42

Topografia 1- informe

Embed Size (px)

Citation preview

TOPOGRAFIA I

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

FACULTAD DE INGENIERÍA CIVIL

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

CURSO: “TOPOGRAFIA I”

TEMA: “NIVELACION LINEAL DE UN PERFIL”

DOCENTE: Ing. Walther T. Maguiña Salazar.

ALUMNOS:

VEGA GONZALES, Franklin Enrique 132.0904.321

BLAS ROJAS Pedro Alfredo 132.0904.312

GUERRERO ROSALES Karina 131.0103.446

CABANA ANGULO Carlos Daniel 132,0904.313

APOLONY LOLI Maickol Andrés 141.0304.376

ASENCIOS SILVA Jhon Roobinson 141.0904.421

HUARAZ -ANCASH-PERÚ

“Año de la Diversificación Productiva y del Fortalecimiento de la Educación”

UNIVERSIDAD NACIONAL SANTIAGO ANTUNEZ DE MAYOLO

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

I. INTRODUCCION

La nivelación, es el conjunto de métodos u operaciones que tienen por objeto

determinar las altitudes de los diversos puntos del terreno referidos a un mismo

plano horizontal de referencia. Los instrumentos utilizados para evaluar las

diferencias de nivel, se denominan altímetros.

Este trabajo es de suma importancia ya que nos ayudara a conocer las aplicaciones

de la nivelación, así como el modo correcto de utilizar los instrumentos (nivel, mira,

GPS, etc.)

En el siguiente informe de nivelación simple se realizó el trabajo de medición de

cotas de terrenos en esta salida de campo se usó el nivel de ingeniero, que tiene

por finalidad medir cotas respecto a un nivel de referencia (BENCH MARK), las

mediciones realizadas se hicieron el 19 tramos de ida, también es de mencionar

que con estas cotas es posible trazar la vista longitudinal del terreno trabajado y en

el trabajo realizado es de importancia saber utilizar el instrumento, pues tiene que

estar calibrada , el punto (ojo de pollo), tiene que estar en el centro y el trípode tiene

que estar bien sentado en la base, y las miras tiene que estar sujetadas por un

personal que lo mantenga fija y sea visible al nivel de ingeniero ya que en el trípode

es giratorio en su base, las miras deben estar en el centro de la luna del nivel.

Con todo esto se obtiene las medidas de vista atrás y adelante y con ello

obtendremos estos datos que son suficientes para llenar la libreta de campo.

EL GRUPO

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

II. OBJETIVO:

Determinar la distancia de un tramo de 200m. mediante el nivel de

ingeniero.

Saber leer las alturas con la mira en cada tramo de 10 m.

Saber cómo estacionarse con el nivel de ingeniero

Calibrar el nivel de ingeniero con una precisa exacta.

III. INSTRUMENTOS; MATERIALES Y HERRAMIENTAS:

Los materiales e instrumentos utilizados fueron los siguientes:

Nivel de ingeniero

wincha

5 Jalones

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

Mira graduada Trípode

Libreta de Campo

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

IV. MARCO TEÓRICO :

NIVELACIÓN

DEFINICIONES:

NIVELAR: Topográficamente nivelar quiere decir medir diferencias de nivel

entre dos puntos y más. La precisión de tales medidas se orienta en función

del fin propuesto y después de los medios disponibles.

Es la operación que sirve para determinar las diferencias de altura de los

puntos de un determinado terreno. En este caso usaremos un instrumento

llamado Nivel de Ingeniero, que es un telescopio apoyado en una base con

tornillos volantes y un trípode; este nivel se apoya de otro instrumento

llamado Mira para determinar la diferencia de cotas

NIVEL: Un nivel es un instrumento que nos representa una referencia con respecto a un plano horizontal. Este aparato ayuda a determinar la diferencia de elevación entre dos puntos

con la ayuda de un estadal.

DESNIVEL O DIFERENCIA DE NIVEL: Es la distancia vertical entre las dos superficies de nivel que pasan por los mismos puntos.

PLANO DE REFERNCIA: Superficie a partir de la cual se determina las diferencias de alturas.

COTA: Es la distancia vertical entre un punto y el plano de referencia.

COTA RELATIVA: Altura de un punto respecto a un plano de referencia cualquiera.

COTA ABSOLUTA: Distancia vertical entre un punto y el plano de referencia formado por la superficie del nivel del mar.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

VISTA ADELANTE: Lectura en la mira cuando se encuentra sobre un punto de cota por conocer (V. Ad).

VISTA ATRÁS: Lectura en la mira cuando se encuentra sobre un punto de cota conocida (V. At)

ALTURA DEL INSTRUMENTO: Es la cota o elevación del hilo horizontal y se obtiene sumando a la cota conocida la lectura de vista atrás.

BENCH MARK (BM): Es un punto topográfico de cota conocida, generalmente referida al nivel del mar (cota absoluta).

NIVEL MEDIO DEL MAR: Es la superficie de referencia en la medida de altitudes, y se puede definir como la superficie cuyo valor es el de la media aritmética entre las bases y alturas marcadas en periodos iguales de observación.

EL NIVEL DE INGENIERO

El nivel de ingeniero es un instrumento óptico mecánico que permite determinar

una línea o un plano horizontal de comparación, que sirve para obtener niveles de

puntos de terreno referidos a un plano de referencia (generalmente el nivel medio

del mar).

Son instrumentos dedicados a la medida directa de diferencias de altura entre

puntos o desniveles. Su misión es lanzar visuales horizontales con la mayor

precisión posible.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

PARTES DE UN NIVEL DE INGENIERO

El nivel consiste en un telescopio montado en la barra de apoyo del nivel, la cual

esta sujetada rígidamente al árbol ligado al telescopio de apoyó del nivel y paralelo

al telescopio, está el tubo del nivel, el árbol encaja en un soporte de forme cónica

de la cabeza de nivelación de tal forma que el nivel queda libre para girar alrededor

del árbol como eje. La cabeza de nivelación está montada sobre un trípode, en el

tubo del telescopio se encuentra la retícula de hilos en la cual aparece la imagen

que se ve a través del telescopio, la burbuja del nivel es centrado por medio de

tornillos de nivelación.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

a) El telescopio.- Los niveles modernos están equipados con telescopios de

enfoque interno. Los rayos de luz que emanan de un punto objeto, son

recibidos pos la lente del objetivo y una vez enfocados forman una imagen

en el plano de retícula. Las lentes del ocular forman un microscopio que se

enfoca en la imagen de la retícula. La lente del objetivo se fija en el extremo

del tubo del telescopio y se coloca una lente cóncava, en la guía de corredera

dentro del mismo. Esta lente cóncava puede moverse en forma paralela a la

línea de visual, mediante la rotación de la perilla de enfoque y permite enfocar

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

el telescopio en objetivos que se encuentran a diferentes distancias del

instrumento. El ocular se mantiene en su posición por medio de un anillo de

rosca, la cual puede moverse en la dirección longitudinal para enfocar. Por

conducto de los tornillos de ajuste, la retícula también puede desplazarse

transversalmente de tal forma que la intersección con los hilos aparezca en

el centro del campo de visión.

b) Lente Del Objetivo.-Su función es formar imágenes para los propósitos de

la observación de visuales. Para lograr la precisión correcta de las

mediciones, el objetivo debe producir una imagen que este bien iluminada,

precisen su forma, bien definida y libre de decoloraciones. Una imagen así

se logra utilizando una lente exterior doble de CROWN GLASS o de vidrio

corona y un lente interior cóncavo-convexo de cristal de roca.

c) Enfoque.-Cuando se va utilizar el telescopio, se mueve primero el ocular

hacia adentro y hacia fuera hasta que se distinga en forma clara los hilos de

la retícula. Este ajuste del ocular debe revisarse frecuentemente a medida

que se cansa el ojo del observador.

Al momento de verse un objetivo, la lente cóncava o guía del objetivo se

mueve hacia adentro y hacia fuera hasta que la imagen este clara. En este

punto, la imagen debe situarse en el plano de retícula. Si al momento de

moverse ligeramente el ojo de lado a lado o de arriba hacia abajo, se

producirse un movimiento aparente de los hilos sobre la imagen, el plano de

la imagen y la retícula no coincide y se dice que existe paralaje. El paralaje

es una fuente de error en las observaciones, se debe eliminar volviendo a

enfocar primero el ocular y luego el objetivo hasta que en pruebas posteriores

no se tenga ningún movimiento aparente. Para auxiliarse en este

procedimiento debe colocarse la mano del observador en un papel blanco a

unas cuantas pulgadas de la lente del objetivo para que el observador pueda

concentrarse en enfocar la retícula en vez de hacerlo con otro objetivo que

se ve a través del telescopio.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

d) Retícula.- La retícula que define la línea de visual, se elaboró por mucho

tiempo con hilos de tela de araña café y actualmente es de un alambre muy

fino de platino. En los instrumentos modernos, el anillo de los hilos cruzados

o retícula de hilos, consta de un plato de vidrio en el cual se imprime líneas

verticales y horizontales muy finas que sirven como hilos cruzados. Se

utilizan patrones especiales de líneas adicionales en algunos instrumentos:

por ejemplo se mencionan los hilos de estadía, ósea líneas dobles

horizontales y verticales, con un espacio muy corto entre ellas, que permiten

tomar visuales precisas entre las mismas. Puede apuntarse en forma más

precisa el espacio existente con una línea doble que con una línea única,

como mostramos en la figura el anillo de la retícula se sostiene en su posición

con cuatro tornillos de cabeza de agarre que pasan a través del tubo del

telescopio y se enroscan en el anillo. Los agujeros del tubo del telescopio se

encuentran ranurados de tal manera que, cuando se aflojan los tornillos del

anillo puede rotarse en ángulos más pequeños alrededor de su propio eje

para rotar el anillo, sin descentrarlo, se aflojan los tornillos adyacentes; luego,

estos mismos tornillos se aprietan, una vez que se halla rotado el anillo. El

anillo es más pequeño que el interior del tubo y se puede mover en sentido

horizontal y vertical por medio de los tornillos. De esta forma para moverlo

hacia la izquierda, se afloja el tornillo ubicado hacia la mano izquierda y se

aprieta el tornillo ubicado hacia la mano derecha.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

e) Tubo De Nivel De Burbuja.- El tubo de nivel que se utiliza en los

instrumentos topográficos, es un tubo de vidrio que tiene su parte interior en

forma de barril, de manera que la línea longitudinal en su superficie interna

es el arco de un circulo, el tubo está casi lleno de éter sulfúrico o de alcohol.

El espacio restante está ocupado por una burbuja de aire que se encuentra

en el punto más alto del tubo. El tubo esta graduado generalmente en ambas

direcciones a partir del centro de esta forma, la burbuja puede sentarse o

bien llevar su centro al punto medio del tubo observando los extremos de la

misma.

Una línea longitudinal, tangente a la superficie curvada interior en su punto

medio superior, se denomina eje del tubo de nivel o eje de nivel. Cuando está

centrada la burbuja el eje del tubo de nivel es horizontal.

El tubo de nivel se instala dentro de un tubo protector de metal, generalmente

recubierto con yeso de Paris.

Este tubo se une al instrumento por medio de tornillos que permiten el ajuste

vertical en un extremo y el movimiento lateral en el otro extremo del tubo.

TIPOS DE NIVELES

a) Nivel De Manguera.- Es una manguera trasparente, se le introduce agua y

se levantan ambos extremos, por simple equilibrio, el agua estará al mismo

nivel en ambos extremos.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

b) Nivel de mano.- Es un instrumento también sencillo, la referencia de

horizontalidad es una burbuja de vidrio o gota,

c) nivel fijo.- Es la versión sofisticada del nivel de mano, este en lugar de

sostenerse con la mano se coloca sobre un trípode, la óptica tiene más

aumentos y la gota es mucho más sensible.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

d) Niveles Basculantes.- Es un telescopio que está montado en un fulcro

transversal en el eje vertical y un tornillo micrométrico en el extremo donde

se encuentra el ocular del telescopio. Después de que sea nivelado el

instrumento en forma aproximada siguiendo el procedimiento usual, y

utilizando el nivel de burbuja circular, el telescopio se apunta en la dirección

deseada, entonces girando levemente en el plano vertical de su eje haciendo

girar el tornillo micrométrico hasta que la burbuja sensible del nivel del

telescopio se encuentre centrada. En este momento, la línea visual es

horizontal, aunque el instrumento en su conjunto no esté nivelado.

Nivel basculante

e) Niveles Automáticos.- Su funcionamiento está basado en un péndulo que

por gravedad, en estado estable este siempre estará en forma vertical, y con

la ayuda de un prisma, este nos dará la referencia horizontal que estamos

buscando. Este nivel tiene una burbuja circular (ojo de buey) que puede no

estar completamente centrada.

Permiten el establecimiento de una línea horizontal de visual por medio de

un sistema de prismas y espejos sostenidos por alambres, como en el caso

del péndulo.

En cada posición de observación, el instrumento se nivela en forma

aproximada, utilizando el nivel de burbuja circular y el péndulo mantiene una

línea de visor horizontal. El instrumento es ligero y fácil de manejar y sus

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

operaciones son rápidas y precisas. En este tipo de instrumento no existe

error accidental en caso de centrado de la burbuja.

f) los niveles láser.- Fueron y continúan siendo una novedad creyendo alguna

personas que son más precisos, pero la realidad es otra, existen los que solo

proyectan una línea en una pared, su nombre correcto es crossliner se usan

principalmente en interiores, ya que en exteriores con la luz del sol resulta

difícil ver la línea que proyecta en una pared.

g) Los niveles electrónicos.- Estos funcionan como los niveles ópticos, y

adicionalmente pueden hacer lecturas electrónicamente con estadales con

código de barras, esto resulta muy práctico, ya que la medición es muy

rápida, y se eliminan errores de apreciación o lectura, incluso de dedo, ya

que estos tienen memoria para almacenar y procesar los datos, pueden

desplegar en pantalla una resolución de décima de milímetro, y medir

distancias con una resolución de un centímetro.

LAS MIRAS

a) Miras verticales.- Son reglas graduadas en metros y decímetros,

generalmente fabricadas de madera, metal o fibra de vidrio. Usualmente,

para trabajos normales, vienen graduadas con precisión de 1 cm y

apreciación de 1 mm. Comúnmente, se fabrican con longitud de 4 m divididas

en 4 tramos plegables para facilidad de transporte y almacenamiento.

Existen también miras telescópicas de aluminio que facilitan el

almacenamiento de las mismas.

Las miras verticales se usan en el proceso de nivelación y en la

determinación indirecta de distancias. Las miras deben ser verticalizadas con

el auxilio de un nivel esférico generalmente sujeto en la parte posterior de la

mira.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

b) Miras horizontales.- La mira horizontal de INVAR es un instrumento de

precisión empleado en la medición de distancias horizontales.

La mira está construida de una aleación de acero y níquel con un coeficiente

termal de variación de longitud muy bajo, prácticamente invariable,

característica que da origen al nombre de MIRAS DE INVAR.

Para poder medir una distancia horizontal con mira de INVAR, es necesario

medir el ángulo horizontal con un teodolito con precisión de por lo menos de

1”.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

TRÍPODES

Sirven para sostener el nivel, consta de tres patas, son graduadas, es decir, se

adecuan al tamaño del observador.

a) Trípode de Madera

Compatibles con todos los taquímetros, teodolitos, niveles y antenas

GPS de Leica Geosystems.

Apto para trabajos en climas fríos, tropicales y subtropicales.

Color de aviso llamativo.

b) Trípode de Metal:

Compatibles con todos los taquímetros, teodolitos, niveles y antenas

GPS de Leica Geosystems.

Apto para trabajos en climas fríos, tropicales y subtropicales.

Color de aviso llamativo.

Elementos de Unión: Los trípodes llevan una guía metálica sujeta a la

parte inferior de la plataforma por uno de sus extremos, alrededor del

cual puede girar, de modo que pase a través del orificio circular de la

plataforma, un tornillo de unión que puede deslizarse en la guía a modo

de carril; los dos movimientos, el giratorio del carril y el deslizamiento del

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

tornillo de unión, permiten a éste ocupar cualquier posición en la abertura

circular, facilitando pequeños desplazamientos del aparato.

Para la unión, el tornillo enrosca en una placa de acero que hace muelle

y va unida a las patas del instrumento, consiguiéndose la sujeción al

comprimirlas contra la meseta por la presión del tornillo.

Todos los trípodes llevan colgada del elemento de unión una plomada

que ha de coincidir con la señal marcada en el terreno.

Criterios técnicos

a) estacionamiento de un nivel.

Se llama estacionamiento del nivel a la colocación de manera que la

visual de anteojo describa un plano horizontal.

Para estacionarlo de manera que la visual sea horizontal, el nivel se sitúa

sobre un trípode y se produce anivelar el nivel esférico.

Para nivelarlo se hace con ayuda de las patas del trípode y de los tres

tornillos de la plomada nivelante, una vez estacionado el nivel

procedemos a realizar las lecturas sobre la mira.

b) instalación del trípode

El trípode debe colocarse para montar encima el teodolito. Las tres

piernas deben colocarse a una distancia suficiente como para que tenga

estabilidad. Pero esta distancia tampoco debe ser lo suficientemente

grande como para que afecte la movilidad de los observadores.

c) formas adecuadas de colocar el trípode.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

Asimismo se recomienda colocar el trípode lo más nivelado posible, esto

quiere decir que la plataforma superior en donde va a colocarse el

teodolito posteriormente, debe estar lo más horizontal posible. Conviene

colocar una piedra pequeña u otro objeto debajo del trípode de modo de

marcar el lugar exacto en donde se armó ya que para siguientes

mediciones debe armarse en el mismo lugar

d) lecturas en la mira de nivelación.

La mira antes de realizar la lectura debe colocarse verticalmente con la

ayuda de algún nivel de escuadra.

El estadal de lectura directa, se sostiene verticalmente en su posición; el

nivelador observa la graduación en la que la línea de visual se interseca

el estadal y apunta la lectura. Se hace una estimación de la observación

con más precisión que la división más pequeña del estadal.

El estadal de lectura, debe estar marcado de forma clara y nítida para ser

observado de cualquier distancia. El fondo debe estar pintado en blanco

y rojo.

Pueden utilizarse para estadía en los taquímetros o para nivelación en los

niveles. Las miras deben garantizar la homogeneidad en su graduación y

ser inalterables a las variaciones de temperatura.

La graduación puede estar en centímetros, dobles milímetros o

milímetros. Para nivelación industrial se utilizan miras milimétricas.

Algunas llevan un nivel esférico para garantizar la verticalidad. Es muy

importante colocar lo más vertical posible la mira.

Suelen colocarse sobre una base especial o zócalo (no directamente

sobre el terreno) para evitar pequeños hundimientos.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

Las lecturas de las altura en las miras se hace con el hilo estadimétrico horizontal

(Hh).

Para calcular el desnivel entre dos puntos (A y B) simplemente es restar la lectura

en la mira en el punto A (m a) de la lectura de la mira en el punto B (m b). Z = m a

– m b.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

TIPOS DE NIVELACIÓN

A) NIVELACIÓN BAROMÉTRICA:

La nivelación barométrica se realiza utilizando aparatos llamados barómetros que

indican la diferencia de precisión atmosférica, con lo que se puede calcular la

diferencia de altura. En la nivelación barométrica pueden emplearse varias técnicas

para determinar diferencias de elevación correctas a pesar de los cambios de

precisión que reflejan las variaciones atmosféricas.

En una de estas se deja un barómetro de control en un banco de nivel (base), y se

lleva el instrumento móvil a los puntos cuyas elevaciones se desea determinar.

El método barométrico se utilizó en el pasado parta trabajos de nivelación en

terrenos abruptos en los que tienen que abarcarse extensas áreas, pero no se

necesitan gran precisión. En condiciones estables del tiempo y usando varios

barómetros es posible determinar elevaciones con aproximación de +/- 2 a 3 pie.

Precisión : 1 m.

Rapidez : Muy Rápido

Costo : Económico

Utilización : Exploraciones, trabajos de reconocimiento.

B) NIVELACIÓN TRIGONOMÉTRICA

Se obtiene los desniveles mediante la trigonometría con los datos medidos de

ángulos verticales y distancias que pueden ser horizontales e inclinadas. Para

distancias mayores a 300m se deberá considerar el efecto combinado.

Precisión : 1 dm.

Rapidez : Rápido

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

Costo : mediano

Utilización : Levantamientos topográficos.

DH=DI Cos α V=DH Tan α miVH

C) NIVELACIÓN GEOMÉTRICA

Es aquella en que las diferencias de lectura o cotas de dos puntos se determinan

por medio de instrumentos llamados niveles, que permiten determinar un plano

horizontal, nivelación corriente con el nivel de ingeniero.

La nivelación geométrica se clasifica en diferencial (diferencial simple y diferencial

compuesta) y recíproca.

Precisión : 1cm. Rapidez

: Muy Lento. Costo

: Caro Utilización

: Nivelaciones de precisión.

BA LLH T=Cota de A + Vat

Cota de B= T - Vad

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

LA= Lectura de Vista Atrás (Cota conocida).

T=Altura del instrumento.

LB= Lectura de vista adelante (Cota por conocer).

Tipos De Nivelación Geométrica

Nivelación Diferencial.- Se obtiene la diferencia de nivel entre dos puntos

colocando el instrumento en un punto equidistante entre los puntos para

eliminar el efecto de curvatura de la tierra y refracción atmosférica.

)()()º3

,)º2

)º1

ehehHHH

ehHehH

dCBAC

BABA

BBAA

BA HHH

e=Error combinado por curvatura y refracción atmosférica.

Si: hA > hB --> HAB (+) Sube

hA < hB --> HAB (-) Baja

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

Nivelación Diferencial Simple.

Es aquella en la cual desde una sola estación del instrumento se puede

conocer las cotas de todos los puntos del terreno que se desea nivelar.

Se estaciona a nivel el instrumento en el punto más conveniente, es decir

que ofrezca las mejores condiciones de visibilidad. La primera lectura se

realiza sobre la mira colocada en el punto fijo y estable de cota conocida

(BM), y a partir del cual se van a nivelar los puntos necesarios del terreno.

Este BM puede ser absoluto o relativo.

= Cota+Vat

Cota = -Vad

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

Nivelación Diferencial Compuesta.

Es el sistema empleado cuando el terreno es bastante quebrado y

accidentado, o cuando las visuales resultan bastante grandes (mayores a

300 m.) El instrumento se va trasladando a distintas estaciones, en cada

una de las cuales se realizan nivelaciones simples, que van ligándose entre

si por los llamados “Puntos de Cambio”. El punto de cambio debe de

escogerse de modo que sea estable y de fácil identificación.

A

1

2

B

Mira

BM

Vat Vad

Vad Vad

1

2

B

Mira

BM

Vat Vad Vad Vad

=Cota(A)BM+Vatras(A)

Cota(1)= -Vadel(1)

Cota(2)= -Vadel(2)

A

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

Vista Atrás (Vat): Es la lectura realizada en la mira cuando está colocada en un

punto de cota conocida.

Vista Adelante (Vad): Es la lectura realizada en la mira cuando está colocada

en un punto de cota por conocer.

Punto de Cambio (PC): Denominado también Punto de Liga. Son aquellos

puntos en los que se hacen dos lecturas en la mira: de Vista Atrás y Vista

Adelante.

Nivelación Recíproca.

Se obtiene la diferencia de nivel entre dos puntos cuando la distancia entre ellos

es muy grande (200 a 300 m.) y no es posible colocar el instrumento en un punto

equidistante entre los puntos, y se quiere evitar toda causa de error debido a los

efectos combinados de curvatura y refracción atmosférica.

BM

PC1

PC3

PC2

A

B 3

2

1

L2

L3 L4

L5 L6

L7 L8

Vat Vad

Vat Vad

Vat Vad

Vat Vad

d1

d1

d2

d2

d3

d3 d4 d4

HAB=| ΣVatras – ΣVadel |

Si ΣVadel > ΣVatras (Entonces la nivelación es de bajada)

Si ΣVadel < ΣVatras (Entonces la nivelación va de subida)

L1

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

En (A) HA1=hA1 + e1

En (B) HB1=hB1 + e2

H=HB1-HA1

H= (hB1+e2)-(hA1+e1)

H= (hB1-hA1)+e2-e1…(α)

En (B) HB2=hB2 + e1

En (A) HA2=hA2 + e2

H=HB2-HA2

H= (hB2+e1)-(hA2+e2)

H= (hB2-hA2)-e2+e1… ()

)()( 2

)()( 2211 ABAB hhhhH

e

e2

e 1

e1

(2 a 5 m.)

1ra Posición

2da Posición

B

A

d

d

hA1 HA1

hA2 HA2

H

HB2 hB2

HB1 hB1

(2 a 5 m.)

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

Donde:

HA1= Lectura de A sin error.

hA1= Lectura real en A con error en e1.

HB1= Lectura de B sin error.

hB1= Lectura real en B con error e2.

HA2= Lectura de A sin error.

hA2= Lectura real en A con error en e2.

HB2= Lectura de B sin error.

hB2= Lectura real en B con error e1.

CLASIFICACIÓN DE LA NIVELACIÓN GEOMÉTRICA SEGÚN SU

PRECISIÓN

Nivelación Rápida (3er Orden).

Tolerancia:

Dónde: K=Distancia acumulada en Km.

Se emplea en levantamientos o trabajos de reconocimiento.

Visuales hasta 300 m.

Mira graduada en doble centímetro.

Las vistas de atrás y adelante no son balanceadas.

Nivelación Ordinaria (2do Orden).

Tolerancia: KEc 02.0

Dónde: K=Distancia acumulada en Km.

Se emplea en trabajos de carreteras, ferrocarriles, etc.

KEc 10.0

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

Visuales no mayores a 150 m.

Mira graduada en centímetros con lecturas de aproximación en milímetros.

Las vistas de atrás y adelante aproximadamente equidistante, y los puntos

de cambio sobre bases sólidas.

Nivelación Precisa (1er Orden).

Tolerancia:

Dónde: K=Distancia acumulada en Km.

Se emplea para trazos definitivos de canales, trabajos urbanos de agua

potable y desagüe, acueductos, hidroeléctricas, puentes, túneles, drenaje de

terrenos,

Visuales no mayores a 100 m.

Mira graduada en milímetros.

La burbuja perfectamente centrada en el instante de cada lectura.

Puntos de cambio sobre bases perfectamente sólidas. Trípode en terreno

forme.

Nivelación de Alta Precisión.

Tolerancia:

Dónde: K=Distancia acumulada en Km.

Se emplea para determinar puntos permanentes de cota bien exacta y que

formen una red de apoyo.

Visuales de longitud máxima de 90m.

Lectura en miras a 0.25mm.

KEc 01.0

KEc 04.0

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

Nivel resguardado del sol.

La burbuja se debe centrar cuidadosamente antes de realizar las lecturas.

El instrumento se colocará bien firme sobre terreno sólido.

En general:

FORMAS DE NIVELACIÓN

a. Nivelación Lineal

Sirve para determinar cotas de puntos que se encuentran situados a lo largo

de una dirección o perfil del terreno, pudiendo ser cerrada como también una

nivelación con doble punto de cambio.

Nivelación lineal en circuito cerrado.

Nivelación lineal de punto doble o con doble punto de cambio.

K

EcnKnEc

BM

A 1 2

B

E1 E2

E3

E4

E5 E6

Ida

Vuelta

Vat

Vad

Vat Vat

Vat

Vat

Vat

Vad

Vad

Vad Vad

Vad

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

b. Nivelación Radial.-

Se emplea en los mismos trabajos que en la nivelación lineal y mayormente en

terrenos llanos, pero de acuerdo al siguiente esquema:

c. Nivelación por Radiación.- Permite nivelar varios puntos del terreno desde

una sola estación del instrumento.

BM

A 1 2

3

E1 E2 E3

E3’ E2’

E1’

Vat

Vad

Vat Vat

Vat Vat

Vat

Vad Vad

Vad Vad

Vad

B

E4

E4’

Vat

Vat

Vad

Vad

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

NIVELACIÓN PARA CUBICACIONES O CURVAS DE NIVEL

Se emplea para determinar volúmenes de cortes y rellenos de rocas,

grava u otros materiales en un área del terreno. Para ello se hace un

cuadrilátero de 5,10, 25 o 50 m. de lado cada uno, denominándose uno

de los lados con números y el otro con letras.

La lectura de vista atrás se hará en un BM conocido fuera de la zona de

cubicación, y las lecturas de vista adelante en los vértices de cada

cuadrado. El volumen se halla multiplicando el área de cada cuadrado por

la altura promedio de los cuatro vértices del cuadrado.

1 2 3 4 5 6 7

BM

Vat

Vad

Vad

Vad

Vad Vad

Vad

Vad

E1

A

B

C

D

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

V. CALCULOS Y RESULTADOS :

5.1. PROCEDIMIENTOS DE CAMPO:

Primer paso: reconocimiento del lugar.

Segundo paso: hicimos la fijación de un punto, considerándolo como

un punto “A” punto de partida.

Tercer paso: se procedió a designar las tareas a realizar a cada

alumno.

Cuarto paso: se instaló el nivel de ingeniero.

Quinto paso: se hizo la nivelación, con sus respectivos puntos de

cambio, vistas atrás y adelante, anotando cada lectura en la libreta de

campo.

El resultado que obtuvimos el siguiente cuadro

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

Tabla N° 01: “NIVELACION LINEAL DE UN PERFIL”

Cota del nivel punto A = cota del punto + V.A

Cota del nivel punto A = 3035 + 0.346 = 3035.346

Cota del punto A1 = cota del nivel punto A – V.Ad punto A1

Cota del punto A1 = 3035.346 – 1.080 = 3034.266

Y así sucesivamente hasta llegar hasta el punto B, tomando en cuenta los

puntos de cambio, Como se ve en la tabla anterior.

Punto V. atrás Altura V. adel Cota Distancia (m)

A 0.346 3035.346 3035.000 0

A1 1.080 3034.266 10

A2 1.586 3033.760 10

A3 1.822 3033.524 10

A4 2.113 3033.233 10

A5 2.435 3032.911 10

A6 2.715 3032.631 10

A7 3.016 3032.330 10

A8 0.915 3032.871 3.390 3031.956 10

A9 1.318 3031.553 10

A10 1.007 3031.864 10

A11 1.966 3030.905 10

A12 2.340 3030.531 10

A13 2.560 3030.311 10

A14 2.940 3029.931 10

A15 2.980 3029.891 10

A16 3.165 3029.706 10

A17 1.125 3030.566 3.430 3029.441 10

A18 0.777 3029.789 10

A19 0.445 3030.121 10

B 0.441 3030.125 10

∑ 𝑡𝑜𝑡𝑎𝑙 200

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

5.2. CALCULOS DE CORRECION DE COTA

Error de cierre de la nivelación (Ec):

Ec = Cota de llegada- Cota de llegada (dato)

Ec = 3030.125- 3030.138 = -0.013

Corrección de cotas (Ci):

Ci = - (Error de cierre) x Distancia acumulada

Distancia total

Para A:

𝐂𝐢 = −(−𝟎. 𝟎𝟏𝟑)𝟎

𝟐𝟎𝟎= 𝟎

Para A1:

𝐂𝐢 = −(−𝟎. 𝟎𝟏𝟑)𝟏𝟎

𝟐𝟎𝟎= 𝟎. 𝟎𝟎𝟎𝟔𝟓

Para todos los demás puntos se realizara de la misma manera que

se procedió para los puntos “A” y “A1”.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

Tabla N° 02: “COTAS CORREGIDAS”

Punto V. atrás Altura V. adel Cota Distancia (m) D. acumulada

corrección cota

corregida

A 0.346 3035.346 3035.000 0 0 0.00000 3035.00000

A1 1.080 3034.266 10 10 0.00065 3034.26665

A2 1.586 3033.760 10 20 0.00130 3033.76130

A3 1.822 3033.524 10 30 0.00195 3033.52595

A4 2.113 3033.233 10 40 0.00260 3033.23560

A5 2.435 3032.911 10 50 0.00325 3032.91425

A6 2.715 3032.631 10 60 0.00390 3032.63490

A7 3.016 3032.330 10 70 0.00455 3032.33455

A8 0.915 3032.871 3.390 3031.956 10 80 0.00520 3031.96120

A9 1.318 3031.553 10 90 0.00585 3031.55885

A10 1.007 3031.864 10 100 0.00650 3031.87050

A11 1.966 3030.905 10 110 0.00715 3030.91215

A12 2.340 3030.531 10 120 0.00780 3030.53880

A13 2.560 3030.311 10 130 0.00845 3030.31945

A14 2.940 3029.931 10 140 0.00910 3029.94010

A15 2.980 3029.891 10 150 0.00975 3029.90075

A16 3.165 3029.706 10 160 0.01040 3029.71640

A17 1.125 3030.566 3.430 3029.441 10 170 0.01105 3029.45205

A18 0.777 3029.789 10 180 0.01170 3029.80070

A19 0.445 3030.121 10 190 0.01235 3030.13335

B 0.441 3030.125 10 200 0.01300 3030.13800

2.386 41.526 200

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

3026.000

3027.000

3028.000

3029.000

3030.000

3031.000

3032.000

3033.000

3034.000

3035.000

3036.000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Co

ta

D.Acomulada

Grafica de nivelacion de cotas

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

CONCLUSIONES Y RECOMENDACIONES:

5.3. CONCLUSIONES:

Esta práctica fue de gran apoyo para nosotros porque aprendimos a

manipular y operar el nivel de ingeniero.

El nivel es un equipo especializado para este tipo de trabajos siempre y

cuando se cuente con personal y equipos especializados.

Es muy importante el manejo y utilización del nivel topográfico, puesto que

nuestra vida laboral como ingenieros está ligada a la topografía.

5.4. SUGERENCIAS:

Se sugiere utilizar de manera eficaz los materiales como: nivel de

ingeniero, jalón, wincha, mira, GPS, etc.

Observar bien los hilos que tiene el nivel (hilo superior, hilo medio, hilo

inferior).

5.5. RECOMENDACIONES:

Las patas de trípode, deben quedar lo suficientemente abiertas, para la

estabilidad de éste, y los objetivos y/o objetos, deben observarse desde una

posición conveniente y fácil.

Para obtener una posición firme en el suelo, se debe hacer presión con el

pie a una pata del trípode.

Cuando el terreno es una pendiente, se debe poner una pata hacia arriba, y

las otras hacia abajo.

Se recomienda la mayor exactitud en los datos tomados en el campo y evitar

encontrarnos dentro de un límite no permisible.

Para observar las miras se deben poner en un punto bien demarcado y

definido, de un lugar estable.

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

VI. ANEXO:

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL

TOPOGRAFIA I

UNIVERSIDAD NACIONAL “SANTIAGO ANTUNEZ DE

MAYOLO” FACULTAD DE INGENIERÍA CIVIL