27
1 Leyes de Kepler Primera ley: La órbita de un planeta alrededor del Sol es una elipse con el sol en uno de sus focos. Segunda ley: La línea que une al planeta con el Sol barre áreas iguales en tiempos iguales. Tercera ley: El cuadrado del período de un planeta es proporcional al cubo de su semieje mayor. P 2 =kR 3 .

1 y 2 leyes de kepler

Embed Size (px)

Citation preview

Page 1: 1 y 2 leyes de kepler

1  Leyes de Kepler 

Primera ley: La órbita de un planeta alrededor del Sol es una elipse con el sol en uno de sus focos.

Segunda ley: La línea que une al planeta con el Sol barre áreas iguales en tiempos iguales.

Tercera ley: El cuadrado del período de un planeta es proporcional al cubo de su semieje mayor.

P2=kR3.

La demostración de las leyes de Kepler se basa en las leyes de Newton que enunciamos a continuación.

2  Leyes de Newton

Page 2: 1 y 2 leyes de kepler

 

Primera ley (ley de la inercia): Todo objeto en estado de movimiento uniforme tiende a permanecer en este estado de movimiento, a menos que una fuerza se le aplique.

Segunda ley: La relación entre la masa m de un objeto, su aceleración a y la fuerza aplicada F es

F=ma

Tercera ley: A toda acción corresponde una reacción de la misma magnitud y en sentido contrario.

Ley de la Gravitación Universal: Todo objeto en el universo atrae a cualquier otro objeto con una fuerza en dirección de la línea de los centros de los dos objetos, que es proporcional al producto de sus masas e inversamente proporcional al cuadrado de su distancia.

| F| = G  m1m2

r2

siendo G la constante de gravitación universal. Si colocamos el origen de coordenadas en uno de los dos objetos, tenemos

F=

Gm1m2

r2

u

donde u es el vector unitario en la dirección de la línea de los centros.

2.1  Demostración de las leyes de Kepler a partir de las de Newton

Teorema 0 Los planetas se mueven en planos.

Demostración:

Consideramos que el movimiento del planeta se atiene a la 2a ley de Newton,

Page 3: 1 y 2 leyes de kepler

F=ma (1)

y que la única fuerza que actúa sobre el planeta es la fuerza de atracción del Sol.

Coloquemos al Sol en el origen de coordenadas.

Denotamos al vector posición del planeta en el momento t como R=R( t) . Su velocidad v se obtiene derivando el vector posición

v( t) = dR

dt

y su aceleración a es la derivada de la velocidad

a( t) = dv

dt

Por la ley de la gravitación universal,

F=

G  mM

R 2

u (2)

donde u es el vector unitario que va del Sol al planeta, es decir,

u= R

Page 4: 1 y 2 leyes de kepler

R

Igualando (1) y (2) se obtiene

a=

GM

R 2

u (3)

por lo que el vector aceleración es un múltiplo del vector posición u y se dirige siempre hacia el Sol.

Consideremos el vector

h=R×mv=m( R×v) (4)

conocido como el momento angular del planeta.

Calculamos su derivada

d

dtm( R×v) = m

dR

dt×v

+

R×dv

dt

=m( ( v×v) +( R×a) ) = 0

ya que a es un múltiplo de u y por consiguiente un múltiplo de R.

Así que

R×v=C=constante, (5)

esto significa que se conserva el momento angular. Por lo que tanto R como [(dR)/dt]=v son perpendiculares al vector constante C y por tanto siempre están en un plano perpendicular a C.

Page 5: 1 y 2 leyes de kepler

Figura 1

2.2  Demostración de la segunda ley de Kepler

 

Como la curva que describe el planeta es plana, podemos pensar que está en el plano XY y podemos parametrizarla con coordenadas polares

R( ) = r( ) u()

donde el vector u es un vector unitario

u( ) = ( cos,sen) .

conocido como el vector unitario en la dirección radial.

Page 6: 1 y 2 leyes de kepler

Figura 2

El ángulo que forma el vector R con el eje X depende del tiempo, es decir, = ( t) .

El vector

w( ) = ( sen,cos)

se llama el vector unitario en la dirección circunferencial.

Los vectores u y w satisfacen las siguientes propiedades:

uw,      du

dt=w

d

dt,      

dw

dt=u

d

dt

Para probar la primera, calculamos el producto escalar de u y w

u·w=( cos,sen)·( sen,cos) = cossen+sencos = 0

Para la segunda, utilizamos la regla de la cadena

du

dt=

du

d

d

dt=(sen,cos)

d

dt=w

d

dt

Elegimos el sistema de coordenadas de manera que el valor inicial t=0 cuando r= R es mínimo, es decir, cuando el planeta está en el perihelio, la posición más cercana al sol y en este momento, el planeta se encuentra en el eje X, es decir, = 0.

Como r( ) alcanza su mínimo en = 0 entonces para t=0,

Page 7: 1 y 2 leyes de kepler

dr

dt( 0) = 0.

La velocidad del planeta es la derivada de la posición:

v( t) = dR

dt=

d

dtru = r

du

dt+

dr

dtu = r

d

dtw+

dr

dtu

La aceleración del planeta es la derivada de la velocidad:

a( t) = dv

dt=

d

dt

rd

dtw+

dr

dtu

=rd

dt

d

dtw

+dr

dt

d

dtw+

dr

dt

du

dt+

d2r

dt2u

= rd

dt

dw

dt+r

d2

dt2w+

dr

dt

d

dtw+

dr

dt

dur

dt+

d2r

dt2u

= r

d

dt

2

 u+r

d2

dt2w+

dr

dt

d

dtw+

dr

dt

d

dtw+

d2r

dt2u

=

r

d

dt

2

 +

d2r

dt2

u+

rd2

dt2+2

dr

dt

d

dt

w

Page 8: 1 y 2 leyes de kepler

En (3) vimos que a( t) es un múltiplo de u, así que su componente circunferencial vale cero.

rd2

dt2+2

dr

dt

d

dt=0 (6)

y por tanto,

a( t) =

r

d

dt

2

 +

d2r

dt2

u (7)

Multiplicando por r ambos lados de (6) obtenemos

r2d2

dt2+2r

dr

dt

d

dt=0.

El lado izquierdo es

d

dt

r2d

dt

así que

r2d

dt=constante. (8)

Page 9: 1 y 2 leyes de kepler

Por otra parte, el área barrida desde 0 hasta generada por R=ru es

A( ) = 1

2

0 r2( )d

Por el teorema fundamental del cálculo,

dA

d=

r2( )

2

como es función de t, de (8) tenemos que

dA

dt=

dA

d

d

dt=

r2()

2

d

dt=k=constante, (9)

por lo que A( t) = kt+c para alguna constante c. Como A( 0) = 0, entonces

A( t) = kt   para una constante k

así que si tenemos dos intervalos de tiempo [ t1,t2] y [ t3,t4] en los que t2-t1=t4-t3 entonces

A( t2t1) = ( t2t1) k=(t4t3) k=A( t4t3)

lo que prueba la segunda ley de Kepler.

Page 10: 1 y 2 leyes de kepler

Figura 3

Hasta este momento solamente hemos utilizado que la fuerza F se dirige hacia el Sol, pero no hemos utilizado la fórmula (2) en toda su extensión.

2.3  Demostración de la primera ley de Kepler

 

Partimos de la ecuación (7)

a( t) =

r

d

dt

2

 +

d2r

dt2

u

y de la ecuación (3)

a( t) =

GM

| R|2

u

Igualando los coeficientes de u, llegamos a la ecuación diferencial

G   M =r

d

2 + d2r (10)

Page 11: 1 y 2 leyes de kepler

r2 dt   dt2

De la ecuación (8) tenemos

d

dt=

H

r2,    H    constante (11)

Para calcular el valor de H procedemos como sigue:

Sustituimos en el momento angular del planeta (4)

h=m( R×v) = m(ru×v)

el valor de v de la fórmula (2.2)

v=rd

dtw+

dr

dtu

y obtenemos

h = m

ru×

rd

dtw+

dr

dtu

=mr2d

dt( u×w)+mr

dr

dt( u×u) = mr2

d

dtuz+0 = mHuz

donde uz es el vector unitario ortogonal al plano donde se encuentran u y w. Así que

h = m| (12)

Page 12: 1 y 2 leyes de kepler

H|

Podemos suponer que H es positivo orientando los ejes de manera que el planeta dé vueltas en sentido positivo así que

H=

h

m(13)

Sea w=[1/r], entonces

dr

dt=

dr

dw

dw

d

d

dt=

1

w2

dw

d

H

r2=

dw

dH

derivando nuevamente respecto a t

d2r

dt2=H

d

dt

dw

d

=Hd

dt

d2w

d2=H2w2

d2w

d2

finalmente, el lado derecho de la ecuación (10) se puede escribir como

r

d

dt

2

 +

d2r

dt2=r

H

r2

2

 H2w2

d2w

d2=w3H2w2

d2w

d2H2

y el lado izquierdo

Page 13: 1 y 2 leyes de kepler

GM

r2=GMw2

por lo que la ecuación (10) se puede replantear como

w+d2w

d2=

GM

H2

esta ecuación tiene como únicas soluciones

w=Ccos( ) +GM

H2

donde C y son constantes. Eligiendo el eje polar de manera que = 0.

r = 1

Ccos+(GM)/(H2)=

H2

H2Ccos+GM=

(H2)/(GM)

(H2Ccos)/(GM)+1=

ep

ecos+1

donde

e=H2C

GM,          p=

1

C(14)

La ecuación

Page 14: 1 y 2 leyes de kepler

r=ep

ecos+1(15)

es una cónica que tiene un foco en el origen, en la que  e es la excentricidad y p es la distancia del foco a la directriz.

Las siguientes figuras representan los tipos de cónicas que podemos encontrar.

Figura 4

En el caso de los planetas, sabemos que la órbita es cerrada, por lo que debe ser una elipse, así que 0 < e < 1 lo que le impone restricciones a la constante C. Los cometas u otros cuerpos atraídos por el sol pueden tener órbitas abiertas en forma de parábola o hipérbola.

2.4  Prueba de la tercera ley de Kepler

Podemos suponer que el movimiento del planeta es en el sentido positivo, de modo que

d

dt> 0

y por tanto

dA > 0

Page 15: 1 y 2 leyes de kepler

dt

Combinando (9),(11) y (12) obtenemos

dA

dt=

h

2m

Integrando respecto al tiempo T requerido para dar una vuelta completa a la órbita obtenemos

Area de la elipse=

h

2mT.

Si a y b son los semiejes mayor y menor de la elipse, respectivamente, entonces

ab=

h

2mT

sabemos que

b=a  

1e2

 

donde e es la excentricidad de la elipse. Sustituyendo b en la ecuación anterior,

Page 16: 1 y 2 leyes de kepler

a2  

1e2

 =

h

2mT (16)

Calculemos ahora h .

En la figura observamos que r=a-c cuando = 0 y r=a+c cuando = .

Figura 5

Haciendo = 0 en (15) y sustituyendo el valor de r obtenemos

ac=ep

1+e.

Análogamente si = tenemos

a+c=ep

1e,

sumando las dos ecuaciones anteriores tenemos que:

a= ep (17)

Page 17: 1 y 2 leyes de kepler

1e2

Por otro lado, de (14) y (13) se obtiene

ep=

h2

GMm2

(18)

de donde, despejando T de (16) y elevando al cuadrado tenemos:

T2=4m22a4( 1e2)

h 2.

Despejamos h 2 de (18) y la sustituimos en la ecuación anterior

T2=42a4( 1e2)

epGM

y por la ecuación (17) tenemos

T2=42a3

GM

por tanto,

Page 18: 1 y 2 leyes de kepler

T2=

42

GM

a3

quedando probada la tercera ley de Kepler.

El factor de proporcionalidad depende de las constantes G y M pero no depende de la excentricidad de la elipse.

En la tabla

Planeta Excentricidad Distancia media(U.A.)Mercurio 0.206 0.387Venus 0.007 0.723Tierra 0.017 1Marte 0.093 1.52Júpiter 0.048 5.2Saturno 0.056 9.54Urano 0.047 19.18Neptuno 0.009 30.06Plutón 0.25 39.44

aparece la excentricidad de las órbitas planetarias, así como la distancia media del planeta al sol medida en unidades astronómicas (U.A.). Una unidad astronómica es, por definición, la distancia media de la tierra al sol. La distancia media de un planeta al sol es el radio mayor de la elipse ( a) .

Si medimos el tiempo que tarda un planeta en dar la vuelta alrededor del sol en años terrestres, la constante de proporcionalidad de la tercera ley de Kepler es 1, es decir, la fórmula de la tercera ley es

p2=a3

donde p es el período y a es el radio mayor de la elipse.

Page 19: 1 y 2 leyes de kepler

Ejemplos

1. Consideremos la órbita de la Tierra. Si el Sol está en un foco, ¿a qué distancia se encuentra el otro foco?

Solución:

Suponemos que la órbita de la Tierra que es una elipse está centrada en el origen. El Sol es uno de los focos.

Puesto que la excentricidad de la órbita terrestre es

e=c

a=0.017

y a=1, entonces tenemos que

c=0.017

Las coordenadas de los focos son

F( 0.017,0)       y       F(0.017,0) .

La distancia entre los focos es 0.034 unidades astronómicas.

Observación:

Los focos se encuentran muy cercanos

El diámetro menor de la elipse es

Page 20: 1 y 2 leyes de kepler

b=  

a2c2

 =

 1( 0.017) 2

 

0.99986

Puesto que el diámetro mayor es a=1, entonces la elipse es casi un círculo.

2. Consideremos la órbita de Plutón. Si el Sol está en un foco, ¿a qué distancia se encuentra el otro foco?

Solución:

Suponemos que la órbita de Plutón que es una elipse está centrada en el origen. El Sol es uno de los focos.

Puesto que la excentricidad de la órbita de Plutón es

e=c

a=0.25

y a=39.44, entonces tenemos que

c=( 0.25) ( 39.44) = 9.86

Las coordenadas de los focos son

F( 9.86,0)       y       F(9.86,0) .

La distancia entre los focos es 19.72 unidades astronómicas.

El diámetro menor de la órbita de Plutón es

b= = 38. 188

Page 21: 1 y 2 leyes de kepler

 

a2c2

  

( 39.44) 2( 9.86)2

 

Puesto que el diámetro mayor es a=39.44, entonces la elipse es casi un círculo.

Figura 6

Bibliografía[]

Arizmendi H., Carrillo A., Lara M., Cálculo, Addison-Wesley Iberoamericana, 1987

[]De Oteyza E., Lam E., Carrillo A., Hernández C., Ramírez A., Geometría Analítica y Trigonometría, Pearson Educación, 2000

[]Marsden J., Tromba A., Cálculo Vectorial, Addison-Wesley Longman, 1998

[]O'Neill B., Elementos de Geometría Diferencial, Limusa, 1972

File translated from TEX by TTH, version 2.80.On 30 Mar 2001, 18:41.