51
1. 波波波波波 波波波 波波波波波波波波波波波波波波波波波波波波波波波 波波波波波波波波波波 波波波波波波波波波波波波波波波波波波波波波波波1 P A 2 P B S D 1 2 P 波波波波波波波波波波波波波波波波波波波波波波波波波波波波波波波波 波波波波波波波波波波波波波波波波波波波 波波波 ,。 波波波波波波波波 10-1 波波波波波波

1. 波函数及其统计意义

  • Upload
    rance

  • View
    270

  • Download
    2

Embed Size (px)

DESCRIPTION

10-1 量子力学概述. 1. . 2. 1. 波函数及其统计意义. 用某种函数表达式来表述与微观粒子相联系的物质波,该函数表达式称为物质波的 波函数 。. 用电子双缝衍射说明了波函数的物理意义。. 单个电子在何处出现时随机的,但在空间各处出现的概率具有确定的分布。波动性是单个粒子的特性. 粒子数分布是单个粒子 概率分布的积累效应。. 物质波的物理意义可以通过与光波的对比来阐明. 光波振幅平方大. (波动观点). 光强度大. 光子在该处出现 的概率大. (微粒观点). 波函数振幅的平方大. (波动观点). 物质波的强度大. 单个粒子在该处出现的概率大. - PowerPoint PPT Presentation

Citation preview

Page 1: 1. 波函数及其统计意义

1. 波函数及其统计意义1. 波函数及其统计意义用某种函数表达式来表述与微观粒子相联系的物质波,该函数表达式称为物质波的波函数。用电子双缝衍射说明了波函数的物理意义。

1PA

2P B

S D1

2P

粒子数分布是单个粒子概率分布的积累效应。

单个电子在何处出现时随机的,但在空间各处出现的概率具有确定的分布。波动性是单个粒子的特性

10-1 量子力学概述

Page 2: 1. 波函数及其统计意义

物质波的物理意义可以通过与光波的对比来阐明

物质波的强度大

光强度大光波振幅平方大 (波动观

点)光子在该处出现 的概率大 (微粒观

点)

波函数振幅的平方大

单个粒子在该处出现的概率大

(波动观点)

(微粒观点)

Page 3: 1. 波函数及其统计意义

在某一时刻,在空间某处,微观粒子出现的概率正比于该时刻、该地点波函数的平方。在空间一很小区域 (以体积元 dV=dx dy dz 表征 )出现粒子的概率为:

dVdV2

称为概率密度,表示在某一时刻在某点处单位体积内粒子出现的概率。

2

及单值、连续、有限等标准化条件

1dv2 归一化条件

波函数还须满足:

Page 4: 1. 波函数及其统计意义

二、 不确定关系波动性使微观粒子没有确定的轨道,即坐标和动量不能同时取确定值,存在一个不确定关系。

以电子的单缝衍射实验来说明不确定关系:

电子沿 z 方向通过狭缝后,假设全部散布在中央亮纹的范围内。

P

1

x

a

电子

Px

z

衍射角 1 、缝宽 a 和入射波波长 间满足 a sin1 =

Page 5: 1. 波函数及其统计意义

狭缝处的电子 x 坐标不确定范围: x ~ a x 方向动量的不确定范围 : 可由电子能到达 屏上的位置来估算 px ~ p sin 1

x

h

x

h

xp

apppx

1sin

x px ~ h

对坐标 x 测量得越精确( x 越小),动量不确定性 px 就越大 ( 衍射越厉害 ) 。

严格的理论给出坐标与动量的不确定关系为 x px≥ /2 y py≥ /2 z pz≥ /2

( 作习题用 )

Page 6: 1. 波函数及其统计意义

★ 时间与能量的不确定关系

如果对电子测量能量的时间为 t ,则测得的电子能量有不确定范围 E 。

tE≥ /2

能级宽度和能级寿命的不确定关系:设原子处于某能级状态的寿命为 (显然,测量其能量只能在此时间范围内进行,不能超过 )

E ≥ /2

则测得该能级的能量必有不确定度 E , E 即该能级的自然宽度。

满足关系

所以,只有基态能级的自然宽度为零。

(推导见书)

Page 7: 1. 波函数及其统计意义

微观粒子有二象性: 既有粒子性,又有波动性;微观粒子的状态用波函数 描述;),( tr

微观粒子在不同的条件下,应该有不同的状态,

例如,电子在氢原子中时 和 在无外电场时的状态应该是不同的 ,

怎么找到在不同的条件下描述微观粒子的 不同状态的具体的波函数?

要解薛定谔方程!

波函数也应该是不同的。

Page 8: 1. 波函数及其统计意义

自由粒子的波函数 设自由粒子沿 x 轴正向运动

它的动能 E 和动量 P 为恒量。对应的德布罗意波具有频率和波长也为恒量:

h

E

p

h

pk 或者用角频率和波矢量表示:

§16.6 波函数 一维定态薛定谔方程一 . 波函数及其统计解释

描述微观粒子有波粒二象性状态的波函数一般是空间和时间的函数,即 trΨΨ ,

且不受外力的作用因此 :

Page 9: 1. 波函数及其统计意义

奥地利物理学家 薛定谔( Schrodinger 1887-1961 )

量子力学找微观粒子在不同条件下的波函数,就是:求不同条件下薛定谔方程的解。

1933 年薛定谔获 诺贝尔物理奖。

提出量子力学中最基本的方程。

三、薛定谔方程:

Page 10: 1. 波函数及其统计意义

二、薛定谔方程:

),()],(2

[),( 22

trtrVm

trt

i

式中 m…… 粒子的质量 V…… 粒子在外力场中的势能函数(所处条件) 2…… 拉普拉斯算符

2

2

2

2

2

22

zyx

Page 11: 1. 波函数及其统计意义

( 3 )它并非推导所得,最初是假设,后来通过实验 检验了它的正确性,地位相当“牛顿定律”。

( 1 )它是一个关于 r,t 的线性偏微分方程; 其解波函数 是一个复函数。 trΨ ,

说明:

( 2 )它的解满足态的叠加原理若 和 是薛定谔方程的解,),(2 trΨ

),(1 trΨ

则 也是薛定谔方程的解。),(),( 2211 trΨctrΨc

主要原因在于薛定谔方程是线性偏微分方程。

( 4)它是非相对论形式的方程。

Page 12: 1. 波函数及其统计意义

三、 定态薛定谔方程比较简单的问题是微观粒子在稳定力场中运动。其势能函数 v 与时间 t 无关,这种稳定的势场问题,称为定态问题。

自由运动粒子………… V= 0

氢原子中的电子…… r

erV

2

04

1

这时波函数 可以用分离变量法分离为一个空间坐标的函数和一个时间函数的乘积。

例如:

Page 13: 1. 波函数及其统计意义

以一维运动的情况为例,波函数可写成 )t(f)x()t,x(

一个是变量为 x 的方程

其解 (x) 与粒子所处的条件(外力场 V )有关。

0)(2

2

2

vE

h

m

dx

d

一个是变量为 t 的方程 Edtf

dfi

其解为 Eti

ef

可以把它解出来为: )(x

是粒子的波函数 )(),( xtx Eti

e 则

Page 14: 1. 波函数及其统计意义

四、一维无限深势阱中的粒子

a

0U U=0 ( 0<x<a)U = U0 (其他)

势阱

无限深势能

量子力学预言:阱里的粒子的能量只可能是一系列分立的本征值 , 对应的波函数只能是能量本征态波函数。

( 1 ) U 与 t 无关,写定态定谔方程

02

22

2

mE

dx

d)0( ax

( 2 )解方程 令 22

2k

mE

022

2

k

dx

d )cos()( kxAx

1= 0 3= 0

U

0x

to3

Page 15: 1. 波函数及其统计意义

( 3 )确定常数 A 、

势阱无限深 ~阱外无粒子

= 0 ( x 0 x a )

由波函数连续性,边界条件 ( 0 ) = 0 ( a ) = 0

)cos()( kxAx

Acos=0 = 2

kxAkxAx sin)2

cos()(

A sinka = 0a

nk

n =

1.2.3……

2

222

2ma

nEn

2

2

2k

mE

ka = n

to2

Page 16: 1. 波函数及其统计意义

2

222

2ma

nEn

kxAx sin)(

xa

nAxn

sin)( 1)(2

0 dxx

a

aA

2

( 0<x <a )

基态能量

2

22

1 2maE

tE

i

nn

n

e

ti nexa

n

a 2)sin(

2

驻波

讨论

a

2

考 虑 时间因子

12

2

aA

Page 17: 1. 波函数及其统计意义

a0 Xn = 1 x

aa

sin2

1 a0 X

2

22

1 2maE

2

nnw

1w

2w

12 4EE xaa

2sin

22 n = 2

n = 3 xaa

3sin

23

3w13 9EE

n

Page 18: 1. 波函数及其统计意义

,2 2

222

manE

还可以得到势阱中粒子的动量和波长

a

hn

anmEP nn

2

2

n

a

P

h

nn

2

说明势阱中粒子的每一个能量本征态正好对应于德布罗意波的一个特定波长的驻波。

n =1,2,3,4,5, 6,…

Page 19: 1. 波函数及其统计意义

1. 能量只能取分立值 是解薛定谔方程自然而然得到的结论。

3. 最低能量不为零(称零点能) ———符合不确定关系。 0

ma2E 2

22

1

2. 当 m 很大(宏观粒子)时,能量连续, 量子 经典。

4. 势阱内各处粒子出现的概率呈周期性分布 与经典粒子不同。

讨论

按经典理论……粒子的“能量连续”;但量子力学……束缚态能量只能取分立值(能级)

Page 20: 1. 波函数及其统计意义

U0

势垒

1 2 3

势垒穿透经典理论

1.E >U0 的粒子, 越过势垒。2.E <U0 的粒子, 不能越过势垒。

量子理论

1.E > U0 的粒子,也存在被弹回的概率—— 反射波。

2.E < U0 的粒子,也可能越过势垒到达 3区—— 隧道效应。

a

穿透概率)(2

20 Eum

a

ew

Page 21: 1. 波函数及其统计意义

狮子的能量大于 U才能出来!

不好,狮子出来啦!

经典理论

量子理论

救命

U

U

Page 22: 1. 波函数及其统计意义

(1) 定态假设原子系统只能处在一系列不连续的能量状态,在这些状态中,电子虽然作加速运动,但并不辐射电磁波,这些状态称为原子的稳定状态(简称定态),相应的能量分别为 。 ,,, 321 EEE

(2) 频率条件当原子从一个能量为 的定态跃迁到另一能量为 的定态时,就要发射或吸收一个频率为 的光子。

nE

kEkn h

EE knkn

玻 尔

10-2 氢原子一、玻尔的氢原子理论

(3) 量子化条件在电子绕核作圆周运动中,其稳定状态,必须满足电子的角动量 等于 的整数倍的条件。mvrL

2h

为量子数n,3,2,1,2

nnhh

nL

Page 23: 1. 波函数及其统计意义

rev

0

2

4氢原子中电子的势能函数

0)4

(2

0

2

2

2 Ψr

eE

定态薛定谔方程

222 zyxr

为使求解的问题变得简便 ,通常采用球坐标 。),,( r

xy

z

θ

φ

) r

电子

原核子

二、氢原子的量子理论

Page 24: 1. 波函数及其统计意义

1. 能量量子化

同玻尔得到的氢原子的能量公式一致,但却没有认为的假设。

在求解 得到氢原子能量必须满足量子化条件为)(rR

2

2220

4

2220

2

4

16.13

1

8

1

32

n

nh

men

meEn

,3,2,1n

称为主量子数n

Page 25: 1. 波函数及其统计意义

n =1 基态能量 eV6.131E

eV6.131 EE

n =2,3,… 对应的能量称为激发态能量

eV40.32E eV51.1

3E

当 n 很大时,能级间隔消失而变为连续。

对应于电子被电离,氢原子的电子电离能为:

n

当 ,0En

11E

2

3

2E

3E

45

4E

E

Page 26: 1. 波函数及其统计意义

2 、角动量量子化具有确定能量的电子角动量可有若干,角动量

大小 )1( llL

s p d角量子数 l = 0 、 1 、 2……n-1

l 决定角动量大小。

En——n n 个

例:第二激发态的电子 n=3 对应角量子数 l =

0

1

2

— 3s ——L = 0

—3p—— L= 2—3d——L= 6

Page 27: 1. 波函数及其统计意义

3 、角动量取向量子化

Z

具有确定角动量的电子,角动量方向可有若干, L 在任意一轴上(如:沿磁场方向)投影 LZ

mLZ 磁量子数 m = 0 、 ±1 、 ±2…… ±l 决定角动量方向。对应一 l可能有 2 l + 1 个不同取向。

m=0——LZ = 0例: 2lm=1—LZ =

m=2—LZ = 2

m=-1——LZ= m=2—LZ= 2

)12(2 L 66

2,,0 ZL210 、、m

Page 28: 1. 波函数及其统计意义

例 设氢原子处于 2p 态,求氢原子的能量、角动量大小 及角动量的空间取向。

解 : 2p 态表示 n=2, l=1 。

得 eV40.3eV2

6.1322

E

角动量的大小为 2)1( llL

当 l=1 时, ml 的可能值是 -1, 0, +1 ,角动量方向与外磁场的夹角可能值为:

43

2

4

)1(arccos

ll

ml

eV6.132n

En根据

Page 29: 1. 波函数及其统计意义

一 . 氢原子光谱的的实验规律一 . 氢原子光谱的的实验规律

原子发光是重要的原子现象之一, 光谱学的数据对物质结构的研究具有重要意义。

氢原子谱线的波长可以用下列经验公式表示:

)11

(~22 nk

R ,3,2,1k

,3,2,1 kkkn

1-m710096776.1 R 里德伯常量

1~ 波数

§10-3 氢原子光谱

c

c 频率

Page 30: 1. 波函数及其统计意义

3,2,1 nk 赖曼系,紫外区

,4,3,2 nk 巴尔末系,可见光区

,5,4,3 nk 帕邢系,红外区

布拉开系,红外区,6,5,4 nk

普丰德系,红外区,7,6,5 nk

哈弗莱系,红外区,8,7,6 nk

其他元素的光谱也有类似的规律性。

原子光谱线系的规律性深刻地反映了原子内部的规律性

氢原子光谱氢原子光谱

Page 31: 1. 波函数及其统计意义

,3,2,1),( 2

202 nmeh

nrn

玻尔 半径

m101 10529.0 r

,3,2,112 nrnrn

氢原子处于的电子轨道半径

二 . 氢原子轨道半径和能量的计算二 . 氢原子轨道半径和能量的计算 根据电子绕核作圆周运动的模型及角动量量子化条件可以计算出氢原子处于各定态时的电子轨道半径。

Page 32: 1. 波函数及其统计意义

eV6.13,1 1 En 基态能级;

1n 的各稳定态称为受激态;

nr 0nEn 时 能级趋于连续。

电子处在半径为 的轨道上运动时,可以计算出氢原子系统的能量 为

nrnE

,3,2,1),8

(1

220

4

2 nh

men

En 能量是量子化的。

4,3,221 n

n

EEn

Page 33: 1. 波函数及其统计意义

氢原子的能级图

赖曼系

巴耳末系帕邢系

1n

2n3n4n

E

6.13

5

0

Page 34: 1. 波函数及其统计意义

根据氢原子的能级及玻尔假设,可以得到氢原子光谱的波数公式

)11

(8

~2232

0

4

nkch

menk

与氢原子光谱经验公式是一致的。

1-m7

320

4

100973731.18

ch

meR

R 理论值与实验值符合得很好。

玻尔的创造性工作对量子力学的建立有着深远的影响。

Page 35: 1. 波函数及其统计意义

所以

例题 在气体放电管中 , 用能量为 12.5eV 的电子通 过碰撞使氢原子激发 ,问受激发的原子向低能级 跃迁时 , 能发射那些波长的光谱线 ?

5.3n

解:设氢原子全部吸收电子的能量后最高能激发到第 n 能级

eVn2

6.13

26.13

1 6.13nn EE

36.125.126.136.132 neVEEn 5.121

因为 n 只能取整数 ,所以氢原子最高能激发到 n=3 的能级 ,当然也能激发到 n=2 的能级 . 于是能产生 3 条谱线。

此能级的能量为:

Page 36: 1. 波函数及其统计意义

13 nn从

nmmR 3.656710096776.1536

536

2

nmmR 6.102710096776.189

89

1

nmmR 6.1214

3710096776.13

43

RR9

8)

3

1

1

1(~

221

23 nn从

12 nn从

RR36

5)

3

1

2

1(~

222

RR4

3)

2

1

1

1(~

22

Page 37: 1. 波函数及其统计意义

例题:氢原子光谱的巴耳末系中波长最大的谱线 1 ,其次为 2 ,求比值 1/ 2 .

解:

n =2

n =3

n =4

1

2 )4

1

2

1(

122

2

R

)3

1

2

1(

122

1

R

9

1

4

116

1

4

1

2

1

20

27

Page 38: 1. 波函数及其统计意义

例题:处于第三激发态的氢原子,可能发出的光谱线有多少条?其中可见光谱线几条?

解:第三激发态 n = 4

六条谱线

喇曼系 3 条

——紫外线巴耳末系 2条

——可见光帕邢系 1 条

——红外线

n=4

n=3

n=2

n=1

Page 39: 1. 波函数及其统计意义
Page 40: 1. 波函数及其统计意义

一、斯特恩-盖拉赫实验( 1921 )

S

NAg

电子在核周围运动 ~ 电流圈—有磁矩

Lm

e

e

2

P

Z

0B 0

z

B用 s 态( l=0 )银原子无论有无磁场都只有一条!实验结果:有磁场时,底板上是呈对称分布的两条纹。 ?

t

BF z

zz

z 有 2l+1种不同值。

Page 41: 1. 波函数及其统计意义

二、电子自旋理论( 1924年)电子除了绕核运动外,还绕自身轴旋转自转磁矩 s ,角动量 Ls 、 Lsz 根据量子理论

1 ssLs

ssz mL ms = -s …… , s

s = ?

对称,说明银原子可分为两类,受力大小相等方向相反。

s

且 -s+1=s2

1

2

1

z 也有两个——大小相等方向相反。

2

1

2

3

Page 42: 1. 波函数及其统计意义

三、 原子核外电子的排布

原子是由多个电子与原子核组成系统,系统的状态用电子状态分布来描写 。用 n 、 l 标记一个电子再指明该态中的电子数——原子组态,若有 x个电子处于 n l 态,记 n l x

例:氦的基态, 2 个电子都处于 n = 1 l = 0 态 记: 1s2

第一激发态n = 1 l = 0

n = 2 l = 0记: 1s 1 2s 1

Page 43: 1. 波函数及其统计意义

分配原则

1 、泡利不相容原理:一个多电子原子系统中,不可能有两个电子具有相同的状态——4 对量子数 n 、 l 、 m 、 m s 至少有一对不同。

2 、能量最小原理:基态原子中电子先填满能量小的壳层。

例题:氯原子有17 个电子,写出基态原子组态。

n l 2 ( 2l+1)

1 0 2 1s2

2 0 2 2s2

1 6 2p6

3 0 2 3s2

1 5 3p5

1s22s22p63s23p5

Page 44: 1. 波函数及其统计意义

原子中电子的状态由四个量子数确定

(1) 主量子数 n=1,2,3,…大体上决定了原子电子中的能量

(2) 角量子数 l =0, 1, 2, …, (n-1)决定电子绕核运动的角动量 )1( llL

决定电子绕核运动角动量的空间取向(3) 磁量子数 lml ,2,1,0

(4) 自旋磁量子数 21sm

决定电子自旋角动量的空间取向

10-5 元素周期表一 . 原子的电子壳层结构

Page 45: 1. 波函数及其统计意义

一般地,主量子数 n 越大的主壳层其能级越高;在同一主壳层内,副量子数 l 越大的支壳层其能级越高。但也有例外,实际上能级的高低次序可表示为

1s

7s5d

5p5s 6s

6p 6d …

4s

3s

3p

4f

3d 4p

4d

2p2s

Page 46: 1. 波函数及其统计意义

1泡利不相容原理

泡利在 1925年提出:在原子中,不可能有两个或两个以上的电子具有完全相同的量子态。也就是说,原子中任何两个电子的量子数 不可能完全相同。这个结论叫泡利不相容原理。

),,,(sl

mmln

二、电子在原子中的分布遵从下列两个原理:

Page 47: 1. 波函数及其统计意义

据泡利不相容原理,对于某一支壳层,对应的量子数为 n 和 l, 即处于该支壳层的电子具有相同的能量和角动量数值 , 但其磁量子数可取 共 2l+1 种可能值,对每一个 ml 值又有两种 ms 值。因此,在同一支壳层上可容纳的电子数为 .

lml

...,,2,1,0

对于某一主壳层 n ,其副量子数可取 0, 1, 2, …, n-1 种可能值,而对每一 l 值,可容纳电子数为 2(2l+1) 种,故在主壳层 n 上可容纳的电子数为

21

0

2)12(2 nlNn

nn

)12(2 lN l

Page 48: 1. 波函数及其统计意义

各壳层可容纳的电子数

0 1 2 3 4 5 6s p d f g h i

1 2 3 4 5 6 7

K L M N O P Q

22 6

2 6 10

2 6 10 142 6 10 14 18

2 6 10 14 18 22

2 6 10 14 18 22 26

Nn

2 8 18 32 50 72 98

ln

Nl

Page 49: 1. 波函数及其统计意义

2 。能量最小原理 当原子处于正常状态时,原子中的电子尽可能地占据未被填充的最低能级,这一结论叫做能量最小原理。

例 18-17 试确定处于基态的氦原子中电子的量子数。

21

,0,0,1

21

,0,0,1和

解:氦原子有两个电子。按题意,这两个电子处于1s 态,即 n=1。因而 ml=0 。据泡利不相容原理,这两个电子的量子数不能完全相同,所以它们的自旋磁量子数分别为 1/2 和 -1/2 。因此,处于基态的氦原子中的两个电子的四个量子数分别为:

,0l

Page 50: 1. 波函数及其统计意义

例 18-18 分别计算量子数 n=2 、 l=1 和 n=2 的电子的

可能状态数。

解: 对 n=2 、 l=1 的电子,可取 ml=-1,0,1 三种状态,对每一种 ml ,又可取 ms=1/2,-1/2 。故总的状态数为: 623

对于 n=2 的电子, l 可取 0 和 1 。

l=0 时, ml=0 , ms=1/2, -1/2

l=0 时 有 2 种状态。因此,共有状态数 2+6=8 。

Page 51: 1. 波函数及其统计意义

例 18-18 分别计算量子数 n=2 、 l=1 和 n=2 的电子的

可能状态数。

解: 对 n=2 、 l=1 的电子,可取 ml=-1,0,1 三种状态,对每一种 ml ,又可取 ms=1/2,-1/2 。故总的状态数为: 623

对于 n=2 的电子, l 可取 0 和 1 。

l=0 时, ml=0 , ms=1/2, -1/2

l=0 时 有 2 种状态。因此,共有状态数 2+6=8 。