27
Динамические эконометрические модели

Динамические эконометрические модели

  • Upload
    dolf

  • View
    113

  • Download
    1

Embed Size (px)

DESCRIPTION

Динамические эконометрические модели. Стохастические регрессоры. Рассмотрим модель y t = a + b x t + e t (1) Предположение: y t и x t – стационарные временные ряды, т.е. случайные величины y t имеют одно и то же распределение (аналогично и x t ). 3 случая: - PowerPoint PPT Presentation

Citation preview

Page 1: Динамические эконометрические модели

Динамические эконометрические модели

Page 2: Динамические эконометрические модели

Стохастические регрессоры

Рассмотрим модель

yt = xt + t (1)

Предположение: yt и xt – стационарные временные ряды, т.е. случайные величины yt имеют одно и то же

распределение (аналогично и xt ).

3 случая:

1. Регрессоры xt и случайные члены tне коррелируют:

Cov(xs, t) = 0 s, t = 1, …,n.

2. Значения регрессоров xt не коррелированы с t (т.е. в данный момент времени), но коррелируют с ошибками в более ранние моменты времени.

Пример: yt = xt + yt-1 + t

3. Значения регрессоров xt коррелированы с ошибками t .

Page 3: Динамические эконометрические модели

ТеоремаПусть xt имеет конечное мат.ожидание и дисперсию. Тогда:оценки параметра по методу наименьших квадратов

являются:• в случае 1 – несмещёнными и состоятельными;• в случае 2 –состоятельными, но смещёнными;• в случае 3 – смещёнными и несостоятельными.

Замечание 1. Для случая 2 в выборках большого объёма корреляция регрессора со случайным членом стремится к 0 и асимптотически есть несмещённость оценок.

Замечание 2. Аналогичное утверждение верно и для множественной регрессии.

Причины коррелированности:а) На случайный член и на регрессоры воздействуют одни и те же факторы;б) Ошибки при измерении регрессоров

Page 4: Динамические эконометрические модели

Причина а):

Вместо модели

yt = xt + ut + t

xt = ut + t

рассматриваем модель

yt = xt + t

Пример 1.В пункте А производится сырьё двух видов. Сырьё перевозится в пункт В, где на заводе производится полуфабрикат, который продаётся на завод по цене x. На заводе изготавливается конечный продукт, который перевозится в пункт С и реализуется по цене y. Цены на сырьё меняются и образуют временные ряды z1 и z2.

Page 5: Динамические эконометрические модели

Причина б):

Пусть мы имеем искажённые, а не истинные значения x

xt* = xt + ut

Рассматриваем модель

yt = xt + t = (xt* - ut) + t = xt

* + (t –ut)

Cov(xt

*, (t –ut)) = -Cov(ut, ut) 0.

Page 6: Динамические эконометрические модели

Опр. Динамическая эконометрическая модель – в момент времени t учитываются значения переменных как

текущих, так и за предыдущие моменты времени.

Опр. Лаг – константа, характеризующая величину запаздывания в воздействии фактора на результат.

Опр. Лаговая переменная – факторная переменная, сдвинутая на несколько моментов времени.

Типы динамических эконометрических моделей• явные модели

– ARIMA (autoregressive integrated moving average) модели (метод Бокса-Дженкинса)

– ADL (autoregressive distributed lags) модели

• неявные модели • неполной корректировки• адаптивных ожиданий• рациональных ожиданий

Page 7: Динамические эконометрические модели

Явные моделимодель авторегрессии p-го порядка AR(p)

yt = b0 + b1yt-1 + b2yt-2 + … + bpyt-p + t

модель скользящей средней q-го порядка MA(q)

yt = t + t-1 + t-2 + … + qt-q

авторегрессионная модель скользящей средней порядков p и q соответственно ( ARMA(p,q) модель )

yt = b0 + b1yt-1 + b2yt-2 + … + bpyt-p + t + t-1 + t-2 + … + qt-q

модель с распределенным лагом p ( DL(p) )

yt = a + b0xt + b1xt-1 + … + bpxt-p + t

авторегрессионная модель с распределёнными лагами порядков p и q ( ADL(p,q) модель )

yt = a + b0xt + b1xt-1 + … + bpxt-p + с1yt-1 + с2yt-2 + … + сqyt-q + t

Page 8: Динамические эконометрические модели

Модель с распределённым лагом (интерпретация параметров)

b0 - краткосрочный мультипликатор

b = b0 + b1 + … + bl - долгосрочный мультипликатор

ttttt xbxbxbay 22110

Page 9: Динамические эконометрические модели

Преимущества и недостатки моделей ARIMA

• Преимущества– охватывают широкий спектр временных рядов– не используются независимые переменные– проверка на адекватность проста и доступна– прогнозы и интервалы предсказания следуют прямо

из модели

• Недостатки– необходимо достаточно большое количество данных

(для несезонных данных более 40 наблюдений)– при включении новых данных требуется перестройка

всей модели– достаточно большие затраты времени и ресурсов

Page 10: Динамические эконометрические модели

Схема метода Бокса-Дженкинса

• Выбор исходной модели– анализ графика временного ряда– анализ автокорреляционной функции– анализ частной автокорреляционной

функции

• Оценка параметров для экспериментальной проверки

• Проверка адекватности модели• Использование модели для

прогнозирования

Page 11: Динамические эконометрические модели

AR(1)Автокорреляция

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 2 4 6 8 10 12

Частные автокорреляции

00,10,20,30,40,50,60,70,80,9

0 2 4 6 8 10 12

Автокорреляция

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12

Частные автокорреляции

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0 2 4 6 8 10 12

Page 12: Динамические эконометрические модели

AR(2)

Автокорреляция

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 2 4 6 8 10 12

Автокорреляция

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12

Частные автокорреляции

00,10,20,30,40,50,60,70,80,9

0 2 4 6 8 10 12

Частные автокорреляции

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12

Page 13: Динамические эконометрические модели

MA(1)

Автокорреляция

-0,9-0,8

-0,7-0,6-0,5

-0,4-0,3-0,2

-0,10

0 2 4 6 8 10 12

Частные автокорреляции

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0 2 4 6 8 10 12

Автокорреляция

00,10,20,30,40,50,60,70,80,9

0 2 4 6 8 10 12

Частнык автокорреляции

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12

Page 14: Динамические эконометрические модели

MA(2)Частнык автокорреляции

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12

Частные автокорреляции

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0 2 4 6 8 10 12

Автокорреляция

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12

Автокорреляция

-0,9-0,8

-0,7-0,6-0,5

-0,4-0,3-0,2

-0,10

0 2 4 6 8 10 12

Page 15: Динамические эконометрические модели

ARMA(1,1)

Автокорреляция

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12

Частные автокорреляции

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0 2 4 6 8 10 12

Автокорреляция

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0 2 4 6 8 10 12

Частные автокорреляции

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12

Page 16: Динамические эконометрические модели

ARMA(1,1)Автокорреляция

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12

Частные автокорреляции

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 2 4 6 8 10 12

Автокорреляция

00,10,20,30,40,50,60,70,8

0 2 4 6 8 10 12

Частные автокорреляции

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 2 4 6 8 10 12

Page 17: Динамические эконометрические модели

Модели с распределенным лагом• Конечномерная модель

• Бесконечномерная модель

• Проблемы: – мультиколлинеарность;– уменьшение числа степеней свободы с увеличением величины лага;– автокорреляция остатков.

• Структуры лага (зависимость коэффициентов bj от j):

– линейная– геометрическая – V – образная– перевернутая V – образная

tptpttt xbxbxbay ...110

ttttt xbxbxbay ...22110

Page 18: Динамические эконометрические модели

Метод Алмон (конечномерная модель)

Опр. Лаги Алмон – лаги, структура которых описывается полиномами.

kkj jcjcjccb ...2

210

tltk

tk

tk

tk

ltttt

ltttt

lttttt

xlxxxc

xlxxxc

lxxxxc

xxxxcay

)...32(

...)...94(

)...32(

)...(

321

23212

3211

210

Page 19: Динамические эконометрические модели

• Введем новые переменные

……………………………………………………..

ltttt xxxxz ...210

ltttt lxxxxz ...32 3211

ltttt xlxxxz 23212 ...94

ltk

tk

tk

tk xlxxxz ...32 321

tkkt zczczczcay ...221100

Page 20: Динамические эконометрические модели

Алгоритм метода Алмон1. Определяется максимальная величина лага l.2. Определяется степень полинома к, описывающего

структуру лага.

3. Рассчитываются значения переменных z0, z1,..., zk.4. Определяются параметры уравнения линейной

регрессии.5. Находятся параметры исходной модели с

распределенным лагом.Замечания.1. Методы определение величины лага l:

- априорная информация;- измерение тесноты связи между результатом и лаговыми переменными;- критерий Шварца.

Page 21: Динамические эконометрические модели

2. Методы определения степени полинома k

- степень полинома k на единицу больше числа экстремумов в структуре лага

- построение и сравнение моделей для разных значений k и выбор лучшей модели

Достоинства метода Алмон:А) универсальность;

Б) при k=2 или k=3 можно построить модель с лагом любой величины.

В) мультиколлинеарность факторов z0,…,zk сказывается на оценках параметров b0,...,bl в меньшей степени, чем при применении стандартного МНК к исходной модели

Page 22: Динамические эконометрические модели

Пример. y – объем ВВП США (млрд $), x – внутренние инвестиции (млрд $).

• Модель с распределенным лагом l=4 и к=2:

• Модель по стандартному МНК:

4321 18,181,081,019,192,1300ˆ tttttt xxxxxy

)2,66( )21,0( )10,0( )142,0( )097,0(

4321 32,143,029,178,008,2297ˆ tttttt xxxxxy

)7,67( )31,0( )43,0( )44,0( )097,0(

)21,0(

)43,0(

99,02 R

991,02 R

Page 23: Динамические эконометрические модели

Метод Койка для бесконечномерной модели

• Предположение:• лаг имеет геометрическую структуру:

ttttt xbxbxbay ...22110

,0j

j bb 10

ttttt xbxbxbay ...22

0100

132

020101 ... ttttt xbxbxbay

133

022

0101 ... ttttt xbxbxbay

Page 24: Динамические эконометрические модели

Модель Койка (двухфакторная линейная авторегрессия):

где ut = t – t-1.

Коэффициент b0– характеризует краткосрочное воздействие x на y.

Выражение b0/(1- - характеризует долгосрочное воздействие x на y.

Преимущества:

1) простота метода

2) возможность анализировать и сравнивать краткосрочные и долгосрочные динамические свойства модели

1101 ttttt xbaayy

tttt uyxbay 10)1(

Page 25: Динамические эконометрические модели

Проблема: одна из объясняющих переменных ( yt-1 ) коррелирует со случайным членом оценки по МНК смещённые и несостоятельные

Выход: использовать нелинейный МНК для исходного уравнения.

Page 26: Динамические эконометрические модели

Оценивание моделей авторегрессии с распределёнными лагами

Модель: yt = xt + yt-1 + t (2)

подставим yt-1 = xt-1 + yt-2 + t-1 в (2)

yt = xt + xt-1 + yt-2 + t + t –1

yt = xt + xt-1 + xt-2 + xt-3 + … ) +

(t + t –1 + t –2 + … )

Вывод: модель авторегрессии с распределёнными лагами (2) можно свести к модели Койка

Плюс: устранена коррелированность регрессора с ошибками

Минус: а) автокорреляция ошибок имеет сложную структуру

б) неидентифицируемость модели

Далее: применить нелинейный метод наименьших квадратов

Page 27: Динамические эконометрические модели

Нелинейный метод наименьших квадратов

1. В множестве возможных значений выбираем последовательность h

2. Для каждого h вычисляем

xth

= xt + h xt-1 + hxt-2 + h

xt-3 + … )

3. МНК оцениваем уравнение

yt = 1xth

+ ut

4. Выбираем уравнение с наибольшим R2

Получаем ,