01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

Embed Size (px)

Citation preview

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    1/33

    Makalah (Code KKR 09)

    Time on Stream Stability of H-ZSM-5 Catalyst on

    Acetone Conversion to Aromatic ChemicalsDisampaikan dalam Forum Seminar Nasional Teknik KimiaPalembang, 19 Juli 2006

    Oleh

    Setiadi

    [email protected]

    [email protected]

    SMS. 08159088431

    Department Of Chemical EngineeringFaculty Of Engineering - University Of Indonesia

    mailto:[email protected]:[email protected]:[email protected]:[email protected]
  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    2/33

    Hidrokarbon

    C1- C10Aseton

    Aseton : senyawa organic

    polar yang dapat diproduksi

    dari materi hayati renewable

    mll. fermentasi, pirolisis ,

    maupun new process viasupercritical decomposition

    Kemampuan shape-selectivity ZSM-5 terletak pada bangunan struktur kristalnya

    yang diameter/bukaan pori sekitar 0,56 nm dan hampir homogen.

    Katalis ZSM-5 banyak digunakan untuk transformasi reaksi-reaksi hidrokarbon

    dibanding dgn. ZSM-5 digunakan reaksi senyawa organik polar

    C1 : CH4 C2 : C2H4, C2H6

    C3 : C3H6, C3H8 C4 : C4H8, C4H10

    C5 : C5H10, C6 : C6H6, C6 alifatik

    C7 : Toulena, Alifatik, C8 : Xylena,

    alifatik C9 : Mesitylene (1,3,5 TMB)

    C10 : Durene, Naphthalene

    ZSM-5

    Proses Katalitik

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    3/33

    H2O

    Biomass

    Materials

    CO2

    Fuel : LPG (C3-C4 H.Cs), Gasoline(C5-C10 H.Cs),

    Diesel Fuel, Kerosene, Avian Jet Fuel, etc

    Biomass

    derived

    liquid

    Fotosintesis

    Fossil ResourcesCrude Oils

    (C1-C40) Hydrocarbons

    Fuel Combustion

    Waste

    Transformation &

    Utilization

    Geological Time Frame

    Process(Mil li ons years)

    biological

    activities

    Biological time frame

    The Concept Carbon Cycle Route for renewable biomass and non-renewable as the origins of

    hydrocarbons for fuels & chemicals (developed from Kojima, 1998; Metzger & Eissen, 2004 dan Padabed et al.,2002)

    CO2

    Un-convertedCO2

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    4/33

    Fossil Resources

    (Petroleum crude

    Oil)

    Refinery Process &

    Catalytic Cracking

    Unit (FCC)

    Biomass

    Materials

    Biomass-derived liquid from

    fermentation Products

    (sagu, singkong, tetes tebu/molasses, 80 %Yield Limbah Tandan Kosong Sawit, dll.)

    Renewable

    Ethanol

    Acetone,

    Butanol

    C1-C10

    Aromatic

    Compounds

    Fuel (Gasohol),

    (O.N., RVP)

    Petrochemicals

    Non-renewable

    Resources

    A Schematic Diagram of C1-C10 Hydrocarbons Route from the Origin

    Target

    Compounds

    Biomass-Based Technology established ???

    Catalytic Reaction Process? Catalyst ? HZSM-5 & Nat. Zeolite

    Reaction condition?

    Scope of this

    Research Work

    Minyak Nabati

    ( Sawit, Jarak, )

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    5/33

    A reaction mechanism for the acetone conversion for C3-C4 or C5-C10

    Aromatichydrocarbons formation

    O

    H3C- C-CH=C(CH3)2

    Mesityl oxide(MSO)

    O OH

    CH3 C CH2 C (CH3)2

    Diacetone alcohol(DAA)

    O

    (H3C)2C=CHCCH=C(CH3)2

    phorone ordiisopropylideneketone

    O

    2 [ H3C-C-CH3]

    2 molecules of

    Acetones

    Self Aldol

    condensationDehydration

    - H2O

    Further self Aldol

    condensation

    + (CH3)2CO

    - H2O

    In progress of reaction: Continued con densation, forming

    higher molecular weight species which may ac cumulate in

    pore channel and shutting down the reaction

    O

    isophorone

    Cracking inside the

    Pores at higher

    Temp > 350 oC

    C3-C4 LPG

    Acetic acid

    1,3,5-

    Trimethylbenzene

    (Mesitylene)

    Monoaromatic :

    Benzene

    Xylene

    Toluene

    EthylBenzene

    C9

    monoaromatic

    C10

    monoaromatic

    Diaromatics :

    Napthalene

    Monomethylnaphthalene

    Dimethylnapthalene

    Trimetylnaphthalene

    Tetramethylnapthalen

    C5-C10 H.Cs of Gasoline(Shape Selective Formation)

    Dimerization Condensation

    Dehydrocyclization

    Reaction at the external surface of ZSM-5

    CH4

    COx

    H3C CH3C=HC O CH=C

    H3C CH3C=CH-C-CH=C

    H3C CH3C=HC CH=C

    H3C CH3

    Decomposition

    Reaction at the internal or external surface of Zeolite

    Reaction at the internal surface of ZSM-5

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    6/33

    Chang C.D dan A.J. Silvestri, 1977, The conversion of Methanol and Other O-Compounds to

    hydrocarbons over Zeolite Catalysts,Journal of Catalysis, 47, 249-259Chang, Clarence D., W. H. Lang, and W.K. Bell, 1981, "Molecular Shape-Selective Catalysis in

    Zeolite," in Catalysis of Organic Reactions edited by William R. Moser, Marcel Dekker Inc.,

    73-94

    Xu, Teng, Eric J. Munson, and James F. Haw, 1994, "Toward a Systematic Chemistry of Organic

    Reactions in Zeolites: In Situ NMR Studies of Ketones," J. Am. Chem. Soc., 116, 1962-1972

    Hutchings, Graham J., Peter Johnston, Darren F. Lee, Ali Stair Warwick, Craig D. Williams and

    Mark Wilkinson, 1994, "The conversion of methanol and other O-compounds to hydrocarbons

    over zeolite ",Journal of Catalysis 147, 177-185

    Lucas, A., P. Canizares, A. Duran, A. Carrero, 1997, "Dealumination of HZSM-5 zeolites : Effect

    of steaming on acidity and aromatization activity,"Appl. Catal. 154, 221

    Stevens, Mark G., Denise Chen and Henry C. Foley, 1999, "Oxidized Cesium/Nanoporous Carbon

    Materials: Solid-Base Catalysts with Highly Dispersed Active Sites,"J.C.S., Chemical

    Commun., 275-276Dehertog, W.J.H., G.F. Fromen, 1999, "A catalytic route for aromatics production from LPG",

    Applied Catalysis A: General189 63-75

    Zaki, M.I., M. A. Hasan, F.A. Al-Sagheer, and L. Pasupulety, 2000, "Surface Chemistry of Acetone

    on Metal Oxides: IR Observation of Acetone Adsorption and Consequent Surface Reactions on

    Silica-Alumina versus Silica and Alumina,"Langmuir, 16, 430-436

    Xu, M., W. Wang and Michael Hunger; 2003, " Formation of acetone enol on acidic zeolite ZSM-5

    evidenced by H/D exchange", Chem Commun, 722-723

    Tracking Acuan untuk MekanismeReaksi

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    7/33

    Shift Selectivities Due

    to The Temp. Changes

    Contoh :

    2 (dua) Temp. 350 oC

    & 400 oC untuk produk

    Isobutene

    Aromatics

    Aliphatics

    COx

    (1,3,5 Trimetilbenzena)

    Konversi Aseton & Sensitivitas Pergeseran Selektivitas Produk terhadap Suhu Reaksi

    (Sumber : Chang, Lang, & Bell, 1981, Catalysis of Organic Reactions by William R. Moser (Editor),Marcel Dekker Inc., 73-94)

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    8/33

    The Framework of ZSM-5

    structure

    Ten-membered oxygenring structure

    Zig-zags channel, Circularopenings 0.54 x 0.56 nm

    Straight channel, Ellipticalopenings 0.51 x 0.55 nm

    Secondary buildingblock, Chains of 5-membered oxygen rings

    Vertically

    -cross

    sectional

    view

    Basic unit building

    block-AlO4 or SiO4

    tetrahedra structure

    Secondary buildingblock, Chains of 5-membered oxygen

    rings

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    9/33

    Ilustrasi difusi molekul

    senyawa Hidrokarbon

    diseputar mulut pori zeolit

    (Source : Sierka and Sauer, J.

    Phys. Chem. B2001, 105,

    1603-1613)

    Acidic protons migrate between the four oxygen atoms surrounding the tetrahedral

    aluminum center in the following fashion (Ryder, dkk., J. Phys. Chem. B2000, 104, 6998)

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    10/33

    Zeolite Pore size, nm

    Y 0.72

    Mordenite 0.67 x 0.7

    Offreite 0.64

    ZSM-5 0.54 x 0.56

    Ferrierite 0.43 x 0.55

    Erionite 0.52 x 0.36

    Pore Dimension for some Zeolites

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    11/33

    Objectives :

    To observe the Performance of HZSM-5 on

    Time on stream Stability (TOS) on the

    Acetone Reaction to get the high as possible

    acetone conversion, Aromatic Yield andProduct Selectivity

    The influence of Si/Al ratio, Temperature

    during TOS Catalytic Tests

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    12/33

    Batangan Baja SS 316

    Reaktor Pipa, 10 mm

    o.d., SS 316

    19 cm

    Lokasi Pengukuran

    Suhu Unggun Katalis

    35 cm

    16 cm

    Quartz Wool

    Quartz sand

    Termokope1

    Unggun Katalis

    Quartz Wool

    6 mm , i.d

    Reaktor Pipa, 10 mm

    o.d., SS 316

    Skema Diagram Penyusunan Katalisdalam Reaktor Pipa

    N2

    gas

    Quartz sand

    Mixture of ZSM-5 & quartz sand

    Flow meter Pump

    Stainless steel rod

    Electric

    furnace(1000W)

    Pre-

    heater

    Ice - water bath

    Gas product

    Acetone

    N2

    liquid

    drop

    Acetone

    fed by

    pump

    Experimental Method

    Experimental Set-up for Catalytic Test

    Wacetone??

    Wproduk

    cair??

    Wproduk gas??

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    13/33

    Experimental conditions

    Catalyst : H-ZSM-5

    Origin : Japan (Commercial)

    Si/Al ratio : 25 -100

    Particle size (dp) : 3 meter

    Weight of catalyst for bed : 1 gram

    Quartz sand for blending : 5 gram (10-15 mesh)

    Quartz sand for preheating : 7 gram (10-15 mesh)

    Aceton (Cica) : min 99.5% purity

    Carrier Gas : N2

    Experimental Method

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    14/33

    Data GC-FID ( Hewlett Packard ) for Analysis of liquid product

    The condition of GC-TCD for gaseous product

    Column DB-1 (100 % DimethylPolysloxane), non-polar

    60 m x 0.25 mm I.D., 0.25 (film) JW : 122-1062-JWCarrier Nitrogen

    Oven 40 oC for 2 min; 40 - 220 oC with heating rate at 2.5 o C/min

    Injector Split 1:100; 260 oC

    Detector FID 290 oC Nitrogen make up gas sebesar 30 ml/min

    Gas Chromatography GC 1 (organic) GC 2 (In-organic)

    Column Porapaq Q Mol. Sieve

    Carrier gas Helium Argon

    Column Oven 80 oC 60 oC

    Injection port 90 oC 80 oC

    Detector (TCD) 90o

    C 80o

    C

    Experimental Method

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    15/33

    Waktu retensi hasil deteksi chromatogram GC-FID kolom kapier DB-1

    Posisi keberadaan Peak dikonfirmasi dgn.GC-MS Larutan Standard murni/ campuran

    Peak No. Compounds Retention time, minute Calibration factor

    1 Acetone ~6.25 2.2

    2 C5-C6 Aliphatics 6.1-9.3 1

    3 Benzene 7.98 1

    4 Toluene (B.P. - 110.6 oC) 9.87 1

    5 Ethylbenzene (B.P.136.3oC) 11.85 1

    6 m+p-Xylene (B.P.137-138 oC) 12.1 1

    7 o-Xylene (B.P. - 144 oC) 12.6 1

    8 C9-Aromatics group* 13.8-15.6 1

    9 C10-Aromatics** 16.6-17.7 1

    10 Naphthalene - 18.5 111 MMN group- 20.5-21.0 1

    12 DMN 22,3 1

    13 TMN 23.3-24 1

    * n-Propylbenzene, 1-Methyl-3-Ethylbenzene, 1-ethyl--Ethylbenzene, 1,3,5-Trimethylbenzene (Mesytylene), 1-

    Methyl-2-Ethylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene

    ** 1,4-Diethylbenzene, n-butylbenzene, 1,2 diethylbenzene, 1,2,4,5-Tetramethylbenzene, 1,2,3,4-

    Tetramethylbenzene

    Experimental Method

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    16/33

    Experimental Method

    Waktu retensi produk gas menggunakan GC-TCD

    Peak Component Retention time, min Calibration

    FactorPoropak - Q Mol.Sieve

    1 CO2 0.9 0.91659

    2 C2H4 1.4 0.87553

    3 C2H6 1.8 0.80699

    4 C3H6 5.2 0.67475

    5 C4 12.8 0.56479

    6 H2 1.7 0.10501

    7 CH4 4.1 0.34531

    8 CO 4.7 1.00367

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    17/33

    Tipikal GC-FID Chromatogram sampel produk cair

    Experimental Method

    Un-reacted Acetone

    C9-aromatik (Trimethylbenzene) , 13.8-15.6'

    Toluene , 9.87

    m+p-Xylene , 12.1

    Benzene , 7.98'

    Ethanol-AbsorbenC5-C6 aliph., 6.1-9.3

    Ethylbenzene, 11.85O-Xylene,12.6'

    C10-aromatik ,16.6-17.7

    Methylnaphtahlene (MMN) , 20.5-21.0'

    Naphthalene, 8.5

    Dimethylnaphtahlene (DMN) , sekitar 22.3'Trimethylnaphtahlene (TMN), 23.3-24

    Note

    Kandungan Hidro-karbon dalam

    sampel produk cair

    juga telah dikonfir-

    masi dengan GC-

    Mass Spectrosmeter

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    18/33

    Tipikal Chromatogram GC-TCD sampel produk gas

    CH4

    C4

    CO

    C3H8

    H2

    C2H6

    C2H4

    C3H6

    N2Carrier gas

    Chromatogram resulted from GCusing Molecular Sieve ColumnChromatogram resulted from GCusing Poropak Q Column

    Experimental Method

    M d P li iP hit k t F k i Li id F k i G

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    19/33

    Aceton Feed 3cc during 34.5 min. Aceton Feed [mg] 2329.50

    -1 = 1601 mg wt%(FID) Correction wt%(recalc) mg Product in Trap1 1641.41Acetone 0.373 0.8206 0.817 13.08 [mg]

    C5~C

    6 2.64 2.64 2.628 42.08

    C6+-Aliphatics 8.68 8.68 8.641 138.35

    Benzene 3.85 3.85 3.833 61.37

    Toluene 23.14 23.14 23.037 368.83

    Ethylbenzene 3.82 3.82 3.803 60.89m+p-Xylene 24.12 24.12 24.013 384.45

    o-Xylene 7.27 7.27 7.238 115.88

    C9-Aromatics 19.24 19.24 19.155 306.67

    C10

    -Aromatics 1.74 1.74 1.732 27.73

    Naphthalene 1.33 1.33 1.324 21.20

    2-Methylnaphthalene 1.21 1.21 1.205 19.29

    1-Methylnaphthalene 0.17 0.17 0.169 2.71

    Dimethylnaphthalene 1.92 1.92 1.911 30.60

    Trimethylnaphthalene 0.495 0.495 0.493 7.89

    Absorption Trap-2 : 9707 mgram Product in trap 2 [mg] 45.254Component Area FID Factor % w Component, mgEthanol 5156933.0 1.51E-07 7.79E-01 99.53 9661.746

    Acetone 13091.8 1.53E-07 2.00E-03 0.26 24.848

    Benzene 11702.5 6.913E-08 8.09E-04 0.10 10.037

    Toluen 12089.5 6.913E-08 8.36E-04 0.11 10.369

    Gas PhaseProducts Product Gas [mg] 642.84N2 rate 30 ml/min for 34.5 min vol/mmol 23.794872 ml/mmol

    Vol. N2 1035 ml Nitrogen 43.496767 mmol

    Component area Factor amount % mol mmol Mol. Weight mg

    N2 1435406 1 1435406 73.94 43.50 28 1218H

    2 196823 0.105096 20685 1.07 0.63 2 1

    CO 17485 1.00367 17549 0.90 0.53 28 15

    CO2 204423 0.916593 187373 9.65 5.68 44 250

    CH4 37351 0.345307 12898 0.66 0.39 16 6

    C2H

    4 43612 0.875529 38184 1.97 1.16 28 32

    C2H

    6 8111 0.806991 6546 0.34 0.20 30 6

    C3H6 61208 0.6747475 41300 2.13 1.25 42 53

    C3H8 141126 0.652652 92106 4.74 2.79 44 123

    C4+ Aliphatics 158055 0.564794 89269 4.60 2.71 58 157

    Total output [mg] 2329.50

    Acetone Conversion 98.37 % Liq. Oil Product Yield 72.40 wt %

    Gas Product Yield 27.60 wt %

    Metode Penelitia

    % Carbon ?

    % Carbon ?

    % C ?

    Perhitungan konv.aseton, Fraksi Liquid, Fraksi Gas

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    20/33

    Experimental MethodSelectivities &YieldInterval of sample 0.58 h

    Acetone conversion 98.37 %

    Product composition

    weight in g % weight % carbon

    CO 14.89 0.67 0.31

    CO2 249.83 11.21 3.31

    CH4 6.25 0.28 0.23

    C2H4 32.40 1.45 1.59

    C2H6 5.95 0.27 0.29

    C3H6 52.56 2.36 2.58

    C3H8 122.81 5.51 6.03

    C4+ Aliphatics 156.89 7.04 7.70C5~C6 Aliphatics 42.08 1.89 2.07

    C6+-Aliphatics 138.35 6.21 6.79

    Benzene 61.37 2.75 3.01

    Toluene 368.83 16.54 18.11

    Ethylbenzene 60.89 2.73 2.99

    m+p-Xylene 384.45 17.24 18.87

    o-Xylene 115.88 5.20 5.69

    C9-Aromatics 306.67 13.75 15.05

    C10-Aromatics 27.73 1.24 1.36

    Naphthalene 21.20 0.95 1.04

    2-Methylnaphthalene 19.29 0.87 0.95

    1-Methylnaphthalene 2.71 0.12 0.13

    DMN 30.60 1.37 1.50

    TMN 7.89 0.35 0.39

    2229.51 100.00 100.00

    Selectivities by %C

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    21/33

    Results & Discussions

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 5 10 15 20 25 30

    Time on stream [h]

    Conversion[wt%

    ] Si/Al=25

    Si/Al=75

    Si/Al=100

    Acetone conversion over HZSM-5 by various Si/Al mol ratio.

    WHSV = 4 h-1, N2 carrier = 30 ml/min.

    Si/Al=25, TOS =17 h stable at ca.100% Conv.

    Si/Al=25

    Si/Al=75

    Si/Al=100

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    22/33

    0

    10

    20

    30

    4050

    60

    70

    80

    90100

    0 5 10 15 20 25 30

    Time on stream [h]

    Conversion[wt%] 723 K

    673 K

    623 K

    573 K

    The stability of H-ZSM-5 Si/Al =25 on various reaction temperature

    TOS

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    23/33

    0

    20

    40

    60

    80

    100

    0 5 10 15 20 25 30

    Time on stream [h]

    Monoaromaticyield[wt%

    ]723 K

    673 K

    623 K

    573 K

    Yield of monoaromatic duing time on stream on various temperature

    TOS < 13 h, Yield > 60%

    Results & Discussions

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    24/33

    0 25 50

    CO

    CO2

    CH4

    C2H4

    C2H6

    C3H6

    C3H8

    C4 aliphatics

    C5~C6 aliphatics

    C6+ aliphatics

    Benzene

    Toluene

    Ethylbenzene

    m+p-Xylene

    o-Xylene

    C9-Aromatics

    C10-Aromatics

    Naphthalene

    2-Methylnaphthalene

    1-Methylnaphthalene

    Dimethylnaphthalene

    Trimethylnaphthalene

    Selectivity (% carbon)

    TOS = 40 min

    TOS = 70 min

    TOS = 100 min

    Product Selectivity within 100 min

    with H-ZSM-5 Si/Al=25

    Diaromatik

    COx

    Monoiaromatik

    Alifatik

    H-ZSM-5 High Shape

    Selective for Aromatic

    Formations, Total Select.

    > 60 %

    Results & Discussions

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    25/33

    Si/Al=25, T=673 K

    0

    20

    40

    60

    80

    10 0

    0 10 20 30

    Time on stream [h]

    Selectivity[%Ca

    rbon]

    Si/Al=75, T=673K

    0

    20

    40

    60

    80

    10 0

    0 10 20 30 40

    Time on stream [h]

    Selectivity[%

    Car

    bon]

    Si /Al=100 and T= 673K

    0

    20

    40

    60

    80

    100

    0 10 20 30

    Time on stream [h ]

    Selectivity[%Ca

    rbon]

    Fig. 6 The change of monoaromatic and C4 aliphatics selectivity

    during the progressing of time on stream reaction

    NoteThe relative symmetry in the opposite direction between the increasing of C4

    aliphatics and the decreasing of monoaromatic selectivity

    The shift selectivity between the change of monoaromatic and C4 aliphatics

    selectivity during TOS

    Monoiaromatik

    C4 Aliphatics

    Monoiaromatik

    Monoiaromatik

    C4 Aliphatics C4 Aliphatics

    Results & Discussions

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    26/33

    ConclusionsZSM-5 with Si/Al = 25 is the high active and stable than the

    Si/Al ratio, it indicates that the reaction of acetone reaction

    required a high acid density on the surface of catalyst.

    The reaction on 673 K is a favorable temperature for

    acetone conversion toward aromatic products. The lowertemperatures of reaction lead to rapid deactivation, and the

    higher temperatures tend to decline the yield/selectivity of

    aromatics products

    The formation of aromatic compounds come from the C4

    aliphatics and big possibilities that the loss of activity of

    catalyst and shift selectivity are caused by coking which

    covers the surface acid sites of ZSM-5

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    27/33

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    28/33

    Terima kasih kpd.

    Prof. T. Kojima, Staffs & the Excellent Students,Faculty Engineering, Seikei University, Tokyo-Japan

    Prof. T. TsutsuiApplied Chemistry & Chem. Engineering,Kagoshima University, Kyushu-Japan

    Prof. Takao Masuda,Div. of Material Science and Eng., Graduate Schoolof Eng., Hokkaido University, Sapporo, Japan

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    29/33

    The surface area for fresh and used catalyst

    Catalyst

    Total area,

    m2/g

    Micropore area,

    m2/g

    HZSM-5 Fresh 321.8 209.4

    Used 225.4 159.9

    HNZ (protonated Nat.

    Zeolite)

    Fresh 294.4 248.2

    Used 235.3 155.8

    15 wt%B2O3-HNZ Fresh 115.4 58.3

    Used 76.0 44.2

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    30/33

    The powder of Fresh Catalyst, the white color

    The change of color for the powder of used Catalyst to be black or dark brown

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    31/33

    Effect of Boron oxide loading into HNZ catalyst on Product Reaction

    CatalystHNZ

    5 wt%

    B2O

    3-HNZ

    15 wt%B2O3-

    HNZ

    25 wt%B2O

    3-

    HNZ

    Temperature [oC] 400 400 400Conversion [%] 98.9 98.4 95.8 20.3

    Product distribution (% w)CO 0.31 0.63 0.65 0.36

    CO2 2.93 3.66 5.45 4.85

    CH4 0.21 0.27 0.30 0.10

    C2H4 1.0 2.96 4.11 0.17

    C2H6 0.31 0.24 0.10 0.00

    C3H6 1.55 5.82 12.60 1.26C3H8 6.90 4.02 1.84 0.00

    C4 aliphatics 7.35 9.69 20.3061.70

    C3-C4 Hydrocarbons 15.80 19.53 34.74 62.96

    Liquid Hydrocarbon 77.30 72.80 54.70 31.50

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    32/33

    Feed Acetone acetone + H2O

    (50% wt add)

    Temperature, [oC] 400 400

    LHSV [h-1] 2.18 4.32

    Conversion [%] 98.9 99.1

    Product (wt %)

    Benzene 5.64 4.24

    Toluene 21.12 18.26

    Ethylbenzene 1.44 1.79

    m+p-Xylene 15.38 16.01

    o-Xylene 4.67 4.9

    C9-Aromatics 7.22 9.36

    Naphthalene 0.49 0.65

    2-Methylnaphthalene 1.64 1

    1-Methylnaphthalene 0.59 0.32

    Dimethylnaphthalene 1.83 1.17

    Trimethylnaphthalene 0.16 0.24

    The comparation of the results due to the water addition into acetone feed

  • 7/29/2019 01 AcetoneConverison SETIADI SNTKI Plmbang 19Juli 06

    33/33

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    60.0

    70.0

    80.0

    90.0

    100.0

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

    Time on stream [h]

    A

    cetoneconversion,

    %

    -1

    0

    1

    2

    3

    4

    5

    6

    Paraffin/Olefinratio

    Si/Al=25

    Paraf fin/Ol

    efin

    The change of acetone conversion along with Paraffin/olefin ratio during reaction

    over ZSM-5 (Si/Al=25)

    Reaction condition : Temperature = 673 K, P=0.13 MPa, WHSV= 4 g/g.h, N2 carrier

    = 30 ml/min