6
HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314 Name: DEEPAK PAUL TIRKEY ASSIGNMENT NUMBER 04 Student number: 4590929 Question 1. Flapping blade angle variation for the advancing blade for one complete revolution Answer : My chosen helicopter is MBB Bo105 Locks inertia number = 4 = 5.07 where ฯ = 1.225 3 [sea level condition] ; a = lift curve slope = 6.113 /rad ; c = chord = 0.27 m ; R = radius = 4.91 m ; = 231.7 2 [ data source : Helicopter Flight Dynamics โ€“Padfield] Induced Velocity in hover = โˆš 2 2 = 10.8 m/sec ; where W = 2200 x 9.81 = 21582 N Induced inflow ratio = โ„ฆ = 10.8 218 = 0.05 Flapping solution in hover ฮฒ (t) = (t) + (t) Particular solution (t) = 8 ( ฮธ - 4 3 ) = 5.07 8 (8 - 4 3 0.05) = 5.03 degree; where ฮธ = 8 degree(given) [ (t) = 5.03 degree is constant coning angle ] Homogenous solution โ„Ž (t) = 0 โˆ’โ„ฆ 16 [cos(โ„ฆ โˆš 1โˆ’( 16 ) 2 . ) + 16 โˆš 1โˆ’( 16 ) 2 sin(โ„ฆ โˆš 1โˆ’( 16 ) 2 . )] MS Excel was used to calculate and plot ฮฒ (t) = โ„Ž (t) + (t) , were azimuth angle ฯˆ =โ„ฆ t , 0 = โ„Ž Fig. 01 Flapping blade angle ฮฒ (ฯˆ) = ฮฒ hom (ฯˆ) + ฮฒ part (ฯˆ) variation for one revolution 0 2 4 6 8 10 12 0 5 10 15 20 25 30 beta (degree) PSI ( x 15 degree) Beta_hom + Beta_parti coning angle (Beta_parti)

Helicopter rotor dynamics

Embed Size (px)

Citation preview

Page 1: Helicopter rotor dynamics

HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314

Name: DEEPAK PAUL TIRKEY

ASSIGNMENT NUMBER 04 Student number: 4590929

Question 1. Flapping blade angle variation for the advancing blade for one complete revolution Answer : My chosen helicopter is MBB Bo105

Locks inertia number ๐›พ =๐œŒ๐‘Ž๐‘๐‘…4

๐ผ๐›ฝ = 5.07

where ฯ = 1.225 ๐‘˜๐‘”

๐‘š3 [sea level condition] ; a = lift curve slope = 6.113 /rad ; c = chord = 0.27 m ;

R = radius = 4.91 m ; ๐ผ๐›ฝ= 231.7 ๐‘˜๐‘”

๐‘š2 [ data source : Helicopter Flight Dynamics โ€“Padfield]

Induced Velocity in hover ๐œˆ๐‘– = โˆš๐‘Š

2๐œŒ๐œ‹๐‘…2 = 10.8 m/sec ; where W = 2200 x 9.81 = 21582 N

Induced inflow ratio ๐œ†๐‘– = ๐œˆ๐‘–

ฮฉ๐‘… =

10.8

218 = 0.05

Flapping solution in hover ฮฒ (t) = ๐œท๐’‰๐’๐’Ž(t) + ๐œท๐’‘๐’‚๐’“๐’•(t)

Particular solution ๐›ฝ๐‘๐‘Ž๐‘Ÿ๐‘ก(t) = ๐›พ

8( ฮธ -

4

3๐œ†๐‘– ) =

5.07

8(8 -

4

30.05) = 5.03 degree; where ฮธ = 8 degree(given)

[๐›ฝ๐‘๐‘Ž๐‘Ÿ๐‘ก(t) = 5.03 degree is constant coning angle ]

Homogenous solution ๐›ฝโ„Ž๐‘œ๐‘š(t) = ๐›ฝ0๐‘’โˆ’๐›พฮฉ๐‘ก

16 [cos (ฮฉโˆš1 โˆ’ (๐›พ

16)

2

. ๐‘ก) +๐›พ

16

โˆš1โˆ’(๐›พ

16)

2 sin (ฮฉโˆš1 โˆ’ (

๐›พ

16)

2

. ๐‘ก)]

MS Excel was used to calculate and plot ฮฒ (t) = ๐›ฝโ„Ž๐‘œ๐‘š(t) + ๐›ฝ๐‘๐‘Ž๐‘Ÿ๐‘ก(t) ,

were azimuth angle ฯˆ =ฮฉ t , ๐›ฝ0 = ๐›ฝ๐‘๐‘Ž๐‘Ÿ๐‘ก ๐‘ค๐‘Ž๐‘  ๐‘โ„Ž๐‘œ๐‘ ๐‘’๐‘›

Fig. 01 Flapping blade angle ฮฒ (ฯˆ) = ฮฒhom(ฯˆ) + ฮฒpart(ฯˆ) variation for one revolution

0

2

4

6

8

10

12

0 5 10 15 20 25 30

be

ta (

de

gre

e)

PSI ( x 15 degree)

Beta_hom +Beta_parti

coning angle(Beta_parti)

Page 2: Helicopter rotor dynamics

HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314

Name: DEEPAK PAUL TIRKEY

ASSIGNMENT NUMBER 04 Student number: 4590929

Question 2. Angle of attack variation for the advancing blade for one complete revolution at different radii positions on the blade varying from 0 to R Answer : Angle of attack of blade element located at a distance r from the rotation axis

๐œถ๐’“ = ฮธ - ๐‚๐’Š+๐œท

ฮฉ๐’“

Now to calculate from the relation ๐›ฝ (๐‘ก ) = ๐›ฝโ„Ž๐‘œ๐‘š (t) + ๐›ฝ๐‘๐‘Ž๐‘Ÿ๐‘ก

(t) = ๐›ฝโ„Ž๐‘œ๐‘š (t) [as ๐›ฝ๐‘๐‘Ž๐‘Ÿ๐‘ก(t) is a constant term]

Writing ๐›ฝ (๐‘ก ) = ๐›ฝ0[A+B]

Were A = (โˆ’๐›พฮฉ

16) ๐‘’

โˆ’๐›พฮฉ๐‘ก

16 [cos (ฮฉโˆš1 โˆ’ (๐›พ

16)

2

. ๐‘ก) +๐›พ

16

โˆš1โˆ’(๐›พ

16)

2sin (ฮฉโˆš1 โˆ’ (

๐›พ

16)

2

. ๐‘ก)]

And B = ๐‘’โˆ’๐›พฮฉ๐‘ก

16 [โ€“ (ฮฉโˆš1 โˆ’ (๐›พ

16)

2

)sin (ฮฉโˆš1 โˆ’ (๐›พ

16)

2

. ๐‘ก) +๐›พฮฉ

16cos (ฮฉโˆš1 โˆ’ (

๐›พ

16)

2

. ๐‘ก)]

Simplifying [A+B] , cosine terms from both A and B cancel each other

[A+B] = (โˆ’)๐‘’โˆ’๐›พฮฉ๐‘ก

16 sin (ฮฉโˆš1 โˆ’ (๐›พ

16)

2

. ๐‘ก) [(

๐›พ

16)

2ฮฉ

โˆš1โˆ’(๐›พ

16)

2+ ฮฉโˆš1 โˆ’ (

๐›พ

16)

2

]

Simplifying the [ ] term further

[A+B] = (โˆ’)๐‘’โˆ’๐›พฮฉ๐‘ก

16 sin (ฮฉโˆš1 โˆ’ (๐›พ

16)

2

. ๐‘ก) [ฮฉ

โˆš1โˆ’(๐›พ

16)

2]

or ๐›ƒ (๐ญ ) = (โˆ’)๐›ƒ๐ŸŽฮฉ ๐ž

โˆ’๐›„ฮฉ๐ญ๐Ÿ๐Ÿ”

โˆš๐Ÿโˆ’(๐›„

๐Ÿ๐Ÿ”)

๐Ÿ๐ฌ๐ข๐ง (ฮฉโˆš๐Ÿ โˆ’ (

๐›„

๐Ÿ๐Ÿ”)

๐Ÿ. ๐ญ)

using the ฮฒ (t ) value , ๐›ผ๐‘Ÿ at each radial location was calculated using MS EXCEL and are plotted below.

Fig. 0.2 Angle of attack variation with radial and azimuth

5

5.5

6

6.5

7

7.5

8

0 10 20 30 40 50

An

gle

of

atta

ck (

de

gre

e)

PSI (x 15)

r 0.1 r 0.2

r 0.3 r 0.4

r 0.5 r 0.6

r 0.7 r 0.8

r 0.9 r 1

Page 3: Helicopter rotor dynamics

HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314

Name: DEEPAK PAUL TIRKEY

ASSIGNMENT NUMBER 04 Student number: 4590929

Question 3. Coning angle , longitudinal and lateral disc tilt angles. Answer : Coning angle a0 = ฮฒpart(t) = 5.03 degree

Longitudinal disc tilt angle a1 = 0 degree Lateral disc tilt angle b1 = 0 degree

Assume that the helicopter is fixed to the ground but has a body pitch rate q and roll rate p. Question 4. Advancing blade angular velocities

Blade angular velocities: i ฮฉ sinฮฒ + q sinฯˆ cosฮฒ โ€“ p cosฯˆ cosฮฒ

j q cosฯˆ + p sinฯˆ - k ฮฉ cosฮฒ + p cosฯˆ sinฮฒ โ€“ q sinฯˆ sinฮฒ

Question 5. Flapping equation when the helicopter is having body rates p and q and is fixed to the ground Kinetic Energy:

T = 1

2๐ผ [(๐‘ž ๐‘๐‘œ๐‘ ๐œ“ + ๐‘ ๐‘ ๐‘–๐‘›๐œ“ โˆ’ )

2+ (ฮฉ ๐‘๐‘œ๐‘ ๐›ฝ + ๐‘ ๐‘๐‘œ๐‘ ๐œ“ ๐‘ ๐‘–๐‘›๐›ฝ โˆ’ ๐‘ž ๐‘ ๐‘–๐‘›๐œ“ ๐‘ ๐‘–๐‘›๐›ฝ)2] eq. 01

[Note: neglecting the i axis contribution of blade angular velocities towards Kinetic Energy calculation]

Writing the above eq. 01 for simplicity T = 1

2๐ผ[๐ด + ๐ต]

Lagrange equation of motion:

๐‘‘

๐‘‘๐‘ก(

๐œ•๐‘‡

๐œ•) โˆ’

๐œ•๐‘‡

๐œ•๐›ฝ+

๐œ•๐‘‰

๐œ•๐›ฝ= ๐‘„๐›ฝ were ๐‘„๐›ฝ is the aerodynamic moment about the flapping hinge ๐‘€๐‘Ž(๐‘ก)

Evaluating the first term Lagrange EoM

Now ๐œ•๐‘‡

๐œ• =

1

2๐ผ [2-2(๐‘ž ๐‘๐‘œ๐‘ ฮฉ๐‘ก + ๐‘ ๐‘ ๐‘–๐‘›ฮฉ๐‘ก)] and

๐‘‘

๐‘‘๐‘ก(

๐œ•๐‘‡

๐œ•) = ๐ผ[ + ๐‘žฮฉ ๐‘ ๐‘–๐‘›๐œ“ โˆ’ ๐‘ฮฉ ๐‘๐‘œ๐‘ ๐œ“] with ฯˆ = ฮฉt

Now expand the B term of eq. 01 B = [(ฮฉ ๐‘๐‘œ๐‘ ๐›ฝ)2 + (๐‘ ๐‘๐‘œ๐‘ ๐œ“ โˆ’ ๐‘ž ๐‘ ๐‘–๐‘›๐œ“ )2๐‘ ๐‘–๐‘›2๐›ฝ + 2ฮฉ ๐‘๐‘œ๐‘ ๐›ฝ๐‘ ๐‘–๐‘›๐›ฝ(๐‘ ๐‘๐‘œ๐‘ ๐œ“ โˆ’ ๐‘ž ๐‘ ๐‘–๐‘›๐œ“ )] = [(ฮฉ ๐‘๐‘œ๐‘ ๐›ฝ)2 + (๐‘ ๐‘๐‘œ๐‘ ๐œ“ โˆ’ ๐‘ž ๐‘ ๐‘–๐‘›๐œ“ )2๐‘ ๐‘–๐‘›2๐›ฝ + ฮฉ ๐‘ ๐‘–๐‘›2๐›ฝ(๐‘ ๐‘๐‘œ๐‘ ๐œ“ โˆ’ ๐‘ž ๐‘ ๐‘–๐‘›๐œ“ )] = [(ฮฉ ๐‘๐‘œ๐‘ ๐›ฝ)2 + 0 + ฮฉ ๐‘ ๐‘–๐‘›2๐›ฝ(๐‘ ๐‘๐‘œ๐‘ ๐œ“ โˆ’ ๐‘ž ๐‘ ๐‘–๐‘›๐œ“ )] Middle term became 0 as ๐›ฝ is small and neglecting ๐‘2, ๐‘ž2, ๐‘. ๐‘ž terms Now evaluating the second term of Lagrange EoM

๐œ•๐‘‡

๐œ•๐›ฝ=

1

2๐ผ[โˆ’2ฮฉ2 ๐‘๐‘œ๐‘ ๐›ฝ๐‘ ๐‘–๐‘›๐›ฝ + 2ฮฉ๐‘๐‘œ๐‘ 2๐›ฝ(๐‘ ๐‘๐‘œ๐‘ ๐œ“ โˆ’ ๐‘ž ๐‘ ๐‘–๐‘›๐œ“ ) ]

= ๐ผ[โˆ’ฮฉ2๐›ฝ + ฮฉ(๐‘ ๐‘๐‘œ๐‘ ๐œ“ โˆ’ ๐‘ž ๐‘ ๐‘–๐‘›๐œ“ ) ] assuming ๐›ฝ is small Third term of the Lagrange EoM is zero

Page 4: Helicopter rotor dynamics

HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314

Name: DEEPAK PAUL TIRKEY

ASSIGNMENT NUMBER 04 Student number: 4590929

Now evaluating the complete Lagrange EoM:

๐ผ + ๐ผ๐‘žฮฉ ๐‘ ๐‘–๐‘›๐œ“ โˆ’ ๐ผ๐‘ฮฉ ๐‘๐‘œ๐‘ ๐œ“ + ๐ผฮฉ2๐›ฝ โˆ’ ๐ผฮฉ๐‘ ๐‘๐‘œ๐‘ ๐œ“ + ๐ผฮฉ๐‘ž ๐‘ ๐‘–๐‘›๐œ“ = ๐‘€๐‘Ž(๐‘ก) Retaining the ๐›ฝ terms on LHS and dividing throughout by ๐ผ

+ ฮฉ๐Ÿ๐œท = โˆ’๐Ÿฮฉ๐’’ ๐’”๐’Š๐’๐ + ๐Ÿฮฉ๐’‘ ๐’„๐’๐’”๐ + ๐‘ด๐’‚(๐’•)

๐‘ฐ eq. 02

Question 6. Disc tilt angles a0 , a1 and b1 Angle of attack of a blade element

๐›ผ = ๐œƒ โˆ’๐œˆ๐‘–+๐›ฝ ๐‘Ÿโˆ’๐‘ž ๐‘Ÿ ๐‘๐‘œ๐‘ ๐œ“โˆ’๐‘๐‘Ÿ๐‘ ๐‘–๐‘›๐œ“

ฮฉ๐‘Ÿ

Evaluate aerodynamic moment about flapping hinge:

๐‘ด๐’‚

๐‘ฐ=

1

๐ผโˆซ ๐‘Ž (๐œƒ โˆ’

๐œˆ๐‘–+๐›ฝ ๐‘Ÿโˆ’๐‘ž ๐‘Ÿ ๐‘๐‘œ๐‘ ๐œ“โˆ’๐‘๐‘Ÿ๐‘ ๐‘–๐‘›๐œ“

ฮฉ๐‘Ÿ)

1

2๐œŒ(ฮฉ๐‘Ÿ)2๐‘๐‘Ÿ ๐‘‘๐‘Ÿ

๐‘…

0

=๐œŒ๐‘Ž๐‘

๐ผ.

ฮฉ2

2โˆซ (๐œƒ0 โˆ’

๐œˆ๐‘–

ฮฉ๐‘…๐‘ฅโˆ’

๐›ฝ

ฮฉ+

๐‘ž ๐‘๐‘œ๐‘ ๐œ“

ฮฉ+

๐‘๐‘ ๐‘–๐‘›๐œ“

ฮฉ) ๐‘ฅ3๐‘…4 ๐‘‘๐‘ฅ

1

0 taking ๐‘ฅ =

๐‘Ÿ

๐‘… ; ๐‘Ÿ = ๐‘ฅ๐‘… ; ๐‘‘๐‘Ÿ = ๐‘… ๐‘‘๐‘ฅ

=๐œŒ๐‘Ž๐‘๐‘…4

๐ผ.

ฮฉ2

2โˆซ (๐œƒ0๐‘ฅ3 โˆ’ ๐œ†๐‘–๐‘ฅ

2 โˆ’๐›ฝ

ฮฉ๐‘ฅ3 +

๐‘ž ๐‘๐‘œ๐‘ ๐œ“

ฮฉ๐‘ฅ3 +

๐‘๐‘ ๐‘–๐‘›๐œ“

ฮฉ๐‘ฅ3) ๐‘‘๐‘ฅ

1

0

= ๐›พ.ฮฉ2

2[

๐œƒ0

4โˆ’

๐œ†๐‘–

3โˆ’

๐›ฝ

4ฮฉ+

๐‘ž ๐‘๐‘œ๐‘ ๐œ“

4ฮฉ+

๐‘๐‘ ๐‘–๐‘›๐œ“

4ฮฉ]

๐‘ด๐’‚

๐‘ฐ=

๐›พฮฉ2

8(๐œƒ0 โˆ’

4๐œ†๐‘–

3) โˆ’

๐›พ๐›ฝ ฮฉ

8+

๐›พ ๐‘žฮฉ ๐‘๐‘œ๐‘ ๐œ“

8+

๐›พ ๐‘ฮฉ ๐‘ ๐‘–๐‘›๐œ“

8 eq. 03

Now rewriting eq. 02 using eq. 03

+ ฮฉ2๐›ฝ = โˆ’2ฮฉ๐‘ž ๐‘ ๐‘–๐‘›๐œ“ + 2ฮฉ๐‘ ๐‘๐‘œ๐‘ ๐œ“ +๐›พฮฉ2

8(๐œƒ0 โˆ’

4๐œ†๐‘–

3) โˆ’

๐›พ๐›ฝ ฮฉ

8+

๐›พ ๐‘žฮฉ ๐‘๐‘œ๐‘ ๐œ“

8+

๐›พ ๐‘ฮฉ ๐‘ ๐‘–๐‘›๐œ“

8

+๐›พ๐›ฝ ฮฉ

8+ ฮฉ2๐›ฝ =

๐›พฮฉ2

8(๐œƒ0 โˆ’

4๐œ†๐‘–

3) +

๐›พ ๐‘žฮฉ ๐‘๐‘œ๐‘ ๐œ“

8+

๐›พ ๐‘ฮฉ ๐‘ ๐‘–๐‘›๐œ“

8 โˆ’ 2ฮฉ๐‘ž ๐‘ ๐‘–๐‘›๐œ“ + 2ฮฉ๐‘ ๐‘๐‘œ๐‘ ๐œ“

+๐œธฮฉ

๐Ÿ– + ฮฉ๐Ÿ๐œท =

๐œธฮฉ๐Ÿ

๐Ÿ–(๐œฝ๐ŸŽ โˆ’

๐Ÿ’๐€๐’Š

๐Ÿ‘) + ฮฉ (

๐œธ ๐’’

๐Ÿ–+ ๐Ÿ๐’‘) ๐’„๐’๐’”ฮฉ๐’• + ฮฉ (

๐œธ ๐’‘

๐Ÿ– โˆ’ ๐Ÿ๐’’ ) ๐’”๐’Š๐’ฮฉ๐’• eq. 04 (using ๐œ“ = ฮฉ๐‘ก)

Assuming solution for the above eq. 04 of the form ๐›ฝ = ๐‘Ž0 โˆ’ ๐‘Ž1 ๐‘๐‘œ๐‘ ฮฉ๐‘ก โˆ’ ๐‘1 ๐‘ ๐‘–๐‘›ฮฉ๐‘ก

= ๐‘Ž1ฮฉ ๐‘ ๐‘–๐‘›ฮฉ๐‘ก โˆ’ ๐‘1ฮฉ ๐‘๐‘œ๐‘ ฮฉ๐‘ก

= ๐‘Ž1ฮฉ2 ๐‘๐‘œ๐‘ ฮฉ๐‘ก + ๐‘1ฮฉ2 ๐‘ ๐‘–๐‘›ฮฉ๐‘ก

Now substituting the values of ๐›ฝ, , on the LHS of eq. 04 LHS of eq.04

โ‰ก ๐‘Ž1ฮฉ2 ๐‘๐‘œ๐‘ ฮฉ๐‘ก + ๐‘1ฮฉ2 ๐‘ ๐‘–๐‘›ฮฉ๐‘ก +๐œธ

๐Ÿ–๐‘Ž1ฮฉ2 ๐‘ ๐‘–๐‘›ฮฉ๐‘ก โˆ’

๐œธ

๐Ÿ–๐‘1ฮฉ2 ๐‘๐‘œ๐‘ ฮฉ๐‘ก + ฮฉ2๐‘Ž0 โˆ’ ๐‘Ž1ฮฉ2 ๐‘๐‘œ๐‘ ฮฉ๐‘ก โˆ’ ๐‘1ฮฉ2 ๐‘ ๐‘–๐‘›ฮฉ๐‘ก

โ‰ก ฮฉ2๐‘Ž0 + (๐‘Ž1ฮฉ2 โˆ’๐œธ

๐Ÿ–๐‘1ฮฉ2 โˆ’ ๐‘Ž1ฮฉ2) ๐‘๐‘œ๐‘ ฮฉ๐‘ก + (๐‘1ฮฉ2+

๐œธ

๐Ÿ–๐‘Ž1ฮฉ2 โˆ’ ๐‘1ฮฉ2) ๐‘ ๐‘–๐‘›ฮฉ๐‘ก

โ‰ก ฮฉ2๐‘Ž0 โˆ’๐œธ

๐Ÿ–๐‘1ฮฉ2 ๐‘๐‘œ๐‘ ฮฉ๐‘ก +

๐œธ

๐Ÿ–๐‘Ž1ฮฉ2 ๐‘ ๐‘–๐‘›ฮฉ๐‘ก

Equating the above expression with the RHS of eq. 04 and comparing constant, sine and cosine terms Constant term

ฮฉ2๐‘Ž0 =๐›พฮฉ2

8(๐œƒ0 โˆ’

4๐œ†๐‘–

3) or ๐’‚๐ŸŽ =

๐œธ

๐Ÿ–(๐œฝ๐ŸŽ โˆ’

๐Ÿ’๐€๐’Š

๐Ÿ‘)

Page 5: Helicopter rotor dynamics

HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314

Name: DEEPAK PAUL TIRKEY

ASSIGNMENT NUMBER 04 Student number: 4590929

Sine term

๐›พ

8๐‘Ž1ฮฉ2 = ฮฉ (

๐›พ ๐‘

8 โˆ’ 2๐‘ž ) or ๐’‚๐Ÿ = (

๐’‘

ฮฉ โˆ’

๐Ÿ๐Ÿ”๐’’

๐œธฮฉ )

Cosine term

โˆ’๐›พ

8๐‘1ฮฉ2 = ฮฉ (

๐›พ ๐‘ž

8+ 2๐‘) or ๐’ƒ๐Ÿ = (

โˆ’ ๐’’

ฮฉโˆ’

๐Ÿ๐Ÿ”๐’‘

๐œธฮฉ)

Assume that the helicopter is in forward flight and has body rate q Question 7. Perform analytically the integral of blade aerodynamic moment and compare with given expression Aerodynamic moment is given as:

๐‘€๐‘Ž = โˆซ ๐ถ๐‘™๐›ผ ๐›ผ1

2๐œŒ(ฮฉ๐‘Ÿ + ๐‘‰๐‘๐‘œ๐‘ ๐›ผ๐‘ ๐‘ ๐‘–๐‘›๐œ“)2๐‘…

0๐‘ ๐‘‘๐‘Ÿ. ๐‘Ÿ Where ๐›ผ = ๐œƒ โˆ’

๐‘‰ ๐‘ ๐‘–๐‘›๐›ผ๐‘+๐œˆ๐‘–+๐‘Ÿโˆ’๐‘ž๐‘Ÿ ๐‘๐‘œ๐‘ ๐œ“+๐›ฝ๐‘‰ ๐‘๐‘œ๐‘ ๐›ผ๐‘ ๐‘๐‘œ๐‘ ๐œ“

ฮฉ๐‘Ÿ+๐‘‰ ๐‘๐‘œ๐‘ ๐›ผ๐‘ ๐‘ ๐‘–๐‘›๐œ“

Performing integration with the ๐œฝ part

๐‘€๐‘Ž1 = ๐œŒ๐ถ๐‘™๐›ผ ๐‘1

2 โˆซ ๐œƒ(ฮฉ๐‘Ÿ + ๐‘‰๐‘๐‘œ๐‘ ๐›ผ๐‘ ๐‘ ๐‘–๐‘›๐œ“)2๐‘…

0 ๐‘‘๐‘Ÿ. ๐‘Ÿ

= ๐œŒ๐ถ๐‘™๐›ผ ๐‘1

2 ๐œƒ โˆซ (ฮฉ2๐‘Ÿ3 + ๐‘‰2๐‘Ÿ cos ๐›ผ๐‘

2 ๐‘ ๐‘–๐‘›๐œ“2 + 2ฮฉ๐‘‰ ๐‘Ÿ2๐‘๐‘œ๐‘ ๐›ผ๐‘ ๐‘ ๐‘–๐‘›๐œ“)๐‘…

0 ๐‘‘๐‘Ÿ

= ๐œŒ๐ถ๐‘™๐›ผ ๐‘1

2 ๐œƒ [

ฮฉ2๐‘…4

4+

ฮฉ2๐‘…4

2 (

๐‘‰๐‘๐‘œ๐‘ ๐›ผ๐‘

ฮฉ๐‘…)

2

๐‘ ๐‘–๐‘›๐œ“2 +2 ฮฉ2๐‘…4

3(

๐‘‰๐‘๐‘œ๐‘ ๐›ผ๐‘

ฮฉ๐‘…) ๐‘ ๐‘–๐‘›๐œ“] Where

๐‘‰๐‘๐‘œ๐‘ ๐›ผ๐‘

ฮฉ๐‘…= ๐œ‡

= ๐†๐‘ช๐’๐œถ ๐’„๐‘น๐Ÿ’ฮฉ๐Ÿ ๐Ÿ

๐Ÿ ๐œฝ [

๐Ÿ

๐Ÿ’+

๐Ÿ

๐Ÿ๐๐Ÿ ๐’”๐’Š๐’๐๐Ÿ +

๐Ÿ

๐Ÿ‘๐ ๐’”๐’Š๐’๐]

Performing integration with ๐‘ฝ ๐’”๐’Š๐’๐œถ๐’„+๐‚๐’Š+๐’“โˆ’๐’’๐’“ ๐’„๐’๐’”๐+๐œท๐‘ฝ ๐’„๐’๐’”๐œถ๐’„ ๐’„๐’๐’”๐

ฮฉ๐’“+๐‘ฝ ๐’„๐’๐’”๐œถ๐’„ ๐’”๐’Š๐’๐ part

๐‘€๐‘Ž2 = ๐œŒ๐ถ๐‘™๐›ผ ๐‘1

2 โˆซ (๐‘‰ ๐‘ ๐‘–๐‘›๐›ผ๐‘ + ๐œˆ๐‘– + ๐‘Ÿ โˆ’ ๐‘ž๐‘Ÿ ๐‘๐‘œ๐‘ ๐œ“ + ๐›ฝ๐‘‰ ๐‘๐‘œ๐‘ ๐›ผ๐‘ ๐‘๐‘œ๐‘ ๐œ“)(ฮฉ๐‘Ÿ + ๐‘‰๐‘๐‘œ๐‘ ๐›ผ๐‘ ๐‘ ๐‘–๐‘›๐œ“)

๐‘…

0๐‘‘๐‘Ÿ. ๐‘Ÿ

Now integrating each term:

๐‘€๐‘Ž3 = ๐œŒ๐ถ๐‘™๐›ผ ๐‘1

2 โˆซ (๐‘‰ ๐‘ ๐‘–๐‘›๐›ผ๐‘)(ฮฉ๐‘Ÿ + ๐‘‰๐‘๐‘œ๐‘ ๐›ผ๐‘ ๐‘ ๐‘–๐‘›๐œ“)

๐‘…

0๐‘‘๐‘Ÿ. ๐‘Ÿ = ๐†๐‘ช๐’๐œถ ๐’„๐‘น๐Ÿ’ฮฉ๐Ÿ ๐Ÿ

๐Ÿ [

๐€๐’„

๐Ÿ‘+

๐€๐’„ ๐

๐Ÿ๐’”๐’Š๐’๐]

๐‘€๐‘Ž4 = ๐œŒ๐ถ๐‘™๐›ผ ๐‘1

2 โˆซ (๐œˆ๐‘–)(ฮฉ๐‘Ÿ + ๐‘‰๐‘๐‘œ๐‘ ๐›ผ๐‘ ๐‘ ๐‘–๐‘›๐œ“)

๐‘…

0๐‘‘๐‘Ÿ. ๐‘Ÿ = ๐†๐‘ช๐’๐œถ ๐’„๐‘น๐Ÿ’ฮฉ๐Ÿ ๐Ÿ

๐Ÿ [

๐€๐’Š

๐Ÿ‘+

๐€๐’Š ๐

๐Ÿ๐’”๐’Š๐’๐]

๐‘€๐‘Ž5 = ๐œŒ๐ถ๐‘™๐›ผ ๐‘1

2 โˆซ (๐›ฝ)(ฮฉ๐‘Ÿ + ๐‘‰๐‘๐‘œ๐‘ ๐›ผ๐‘ ๐‘ ๐‘–๐‘›๐œ“)

๐‘…

0๐‘‘๐‘Ÿ. ๐‘Ÿ= ๐†๐‘ช๐’๐œถ ๐’„๐‘น๐Ÿ’ฮฉ๐Ÿ ๐Ÿ

๐Ÿ [

๐Ÿ’ฮฉ+

๐

๐Ÿ‘ฮฉ๐’”๐’Š๐’๐]

๐‘€๐‘Ž6 = ๐œŒ๐ถ๐‘™๐›ผ ๐‘1

2 โˆซ (โˆ’๐‘ž๐‘Ÿ ๐‘๐‘œ๐‘ ๐œ“)(ฮฉ๐‘Ÿ + ๐‘‰๐‘๐‘œ๐‘ ๐›ผ๐‘ ๐‘ ๐‘–๐‘›๐œ“)

๐‘…

0๐‘‘๐‘Ÿ. ๐‘Ÿ= ๐†๐‘ช๐’๐œถ ๐’„๐‘น๐Ÿ’ฮฉ๐Ÿ ๐Ÿ

๐Ÿ [

โˆ’๐’’

๐Ÿ’ฮฉ๐‘๐‘œ๐‘ ๐œ“ +

โˆ’๐’’ ๐

๐Ÿ‘ฮฉ๐’”๐’Š๐’๐๐‘๐‘œ๐‘ ๐œ“]

๐‘€๐‘Ž7 = ๐œŒ๐ถ๐‘™๐›ผ ๐‘1

2 โˆซ (๐›ฝ๐‘‰ ๐‘๐‘œ๐‘ ๐›ผ๐‘ ๐‘๐‘œ๐‘ ๐œ“)(ฮฉ๐‘Ÿ + ๐‘‰๐‘๐‘œ๐‘ ๐›ผ๐‘ ๐‘ ๐‘–๐‘›๐œ“)

๐‘…

0๐‘‘๐‘Ÿ. ๐‘Ÿ= ๐†๐‘ช๐’๐œถ ๐’„๐‘น๐Ÿ’ฮฉ๐Ÿ ๐Ÿ

๐Ÿ [

๐œท๐

๐Ÿ‘๐‘๐‘œ๐‘ ๐œ“ +

๐œท๐๐Ÿ

๐Ÿ๐’”๐’Š๐’๐๐‘๐‘œ๐‘ ๐œ“]

Now ๐‘€๐‘Ž/๐ผ๐‘๐‘™=๐‘€๐‘Ž1- (๐‘€๐‘Ž3 + ๐‘€๐‘Ž4 + ๐‘€๐‘Ž5 + ๐‘€๐‘Ž6 + ๐‘€๐‘Ž7) /๐ผ๐‘๐‘™

= ๐›พฮฉ2 1

2 ๐œƒ [

1

4+

1

2๐œ‡2 ๐‘ ๐‘–๐‘›๐œ“2 +

2

3๐œ‡ ๐‘ ๐‘–๐‘›๐œ“] โˆ’๐›พฮฉ2 1

2 [

๐œ†๐‘

3+

๐œ†๐‘ ๐œ‡

2๐‘ ๐‘–๐‘›๐œ“] โˆ’ ๐›พฮฉ2 1

2 [

๐œ†๐‘–

3+

๐œ†๐‘– ๐œ‡

2๐‘ ๐‘–๐‘›๐œ“]

โˆ’๐›พฮฉ2 1

2 [

4ฮฉ+

๐œ‡

3ฮฉ๐‘ ๐‘–๐‘›๐œ“] +๐›พฮฉ2 1

2 [

๐‘ž

4ฮฉ๐‘๐‘œ๐‘ ๐œ“ +

๐‘ž ๐

3ฮฉ๐‘ ๐‘–๐‘›๐œ“๐‘๐‘œ๐‘ ๐œ“] โˆ’๐›พฮฉ2 1

2 [

๐›ฝ๐œ‡

3๐‘๐‘œ๐‘ ๐œ“ +

๐›ฝ๐œ‡2

2๐‘ ๐‘–๐‘›๐œ“๐‘๐‘œ๐‘ ๐œ“]

Now flapping equation is given as: + ฮฉ2๐›ฝ = โˆ’2๐‘žฮฉ ๐‘ ๐‘–๐‘›๐œ“ + ๐‘€๐‘Ž/๐ผ๐‘๐‘™

+ ๐œธ

๐Ÿ–ฮฉ [๐Ÿ +

๐Ÿ’๐

๐Ÿ‘๐’”๐’Š๐’๐]+ฮฉ๐Ÿ๐œท [๐Ÿ +

๐œธ ๐

๐Ÿ”๐’„๐’๐’”๐ +

๐œธ ๐๐Ÿ

๐Ÿ–๐’”๐’Š๐’๐Ÿ๐] = ๐œธฮฉ๐Ÿ ๐Ÿ

๐Ÿ– ๐œฝ(๐Ÿ + ๐๐Ÿ) โˆ’ ๐œธฮฉ๐Ÿ ๐Ÿ

๐Ÿ”(๐€๐’„ + ๐€๐’Š)

+๐œธฮฉ๐Ÿ ๐Ÿ

๐Ÿ– ๐’”๐’Š๐’๐ (

๐Ÿ–

๐Ÿ‘๐œฝ๐ โˆ’ ๐Ÿ๐ (๐€๐’„ + ๐€๐’Š))

+๐œธฮฉ๐Ÿ

๐Ÿ–๐’’ ๐’„๐’๐’”๐+๐œธฮฉ

๐Ÿ

๐Ÿ๐Ÿ๐ ๐’’ ๐’”๐’Š๐’๐Ÿ๐

โˆ’๐œธฮฉ๐Ÿ ๐Ÿ

๐Ÿ– ๐œฝ๐๐Ÿ๐’„๐’๐’”๐Ÿ๐ โˆ’ ๐Ÿ๐’’ฮฉ ๐’”๐’Š๐’๐ eq. 05

Question 8. Deduce disc tilt angles Assuming solution for the above eq. 05 of the form ๐›ฝ = ๐‘Ž0 โˆ’ ๐‘Ž1 ๐‘๐‘œ๐‘ ๐œ“ โˆ’ ๐‘1 ๐‘ ๐‘–๐‘›๐œ“

= ๐‘Ž1ฮฉ ๐‘ ๐‘–๐‘›๐œ“ โˆ’ ๐‘1ฮฉ ๐‘๐‘œ๐‘ ๐œ“ by using ๐œ“ = ฮฉ๐‘ก

= ๐‘Ž1ฮฉ2 ๐‘๐‘œ๐‘ ๐œ“ + ๐‘1ฮฉ2 ๐‘ ๐‘–๐‘›๐œ“

Page 6: Helicopter rotor dynamics

HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314

Name: DEEPAK PAUL TIRKEY

ASSIGNMENT NUMBER 04 Student number: 4590929

Now substituting the values of ๐›ฝ, , on the LHS of eq. 05 LHS of eq.05

โ‰ก ๐‘Ž1ฮฉ2 ๐‘๐‘œ๐‘ ๐œ“ + ๐‘1ฮฉ2 ๐‘ ๐‘–๐‘›๐œ“ +๐›พ

8ฮฉ (๐‘Ž1ฮฉ ๐‘ ๐‘–๐‘›๐œ“ โˆ’ ๐‘1ฮฉ ๐‘๐‘œ๐‘ ๐œ“ +

4๐œ‡

3๐‘Ž1ฮฉ ๐‘ ๐‘–๐‘›2๐œ“ โˆ’

4๐œ‡

3๐‘1ฮฉ๐‘ ๐‘–๐‘›๐œ“๐‘๐‘œ๐‘ ๐œ“)

+ฮฉ2 (๐‘Ž0 โˆ’ ๐‘Ž1 ๐‘๐‘œ๐‘ ๐œ“ โˆ’ ๐‘1 ๐‘ ๐‘–๐‘›๐œ“ +๐›พ ๐œ‡

6๐‘Ž0 ๐‘๐‘œ๐‘ ๐œ“ โˆ’

๐›พ ๐œ‡

6๐‘Ž1 ๐‘๐‘œ๐‘ 2๐œ“ โˆ’

๐›พ ๐œ‡

6๐‘1๐‘ ๐‘–๐‘›๐œ“๐‘๐‘œ๐‘ ๐œ“ +

๐›พ ๐œ‡2

8๐‘Ž0 ๐‘ ๐‘–๐‘›2๐œ“ โˆ’

๐œธ ๐๐Ÿ

๐Ÿ–๐’‚๐Ÿ๐’„๐’๐’” ๐๐’”๐’Š๐’๐Ÿ๐ โˆ’

๐œธ ๐๐Ÿ

๐Ÿ–๐’ƒ๐Ÿ๐’”๐’Š๐’๐ ๐’”๐’Š๐’๐Ÿ๐) eq. 06

Simplifying the last two terms of eq. 06 :

โˆ’ ๐œธ ๐๐Ÿ

๐Ÿ–๐’‚๐Ÿ๐’„๐’๐’” ๐๐’”๐’Š๐’๐Ÿ๐ โ‰ก โˆ’

๐›พ ๐œ‡2

4๐‘Ž1๐‘๐‘œ๐‘  ๐œ“ ๐‘ ๐‘–๐‘›๐œ“ ๐‘๐‘œ๐‘ ๐œ“ โ‰ก โˆ’

๐›พ ๐œ‡2

4๐‘Ž1 ๐‘ ๐‘–๐‘›๐œ“ ๐‘๐‘œ๐‘ 2๐œ“

โ‰ก โˆ’ ๐›พ ๐œ‡2

4๐‘Ž1 (

1

4๐‘ ๐‘–๐‘›๐œ“ +

1

4๐‘ ๐‘–๐‘›3๐œ“ )

โ‰ก โˆ’ ๐›พ ๐œ‡2

16๐‘Ž1๐‘ ๐‘–๐‘›๐œ“ โˆ’

๐›พ ๐œ‡2

16๐‘Ž1๐‘ ๐‘–๐‘›3๐œ“

โˆ’๐œธ ๐๐Ÿ

๐Ÿ–๐’ƒ๐Ÿ๐’”๐’Š๐’๐ ๐’”๐’Š๐’๐Ÿ๐ โ‰ก โˆ’

๐›พ ๐œ‡2

4๐‘1๐‘ ๐‘–๐‘›๐œ“ ๐‘ ๐‘–๐‘›๐œ“ ๐‘๐‘œ๐‘ ๐œ“ โ‰ก โˆ’

๐›พ ๐œ‡2

4๐‘1๐‘ ๐‘–๐‘›2๐œ“ ๐‘๐‘œ๐‘ ๐œ“

โ‰ก โˆ’ ๐›พ ๐œ‡2

4๐‘1 (

1

4๐‘๐‘œ๐‘ ๐œ“ โˆ’

1

4๐‘๐‘œ๐‘ 3๐œ“ )

โ‰ก โˆ’ ๐›พ ๐œ‡2

16๐‘1๐‘๐‘œ๐‘ ๐œ“ +

๐›พ ๐œ‡2

16๐‘1๐‘๐‘œ๐‘ 3๐œ“

Rewriting eq. 06

โ‰ก ๐‘Ž1ฮฉ2 ๐‘๐‘œ๐‘ ๐œ“ + ๐‘1ฮฉ2 ๐‘ ๐‘–๐‘›๐œ“ +๐›พ

8ฮฉ2๐‘Ž1 ๐‘ ๐‘–๐‘›๐œ“ โˆ’

๐›พ

8ฮฉ2๐‘1 ๐‘๐‘œ๐‘ ๐œ“ +

๐›พ

8ฮฉ2 2๐œ‡

3๐‘Ž1 (1 โˆ’ ๐‘๐‘œ๐‘ 2๐œ“) โˆ’

๐›พ

8ฮฉ2 2๐œ‡

3๐‘1ฮฉ๐‘ ๐‘–๐‘›2๐œ“

+ฮฉ2๐‘Ž0 โˆ’ ฮฉ2๐‘Ž1 ๐‘๐‘œ๐‘ ๐œ“ โˆ’ ฮฉ2๐‘1 ๐‘ ๐‘–๐‘›๐œ“ + ฮฉ2 ๐›พ ๐œ‡

6๐‘Ž0 ๐‘๐‘œ๐‘ ๐œ“ โˆ’ ฮฉ2 ๐›พ ๐œ‡

12๐‘Ž1 (1 + ๐‘๐‘œ๐‘ 2๐œ“) โˆ’ ฮฉ2 ๐›พ ๐œ‡

12๐‘1๐‘ ๐‘–๐‘›2๐œ“ +

ฮฉ2 ๐›พ ๐œ‡2

8๐‘Ž0 ๐‘ ๐‘–๐‘›2๐œ“ โˆ’ ฮฉ2

๐›พ ๐œ‡2

16๐‘Ž1๐‘ ๐‘–๐‘›๐œ“ โˆ’ ฮฉ2 ๐›พ ๐œ‡2

16๐‘Ž1๐‘ ๐‘–๐‘›3๐œ“ โˆ’ ฮฉ2

๐›พ ๐œ‡2

16๐‘1๐‘๐‘œ๐‘ ๐œ“ + ฮฉ2 ๐›พ ๐œ‡2

16๐‘1๐‘๐‘œ๐‘ 3๐œ“

Rearranging the above expression in terms of free, sine, cosine terms etc..

โ‰ก (๐›พ

8ฮฉ2 2๐œ‡

3๐‘Ž1 + ฮฉ2๐‘Ž0 โˆ’ ฮฉ2 ๐›พ ๐œ‡

12๐‘Ž1) + (๐‘1ฮฉ2 +

๐›พ

8ฮฉ2๐‘Ž1 โˆ’ ฮฉ2๐‘1 โˆ’ ฮฉ2

๐›พ ๐œ‡2

16๐‘Ž1) ๐‘ ๐‘–๐‘›๐œ“

+ (๐‘Ž1ฮฉ2 โˆ’๐›พ

8ฮฉ2๐‘1 โˆ’ ฮฉ2๐‘Ž1 + ฮฉ2 ๐›พ ๐œ‡

6๐‘Ž0 โˆ’ ฮฉ2

๐›พ ๐œ‡2

16๐‘1) ๐‘๐‘œ๐‘ ๐œ“ + โ‹ฏ ๐‘ก๐‘’๐‘Ÿ๐‘š๐‘  ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” โ„Ž๐‘–๐‘”โ„Ž๐‘’๐‘Ÿ โ„Ž๐‘Ž๐‘Ÿ๐‘š๐‘œ๐‘›๐‘–๐‘๐‘ 

Comparing free terms with the RHS free term of eq.05

(๐›พ

8ฮฉ2 2๐œ‡

3๐‘Ž1 + ฮฉ2๐‘Ž0 โˆ’ ฮฉ2 ๐›พ ๐œ‡

12๐‘Ž1) = ๐œธฮฉ๐Ÿ ๐Ÿ

๐Ÿ– ๐œฝ(๐Ÿ + ๐๐Ÿ) โˆ’ ๐œธฮฉ๐Ÿ ๐Ÿ

๐Ÿ”(๐€๐’„ + ๐€๐’Š)

Or ๐’‚๐ŸŽ = ๐œธ๐Ÿ

๐Ÿ– [๐œฝ(๐Ÿ + ๐๐Ÿ) โˆ’

๐Ÿ’

๐Ÿ‘(๐€๐’„ + ๐€๐’Š)]

Comparing sine terms with the RHS sine term of eq.05

(๐‘1ฮฉ2 +๐›พ

8ฮฉ2๐‘Ž1 โˆ’ ฮฉ2๐‘1 โˆ’ ฮฉ2

๐›พ ๐œ‡2

16๐‘Ž1) = ๐›พฮฉ2 1

8 (

8

3๐œƒ๐œ‡ โˆ’ 2๐œ‡ (๐œ†๐‘ + ๐œ†๐‘–)) โˆ’ 2๐‘žฮฉ

๐›พ

8ฮฉ2๐‘Ž1 (1 โˆ’

๐œ‡2

2) = ๐›พฮฉ2 1

8 (

8

3๐œƒ๐œ‡ โˆ’ 2๐œ‡ (๐œ†๐‘ + ๐œ†๐‘–)) โˆ’ 2๐‘žฮฉ

Or ๐’‚๐Ÿ = (

๐Ÿ–

๐Ÿ‘๐œฝ๐โˆ’ ๐Ÿ๐ (๐€๐’„+๐€๐’Š))โˆ’

๐Ÿ๐Ÿ”๐’’

๐œธฮฉ

(๐Ÿโˆ’ ๐๐Ÿ

๐Ÿ)

Comparing cosine terms with the RHS cosine term of eq.05

(๐‘Ž1ฮฉ2 โˆ’๐›พ

8ฮฉ2๐‘1 โˆ’ ฮฉ2๐‘Ž1 + ฮฉ2 ๐›พ ๐œ‡

6๐‘Ž0 โˆ’ ฮฉ2

๐›พ ๐œ‡2

16๐‘1) = ๐›พฮฉ

1

8๐‘ž

(1

8๐‘1 +

๐œ‡2

16๐‘1) = โˆ’

๐‘ž

ฮฉ

1

8+

๐œ‡

6๐‘Ž0

Or ๐’ƒ๐Ÿ =โˆ’

๐’’

ฮฉ +

๐Ÿ’ ๐

๐Ÿ‘๐’‚๐ŸŽ

(๐Ÿ+ ๐๐Ÿ

๐Ÿ)