempo medio de residencia y el caudal volumétrico:

sLCF

C

A

A

A

3

0

00

0

10289,40023,010Q

mol/L 0023,0

⋅===

=

Entonces s 013,00 == QVolnoisonoisoτ

* Evolución de la temperatura del reactor (basada en resultados analíticos). Sí 0,8 ,...05,0,0=sX

( ) ( ) ( )⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ ⋅+

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛+=

14203301420

ln33010523

5s

sanaliticosX

XT

( ) ( ) K 67,574=sanaliticos XT

520

530

540

550

560

570

580

- 0,20 0,40 0,60 0,80 1,00

Xs

Ts,a

na

Figura 8.1 Evolución de la temperatura del reactor (basada en resultados analíticos)

*Evolución de la velocidad de reacción (basada en resultados analíticos).

( )⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +

⎟⎟⎠

⎞⎜⎜⎝

⎛+

−⋅

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +

⎟⎟⎠

⎞⎜⎜⎝

⎛+

−⋅=

14203301420

ln33010523

1

14203301420

ln33010523

exp6000)(505

s

esA

s

as

XT

XCX

EXvel

Page 42: Guia problemas-resueltos-cinetica-reactores

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,00 0,20 0,40 0,60 0,80 1,00

Xs

vel(X

s)

Figura 8.2 Evolución de la velocidad de reacción (basada en resultados analíticos).

0

2

4

6

8

10

12

14

0,00 0,20 0,40 0,60 0,80 1,00

Xs

1/ve

l(Xs)

Figura 8.3 Inversa de la evolución de la velocidad de reacción.

c) Calor generado: Se tiene que

molKcal/ 108 4

0

⋅=

Δ⋅⋅=

generado

rAsAgenerado

Q

HXFQ

* Evolución de la temperatura: Comparación de la integral con la analitica. Con

8,0,...5,0,01 =sAX , mol/s 100 =AF , cal/mol 100001 =Δ rH , mol/s 9001 =IF

Page 43: Guia problemas-resueltos-cinetica-reactores

Y

( ) ( ) eAsX

APIIAPCAAPBAPAAA

rAAss TdXCFXCFXCFCXF

HFXT +⎟⎟⎠

⎞⎜⎜⎝

⎛⋅+⋅⋅+⋅⋅+⋅−

Δ⋅= ∫1

0 101101101101

10111 11

El perfil de temperatura se puede modificar cambiando el caudal molar de alimentación del compuesto A, FA0. Luego mol/s 9002 =AF , cal/mol 100002 =Δ rH , mol/s 1002 =IF Y:

( ) ( ) eAsX

APIIAPCAAPBAPAAA

rAAss TdXCFXCFXCFCXF

HFXT +⎟⎟⎠

⎞⎜⎜⎝

⎛⋅+⋅⋅+⋅⋅+⋅−

Δ⋅= ∫1

0 102102102102

20212 11

500

550

600

650

700

750

800

850

900

950

1000

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80

Xs

Ts

Ts1Ts2

Figura 8.4 Modificación del perfil de temperatura.

Si 8,0,...5,0,0=X y

⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛ +⎟⎟⎠

⎞⎜⎜⎝

⎛+

−⋅=

14203301420

ln33010523

exp6000)(5 X

EXcte a

Page 44: Guia problemas-resueltos-cinetica-reactores

100

110

120

130

140

150

160

170

180

190

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80

X

Cte

(X)

Figura 8.5 Variación de cte(X) con respecto X

( )

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛ +⎟⎟⎠

⎞⎜⎜⎝

⎛+

−⋅=

14203301420

ln33010523

1)(50 X

TXCXconc e

A

0,00000

0,00050

0,00100

0,00150

0,00200

0,00250

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80

X

Con

c(X)

Figura 8.6 Variación de la concentración con respecto a X.

Page 45: Guia problemas-resueltos-cinetica-reactores

Capítulo 12: REACCIONES SÓLIDO-FLUIDO Ejemplo 12.1 (Levenspiel 12.1) Una carga de sólidos se trata con un gas de composición uniforme. El sólido se convierte dando un producto no adherente, de acuerdo con el modelo de núcleo sin reaccionar. En una hora la conversión es aproximadamente 7/8, y en dos horas la conversión es completa. Indiquese el mecanismo controlante de la velocidad. Solución: Teniendo en cuenta el modelo de núcleo sin reaccionar y de sólido decreciente ya que el producto es no adherente, se debe averiguar que etapa es la controlante, difusión en película o reacción química. A través de las ecuaciones 12.30 y 12.23 podemos determinar el mecanismo controlante. Como datos, tenemos: t = 1 h para XA=7/8 τ = 2 h para XA=1 Difusión en Película Ec. (12.30):

23

23

(1 (1 ) )

1 2 (1 (1 0,875) )1 1,5

Bt Xτ= ⋅ − −

= ⋅ − −≠

NO ES EL MECANISMO CONTROLANTE Reacción química Ec. (12.23):

13

13

(1 (1 ) )

1 2 (1 (1 0,875) )1 1

Bt Xτ= ⋅ − −

= ⋅ − −=

LA REACCIÓN QUIMICA ES EL MECANISMO CONTROLANTE Ejemplo 12.2 (Levenspiel 12.3) Calculese el tiempo necesario para quemar completamente particulas de grafito (R0=5 mm, ρB=2,2 g/cm3, ks=20 cm/s) en una corriente que contiene 8% de oxigeno. Supongase que para la elevada velocidad de gas utilizada la difusión a través de la película no ofrece ninguna resistencia al transporte ni a la reacción. La temperatura de reacción es 900 ºC. Solución:

C + O2 CO2 Como no existe resistencia por película ni por ceniza, calculamos la concentración de CAg;

7 31 0,08 8,31 10 [ / ]

82,06 1173A

AgP yC mol cmR T

−⋅ ⋅= = = ⋅⋅ ⋅

De la Ec. 12.12 de Levenspiel se tiene:

Page 46: Guia problemas-resueltos-cinetica-reactores

7

2, 2 12 0,5 5515, 44[ ] 1,53[ ]1 20 8,31 10

B

s Ag

R s hb k C

ρτ ⋅−

⋅= = = =⋅ ⋅ ⋅ ⋅ ⋅

Ejemplo 12.3 (Levenspiel 12.5) En un horno con una atmósfera constante se introducen dos pequeñas muestras de un sólido y se mantienen en el durante una hora. En estas condiciones las partículas de 4 mm alcanzan una conversión del 58%, y las de 2 mm se convierten hasta el 87,5%. a) Indíquese el mecanismo controlante de la velocidad de conversión de los sólidos. b) Calcúlese el tiempo necesario para la conversión completa de partículas de 1 mm, en este horno. Solución: Datos: P = 1 atm t = 1 h dp1 = 4 mm XB=0,58 dp2 = 2 mm XB=0,875 Difusión en película como etapa controlante:

De la Ec. 12.11: Bt Xτ

=

De la Ec. 12.10: 3

B

g Ag

R mRb k Cρτ ⋅= =

⋅ ⋅ ⋅

Para ambas esferas se tiene: 1

2

1 1 1 1 1

2 2 2 2 2

1 11

0,58 4 1,32570,875 2

1 1,3257

B B

B B

ttt X mR X Rt X mR X R

= =

⋅= = = =⋅

NO ES EL MECANISMO CONTROLANTE Difusión en la ceniza como etapa controlante:

De la Ec. 12.18: ( )Bt f Xτ

=

De la Ec. 12.17: 2

2

6B

eff Ag

R mRb D Cρτ ⋅= =

⋅ ⋅ ⋅

Para ambas esferas se tiene:

1

2

1

22 2

1 12 2

2 2

1

0,15750,1575 0,1575 4 1, 260,5 0,5 0,5 2

1 1, 26

tt

mRtt mR

ττ

=

⋅⋅ ⋅= = = =⋅ ⋅ ⋅

NO ES EL MECANISMO CONTROLANTE Reacción química como etapa controlante:

Page 47: Guia problemas-resueltos-cinetica-reactores

De la Ec. 12.23: ( )Bt f Xτ

=

De la Ec. 12.22: B

s Ag

R mRb k C

ρτ ⋅= =⋅ ⋅

Para ambas esferas se tiene:

1

22

1 1 12

2 2 2

1

0, 2511 0, 2511 0, 2511 4 1,00440,5 0,5 0,5 2

1 1,0044

tt

t mRt mR

ττ

=

⋅ ⋅ ⋅= = = =⋅ ⋅ ⋅

ES EL MECANISMO CONTROLANTE El tiempo necesario para que un sólido de diámetro de 1 mm se consuma totalmente es:

1 1

1

1

11 131 1 1

3 31

11 (1 ) 3,982[ ]1 (1 ) 1 (1 0,58)

3,982 1 0,9955[ ]4

R

R

B

B

R

m Rm Rm R

RR

t tX hX

h

τττ

ττ

ττ

τ

= ⋅⋅=⋅⋅=

= − − = = =− − − −

⋅= =

Page 48: Guia problemas-resueltos-cinetica-reactores

Capítulo 13: REACCIONES FLUIDO-FLUIDO Ejemplo 13.1 (Problema 2, Guía 8) Se está efectuando la velocidad de absorción de un componente A gaseoso en una solución acuosa del reactivo B, a la temperatura de 25ºC. La estequiometría de la reacción es:

( ) ( ) Producto ( )A gas B líquido acuso+ → Las difusividades de A y B (en el líquido) son DA=DB=2,0·10-9 (m2/s). La constante de Henry HA (atm/M) es una función de la temperatura (K) siendo igual:

(6,11 1702/ )10 TAH −=

Diversas experiencias fueron realizadas en un reactor cuya área interfacial es igual a 100 cm2. Las alimentaciones y los flujos se han ajustado de modo que las condiciones en el reactor y las velocidades calculadas son las siguientes:

Experiencia PA(atm) CB(M) (-rA) (mol/s·cm2)1 0,05 10·10-

6 15·10-6

2 0,02 2·10-6 5·10-6 3 0,10 4·10-6 22·10-6 4 0,01 4·10-6 4·10-6

Que puede deducirse sobre las velocidades y regímenes para esta absorción y reacción? Solución: La constante de Henry a la temperatura de operación es:

(6,11 1702/ ) (6,11 1702/ 298)10 10 2,504( / )TAH atm M− −= = =

Para resolver el problema se debe suponer y luego comprobar el tipo de mecanismo. Considerando reacción infinitamente rápida:

1( ) 1 1

Bl B A

Al AAA

A g l

D C PD b HdNr

S dH k k

θ

⎛ ⎞⋅ +⎜ ⎟

⎜ ⎟− = − ⋅ =⎜ ⎟+⎜ ⎟⋅⎝ ⎠

Se sabe que: DA=DB=2,0·10-9 (m2/s) y b=1 de la estequiometría de la reacción. Luego, reemplazando se tiene:

[ ]( ) '1 1

AB

A AA B B A A

A

A g l

PCH Pr K C K C H P

HH k k

⎛ ⎞+⎜ ⎟ ⎡ ⎤⎜ ⎟− = = + = ⋅ +⎢ ⎥⎜ ⎟ ⎣ ⎦+⎜ ⎟⋅⎝ ⎠

Correlacionando los datos: (-rA)·106 [CB·HA+PA] ·102 15 5,003 5 2,001 22 10,001 4 1,001

Page 49: Guia problemas-resueltos-cinetica-reactores

Además CB es baja, por lo que se tendrá la situación (A):

Ejemplo 13.2 (Problema 4, Guía 8) En una columna de relleno se realiza la absorción de amoniaco en agua pura. Bajo tales condiciones la velocidad global basada en la unidad de volumen de torre es:

( )1( ) ( ) ''· ·AA A ag A

dNr r a K a pV dθ

− = − = − ⋅ =

Siendo KAg·a el coeficiente global basado en la unidad de volumen de la torre. Con el objeto de favorecer la absorción, se añade ácido clorhídrico. Se determinaron los siguientes resultados a 25ºC.

KAg·a, (mol/h·L·atm) 285 310 335 355 372 374 375 Normalidad del ácido 0,4 1,0 1,5 2,0 2,8 4,2 6,0

a) Demostrar que el régimen cinético corresponde a una reacción instantánea. b) Estimar los coeficientes individuales de transporte de materia para la absorción física. Considerar que la

constante de Henry tiene un valor de 115,0 (atm·mL/mol) c) Determinar, para cada concentración de ácido la resistencia de la película gaseosa (en %) respecto de la

resistencia global al transporte de materia en la absorción del amoníaco. Solución:

( )1( ) ( ) ''· ·AA A ag A

dNr r a K a pV dθ

− = − = − ⋅ =

a) Ecuación para una reacción instantánea:

1( ) ' 1 1

( ) ' 1

Bl B A

Al AAA

A Ag Al

BBlA A

AlA

A

Ag Al

D C PD b HdNr a

V dH k a k a

CD H PD br a Hk a k a

θ

⎛ ⎞⋅ +⎜ ⎟

⎜ ⎟− ⋅ = − ⋅ =⎜ ⎟+⎜ ⎟⋅ ⋅ ⋅⎝ ⎠

⎛ ⎞⎛ ⎞ ⋅ ⋅ +⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟− ⋅ =

⎜ ⎟+⎜ ⎟⋅ ⋅⎝ ⎠

Page 50: Guia problemas-resueltos-cinetica-reactores

BPara C =0 ( ) '

:1

1

A Ag A

AgA

Ag Al

r a K a p

Donde

K Hk a k a

→ − ⋅ = ⋅ ⋅

=+

⋅ ⋅

Ahora, para CB=0, 1 0,0370 270, 27Ag

Ag

K aK a

= ⇒ ⋅ =⋅

(Valor extrapolado para CB=0, ver gráfico) Para CB alto se tendrá que la resistencia será fundamentalmente de la fase gas:

1375 0,00267AgAg

K a óK a

⋅ = =⋅

Luego para CB alto: 375Ag AgK a k a⋅ = ⋅ = Bajo tales condiciones:

B=0

1( ) '

Para C1270, 27 1

3751 0,0370

375

0,0343

Como 115 0,115

0,115 3,3530,0343

1 1: ( )

AA Ag A

AgA

Al

A

Al

A

Al

A

Al

Ag

dNr a k a PV d

K a Hk a

Hk a

Hk a

atm mL atm LHmol mol

k a

molUnidades K aL at

θ

θ

− ⋅ = − ⋅ = ⋅ ⋅

⋅ = =+

⇒ + =⋅

⇒ =⋅

⋅ ⋅⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⇒ ⋅ = =

⎛ ⎞⋅ = ⋅ ⋅⎜ ⎟⎝ ⎠

: dimensión de tiempo

Ej: =h Ag

mmolK a

L atm h

θ

θ ⎛ ⎞⎡ ⎤⇒ ⋅ = ⎜ ⎟⎣ ⎦ ⋅ ⋅⎝ ⎠

Page 51: Guia problemas-resueltos-cinetica-reactores

1

1

1

375

0,0343

0,1153,353

0,0343

3,353( )

Ag

A

Al

Al

Al

molk aL atm h

H molk a L atm h

atm Lmolk amol

L atm hk a h

⎛ ⎞⋅ = ⎜ ⎟⋅ ⋅⎝ ⎠

⎛ ⎞= ⎜ ⎟⋅ ⋅ ⋅⎝ ⎠⋅⎛ ⎞

⎜ ⎟⎝ ⎠⋅ = =

⎛ ⎞⎜ ⎟⋅ ⋅⎝ ⎠

⋅ =

El régimen cinético puede modelarse como una reacción instantánea para cualquier CB≠0. Para CB=0 se tiene absorción física de amoniaco en agua pura. b) y c) en Tabla

Kag·a CB 1/ Kag·a % resistencia fase gas

270,27 0,0 0,00370 72,1 Valor extrapolado para CB=0 285 0,4 0,00351 76,0 310 1,0 0,00323 82,7 335 1,5 0,00299 89,3 355 2,0 0,00282 94,7 372 2,8 0,00269 99,2 374 4,2 0,00267 99,7 375 6,0 0,00267 100,0 Valor asintótico para CB alto

0,0024

0,0026

0,0028

0,003

0,0032

0,0034

0,0036

0,0038

0 1 2 3 4 5 6 7

CB

1/K

Ag·a