19710066227

Embed Size (px)

Citation preview

  • 8/20/2019 19710066227

    1/91

    .

    INVESTIGATION O F

    THE

    STATIC STABILITY CHARACTERETICS

    OF

    FIVE HWERSONC MISSILE CONFIGURATIONS AT

    MACH NUMBERS FROM 2.29 TO4.85

    By

    Kenneth

    L.

    Turner

    and

    W . E. Appich, Jr,

    Langley Aeronautical Laboratory

    Langley Field, Va.

    -

    --

    2

    (NASA

    Cii OR

    TA4X OR AD NUMBER

    (CATEGORY)

    HI

  • 8/20/2019 19710066227

    2/91

    NACA RM

    L58Do4

    NATIONAL ADVISORY

    COMMITTEE

    FOR AERONAUTICS

    RESEARCH

    MEMORANDUM

    INVESTIGATION OF THE STATIC STABILITY CHARACTEBISTICS

    OF FIVE KYPEBSONIC MISSIW CONFIGURATIONS AT

    MACH

    NIIMBmS

    FROM 2.29

    TO 4.65

    By Kenneth

    L.

    Turner and

    W.

    H.

    Appich,

    Jr.

    SUMMARY

    An i nves t i ga t i on

    wind t unne l t o determ

    has been conducted

    ne th e s t a t i c s t a b

    i n th e Langley

    l i t y c ha ra ct er

    Unitary Plan

    s t i e s of f i v e

    hypersonic m is si le con fig ura tion s. The models te s te d were a basic body

    with length-diameter ra t io of

    10

    and an ogival nose with

    a

    f ineness

    r a t i o of

    5 ,

    the body with

    a

    10 f l a red a f t e rbody ( s k i r t ) , and the body

    with two se ts of low -aspect-ratio cruciform fi n s.

    An

    ad di t io na l model,

    known as the hypersonic t e s t ve hic le,

    w a s

    included t o s imulate

    a

    Langley Pi lot less Aircraf t Research Divis ion f ree-f l ight t e s t vehicle .

    Te st s were performed a t Mach numbers of 2.29, 2.75, 3.22, 3.71,

    and 4.65 and a t Reynolds numbers, based on th e body leng th , from

    approximately 2.5 X 10 t o 15 x 10 .

    6

    The results show that there

    i s

    l i t t l e ef fe c t of Mach number, w ithin

    th e t e s t Mach number range, on th e sl op e of t he norm al-force curve a t

    low angles of a t t ack fo r the conf igura t ions t es t ed .

    A

    s k i r t of t he t ype

    t e s t ed i s e f f ec t i ve i n p roducing

    l i f t

    and pitc hin g moment i n the t e s t

    an gle -of -att ac k range. The use of

    a

    s k i r t , however, lead s t o a drag

    penal ty wi th a corresponding lo ss i n l i f t - d r ag r a t i o . W ith t he cen t e r

    of gravi ty

    a t 50

    percent of th e body length, the s ki r t ed and f inne d

    models a re d i rec t iona l ly s t ab le a t the low angles of at tack.

    A t

    t he

    hi gh er t e s t Mach numbers and a t the higher angles of a t tack, the di rec-

    t i on a l s t a b i l i ty f or the f inned models becomes grea te r than th a t exper i -

    enced a t angles of a t tac k near

    0 .

    at ta ck and low Mach numbers, th e fin ne d models tend toward i n s t a b i l i t y .

    However, a t the high angles of

  • 8/20/2019 19710066227

    3/91

    2

    INTRODUCTION

    NACA

    RM ~ 5 8 ~ 0 4

    The design of hypersonic missiles i s , t o a larg e degree, d icta ted

    by consi der atio ns of aerodynamic hea ting . Configuration s which have

    sur faces tha t p resen t

    small

    angles t o th e ai rs t ream (e .g . , h ighly swept

    l i f t i n g sur fac es) have been shown t o have comparatively low heating r at e s ,

    and ar e th ere fore being considered fo r use as hypersonic ai r - to-ai r and

    ground- to-ai r mi ss i le s . In order t o obtain more informat ion on such

    co nfig ura tion s, th e Natio nal Advisory Committee f o r Aeronautics has

    re ce nt ly undertaken an inv est iga tio n t o determine th e aerodynamic char-

    a c t e r i s t i c s o f

    a

    family of mis s i le conf igurat ions . This inv es t i gat ion

    i s t o be performed a t supersonic and hypersonic speeds, and

    i s

    t o cover

    a la rg e Reynolds number range.

    The models t o be in ve sti ga te d include

    a basic body with length-

    diameter r a t i o of 10 and an ogival nose with a f i neness r a t i o o f

    5,

    t he

    body with

    a 10

    f l ar ed af terbody, and the body with two dif fe re nt se ts

    of low-aspect-ratio cruciform f in s .

    An

    a dd it io n a l model, known as t h e

    hypersonic t e s t vehicle ,

    i s

    included t o s imulate

    a

    Langley Pi lot less

    Ai rcra f t Research Div is ion f r ee - f l ig h t t e s t veh ic le .

    p rev iously t es ted i n the Langley 4- by 4-foot supersonic pressure tun-

    n e l

    a t

    a Mach number of 2.01 and the r e s u l t s a re present ed i n ref ere nc e 1.

    These models were

    The present paper con t a i n s t he r e s u l t s

    of

    t e s t s made i n the Langley

    Unitary Plan wind tun nel t o determine drag and s t a t i c long i tudin al and

    l a t e r a l s t a b i l i t y c h a r a c t e r i s t i c s ob ta in ed

    a t

    Mach numbers of 2.29, 2.75,

    3.22,

    3.71,

    and 4.65 and

    a t

    Reynolds numbers, based on the body length,

    from approximately 2.5

    X

    lo6

    t o

    15

    X

    l o6.

    Also

    inc luded i n th i s paper

    ar e comparisons of the da ta of t h i s report with data of reference 1.

    SYMBOLS

    The co ef fi ci en ts of f or ce s and moments ar e re fe rr ed

    t o

    the body

    axes system.

    A l l

    aerodynamic moments a r e tak en abo ut t h e ce nt er of

    gr av ity which

    i s

    located

    a t

    th e 50-percent length of the

    missi le

    being

    t e s t e d .

    Symbols used i n th i s paper a re as follows:

    cA

    Axial f o r ce

    axia l - force coef f i c ien t ,

    qs

    Base ax ia l fo rce

    base ax ia l - force coef f i c ien t ,

    A, B CIS

    C

  • 8/20/2019 19710066227

    4/91

    2

    INTRODUCTION

    NACA

    RM ~ 5 8 ~ 0 4

    The design of hypersonic missiles i s , t o a larg e degree, d icta ted

    by consi der atio ns of aerodynamic hea ting . Configuration s which have

    sur faces tha t p resen t

    small

    angles t o th e ai rs t ream (e .g . , h ighly swept

    l i f t i n g sur fac es) have been shown t o have comparatively low heating r at e s ,

    and ar e th ere fore being considered fo r use as hypersonic ai r - to-ai r and

    ground- to-ai r mi ss i le s . In order t o obtain more informat ion on such

    co nfig ura tion s, th e Natio nal Advisory Committee f o r Aeronautics has

    re ce nt ly undertaken an inv est iga tio n t o determine th e aerodynamic char-

    a c t e r i s t i c s o f

    a

    family of mis s i le conf igurat ions . This inv es t i gat ion

    i s t o be performed a t supersonic and hypersonic speeds, and

    i s

    t o cover

    a la rg e Reynolds number range.

    The models t o be in ve sti ga te d include

    a basic body with length-

    diameter r a t i o of 10 and an ogival nose with a f i neness r a t i o o f

    5,

    t he

    body with

    a 10

    f l ar ed af terbody, and the body with two dif fe re nt se ts

    of low-aspect-ratio cruciform f in s . An a dd it io n a l model, known as t h e

    hypersonic t e s t vehicle ,

    i s

    included t o s imulate

    a

    Langley Pi lot less

    Ai rcra f t Research Div is ion f r ee - f l ig h t t e s t veh ic le .

    p rev iously t es ted i n the Langley 4- by 4-foot supersonic pressure tun-

    n e l

    a t

    a Mach number of 2.01 and the r e s u l t s a re present ed i n ref ere nc e 1.

    These models were

    The present paper con t a i n s t he r e s u l t s

    of

    t e s t s made i n the Langley

    Unitary Plan wind tun nel t o determine drag and s t a t i c long i tudin al and

    l a t e r a l s t a b i l i t y c h a r a c t e r i s t i c s ob ta in ed

    a t

    Mach numbers of 2.29, 2.75,

    3.22,

    3.71,

    and 4.65 and

    a t

    Reynolds numbers, based on the body length,

    from approximately 2.5

    X

    lo6

    t o

    15

    X

    l o6.

    Also

    inc luded i n th i s paper

    ar e comparisons of the da ta of t h i s report with data of reference 1.

    SYMBOLS

    The co ef fi ci en ts of f or ce s and moments ar e re fe rr ed

    t o

    the body

    axes system.

    A l l

    aerodynamic moments a r e tak en abo ut t h e ce nt er of

    gr av ity which

    i s

    located

    a t

    th e 50-percent length of the

    missi le

    being

    t e s t e d .

    Symbols used i n th i s paper a re as follows:

    cA

    Axial f o r ce

    axia l - force coef f i c ien t ,

    qs

    Base ax ia l fo rce

    base ax ia l - force coef f i c ien t ,

    A, B CIS

    C

  • 8/20/2019 19710066227

    5/91

    NACA RM

    L58DO4

    3

    l

    cm

    C

    C

    mO

    Cn

    cN

    cN

    U

    cyP

    2

    M

    9

    R

    S

    XJ

    Y

    U

    L h

    P

    Rol l i ng moment

    r ol l i ng- moment coef f i ci ent ,

    ssz

    Pi t chi ng moment

    pi t chi ng- moment coef f i ci ent ,

    9s1

    acm

    au

    l ope of pi t chi ng- moment cur ve,

    pi t chi ng- moment coef f i ci ent at zero normal f orce

    yawi ng- moment coef f i ci ent ,

    Yaw ng moment

    9s

    2

    sl ope of yaw ng- moment curve, cn

    aP

    Nor mal f or ce

    nor mal - f or ce coef f i ci ent ,

    ss

    ac

    au

    l ope of nor mal - f or ce cur ve, .

    Si de f or ce

    si de- f orce coef f i ci ent ,

    qs

    3CY

    sl ope of si de- f or ce cur ve,

    aP

    m ssi l e l engt h, i n.

    f r ee- st r eamMach number

    f r ee- st r ean dynam c pr essur e, l b/ sq f t

    Reynol ds number

    maxi mum cr oss- sect i onal area of t he cyl i ndr i cal body, sq f t

    coor di nat es of nose of m ssi l e measur ed f r ompoi nt unl ess

    ot her w se noted), i n.

    angl e of at t ack of m ssi l e cent er l i ne, deg

    t unnel f l ow angl e, deg

    angl e of si desl i p of m ssi l e cent er l i ne, deg

  • 8/20/2019 19710066227

    6/91

    NACA RM L58mJ-1

    APPARATUS AND

    METHODS

    Tunnel

    The test s were perf ormed i n t he hi gh Mach number t est

    sect i on of

    t he Langl ey Uni t ary Pl an w nd t unnel , whi ch i s a var i abl e pr ess me,

    cont i nuous- f l ow t ype. The t est sect i on i s 4 f eet squar e and appr oxi -

    mat el y 7 f eet l ong. The nozzl e l eadi ng t o t he t est sect i on i s of t he

    asymmet r i c sl i di ng- bl ock t ype whi ch per m t s a cont i nuous var i at i on of

    Mach number f r omapproxi matel y 2.29 t o 4.65.

    Model s

    A dr aw ng

    show ng t he f i ve model s t est ed i s pr esent ed i n f i gur e 1

    and tabl e I gi ves t he geomet r i c char act er i st i cs of t hese model s.

    The m ssi l e conf i gur at i ons wer e

    Model I - body al one l engt h- di amet er r at i o of 10)

    Model I1 - body wi t h

    loo

    f l ared ski r t

    Model I 11 - body wi t h cruci f or m 5 del ta f i ns

    Model

    IV

    - body wi t h cruci f or m 15' del ta f i ns

    Model

    V

    - hyper soni c t est vehi cl e

    The f i r s t

    t he poi nt

    whi ch i s

    f our model s i ncor por at e a cyl i ndr i cal body wi t h an ogi ve nose,

    of whi ch has a 0. 3- i nch r adi us of cur vat ur e. The f i f t h model

    somewhat l onger ) has t he same cyl i ndr i cal port i on of t he body

    but i t has a modi f i ed ;on K nose, t he poi nt of whi ch has a

    0. 05k- i nch r adi us of cur vat ur e. Thi s model al so i ncor por at es a 10 s k i r t .

    Hencef ort h, t hese model s wi l l be r ef er r ed t o as model s I t o V. The

    model s ar e of st eel const r uct i on except f o r t he nose por t i on of model V

    and the f l ared ski r t s whi ch wer e made of an al um num al l oy.

    of model I 11 as i nst al l ed i n t he t est sect i on i s pr esent ed as f i gur e 2.

    A phot ogr aph

    For ces and moment s wer e measur ed by means of an i nt er nal l y mount ed,

    si x- component , st r ai n- gage bal ance.

    Test Condi t i ons and Procedure

    The t est s wer e per f ormed at Mach number s of 2.29, 2.75, 3.22, 3.71,

    and 4.65.

    Mach numbers except 4.65, at whi ch Mach number i t was al l owed t o r i se

    t o

    -20

    F.

    The dewpoi nt t emper at ure was mai ntai ned bel ow -30 F f or al l

    The s t agnat i on t emperature was mai ntai ned at appr oxi matel y

  • 8/20/2019 19710066227

    7/91

    NACA RM L58DO4

    5

    140

    F a t a l l t e s t Mach numbers except

    4.63,

    a t which Mach number

    it

    was

    held

    a t

    approximately 175O

    .F.

    The

    following

    t ab l e p r e s en t s t he t e s t cond it ions

    of

    each model:

    Model

    I

    I 1

    I 11

    IY

    v

    Nominal

    angles of

    a t t ack ,

    deg

    -2 t o 25

    -2 t o 25

    -2 t o 25

    0 , 7, 14,

    and

    20

    -2

    t o

    25

    0 , 7, 14,

    and 20

    -2

    to 25

    Nominal

    angles

    of

    s ides l ip ,

    deg

    0

    0

    0

    -3 t o

    12

    0

    -3 t o 12

    0

    Mach

    number

    2.29

    2.75

    3.22

    3.71

    4.65

    2.29

    2-75

    3.22

    3-71.

    4.65

    2.29

    2.75

    3.22

    3-71

    4.65

    2.29

    2.75

    3.22

    3-71

    4.65

    2.29

    2.75

    3.22

    3-71

    4.65

    R

    12.5

    x

    io6

    12.5

    12.5

    12.5

    12 . 5

    6

    5.0 and 12.5 x 10

    5.0 and 12.5

    5.0

    and

    12.5

    5.0

    and

    12.5

    7.5

    and

    12.5

    2.5, 5.0, and 12.5

    X

    106

    2.5, 5.0, 12.5

    2.5, 5.0,

    and

    12.5

    2.5, 5.0,

    and

    12.5

    5.0,

    7-57

    and

    12.5

    6

    12.5

    x i o

    12.5

    12.5

    12.5

    12.5

    15.0 x i o

    15.0

    15.0

    6

    15.0

    15.0

  • 8/20/2019 19710066227

    8/91

    6

    CN . . .

    CA

    . . .

    cm

    . . .

    c2

    . .

    n

    . . .

    cy

    . . .

    a, deg

    .

    P? deg 0

    M . . . .

    CORRECTIONS

    AND ACCURACY

    Accuracy a t -

    R = 5 X l O

    66

    R

    =

    12.5

    x

    i o

    or 15 x 106

    6

    R

    = 2.5 x

    i o

    a.

    34

    +o .067

    20.029

    20.007 fO 003 +o .002

    k0 .055 +o

    .027

    a 011

    k0.004

    fO 002 XI.

    001

    k0 .055 +o

    .027

    20.011

    +O

    .134

    20.067

    +o .029

    20. LOO

    +o

    . l oo

    +o

    .loo

    kO.100

    +o . loo +o . l oo

    20.015 +O .015 +O .015

    NACA RM L58Do4

    The angles of a tta ck and si de sl ip have been corrected f o r defle c-

    t i o n of th e balance and st in g under load.

    In o rder t o ob ta in re l iable values of base ax ia l force , a base

    block

    w a s

    f i t t e d secure ly t o the model

    sting

    wit h about 1/8-inch gap

    between t h e block and th e base of th e model.

    model was cy li nd ri ca l and of

    t h e

    same diameter as the base of the model

    being invest igate d. (See f i g .

    2 . )

    Measurements were taken of the

    pres sure ex is ti ng between th e base block and th e model base and thes e

    pressure measurements were converted in to base a x i a l forc e. The

    axial-

    fo rce da ta

    on t he

    plots of aerodynamic coefficients are 'not adjusted

    fo r ba se a x i a l f o r c e . In order t o ad jus t these da ta, the base ax ia l

    fo rc e fo r a given model a t a g iv e n a t t i t u d e

    and Mach number

    must

    be

    subtracte d from the ax ia l forc e f o r th e same model

    a t

    t h e s a n e a t t i t u d e

    and Mach number. During

    t e s t s of

    model V, fa ul ty equipment cur ta i led

    base pres sure measurements, and base-axia l-force da ta f o r th i s model ar e

    not presented.

    The base block f o r each

    The accuracy of t he i ndi vid ua l nieasured qu an ti ti es , based on ca li -

    b ra t ion and repe a tab i l i ty of da ta , i s es timated t o be wi th in the f o l -

    lowing

    l i m i t s

    :

    -

    ._

    - -

  • 8/20/2019 19710066227

    9/91

    NACA RM L58Do4

    M

    2.29

    2-75

    3.22

    3.71

    4.65

    7

    , deg

    0.40

    30

    . 10

    30

    95

    -

    Cal i br at i on of t he t unnel t est sect i on has not been compl et ed.

    Measur ed pr essure gr adi ent s ar e suf f i ci ent l y smal l , however , t o assur e

    negl i gi bl e cor r ect i ons due t o model buoyancy ef f ect s.

    The dat a have not been cor r ect ed f or f l ow angul ar i t y. These cor -

    r ect i ons at t he cor r espondi ng Mach numbers are i ndependent of model

    angl e of at t ack and ar e as f ol l ows:

    PRESENTATION OF RESULTS

    The r esul t s of t he i nvest i gat i on ar e pr esent ed i n t he f ol l ow ng

    f i gur es:

    Fi gur e

    Typi cal schl i er en phot ogr aphs of model I1

    . . . . . . .

    . .

    . . 3

    Typi cal schl i er en phot ogr aphs of model

    I11

    .

    .

    . . . . . . . . . 4

    Var i at i on of base axi al - f or ce coef f i ci ent wi t h angl e of

    attack

    . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5

    Ef f ect of base bl ock on aer odynam c char act er i st i cs

    of

    model 111

    . .

    .

    .

    . . . . . . .

    . .

    .

    .

    . .

    .

    . . . . . . . . 6

    Aer odynam c char act er i st i cs of model I n pi t ch. j3

    =

    Oo

    .

    .

    . .

    7

    Aer odynam c char act er i st i cs of model

    I1

    i n pi tch. j3 =

    0

    . . . . 8

    Aer odynam c char act er i st i cs of model

    I11

    i n pi tch. j3

    =

    0 . . . 9

    Aer odynam c char act er i st i cs of model I V i n pi tch. 10

    Aer odynam c char act er i st i cs of model V i n pi t ch. j3 = 0

    . . . . 11

    Aer odynam c char act er i st i cs of model

    I11

    i n si desl i p.

    a

    =

    0

    .

    .

    12

    Aer odynam c char act er i st i cs of model

    I11

    i n si desl i p.

    Aer odynam c char act er i st i cs of model I11 i n si desl i p.

    Aer odynam c char act er i st i cs of model I11 i n si desl i p.

    Aer odynam c char act er i st i cs of model I V i n s i des l i p . . . . . .

    16

    j3

    =

    o

    .

    . .

    .

    ~ = 7 . 2 O. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    a = 1 4 . 6 . . . . . . . , . . . . . . . . . . . . . . . . . . . 14

    ~ = 2 0 . 9

    . . . . . . . . . . . . . . . . . . . . . . . . . . .

    15

  • 8/20/2019 19710066227

    10/91

    8

    Figure

    Summary of longi tu dinal s t a b i l i t y ch ar ac ter is t ic s of the

    f i ve m is s i l e configura t ions

    . . .

    .

    .

    . . . .

    .

    . . . .

    . .

    17

    Summary

    of l a t e r a l s t a b i l i t y cha r ac t e r i s t i c s of model

    I11 . .

    18

    Summary of l a t e r a l s t a b i l i t y cha r ac t e r i s t i c s of model I V

    . . 19

    DISCUSSION OF FBSULTS

    Effect of Base Block

    In order t o de termine the e f fe c t of the base b lock-on the

    s t a b i l i t y

    ch ara cte r is t ic s presented, model I11

    was

    te st ed with and without th e

    base block. (See f i g . 6 . )

    base block produces

    a

    pos i t i ve

    i s

    not mater ia l ly a l t e red .

    t e s t r e s u l t s p re se nt ed .

    The re su l t s show th a t the add i t ion of th e

    s h i f t ,

    bu t t he deg ree of s t a b i l i t y

    The base blocks

    were

    i n p la ce

    fo r

    a l l other

    C

    mo

    Longi tud ina l S tab i l i ty

    The l ong i t ud ina l s t ab i l i t y cha r ac t e r i s t i c s o f t he f i ve mi s s il e s

    ar e pre sente d i n summary form pl o tt ed ag ain st Mach number i n fi gu re

    17.

    It may be seen t h a t the normal-force-curve slo pes of a l l f i ve models a re

    invar ian t w i t h Mach number

    a t

    the low angles of at tack.

    A t

    the h igh

    ang les of at ta ck , however, th e normal-force-curve slope s decrease with

    an in cr ea se i n Mach number.

    It

    may be noted t h a t t he increment of

    normal-force-curve slope provided by th e f i n s and s k ir t s

    i s

    e s s e n t i a l l y

    in va ria nt with Mach number and th a t t he decrease i n normal-force-curve

    s lope noted a t high angles i s due t o l oss of l i f t on the body and not

    on the f ins

    o r s k i r t s .

    O f the models tested

    a t

    th e low angles of at ta ck, th e f in ned models

    (models I11 and IV) have th e g re at e st normal-force-curve slope, and th e

    model without f ins or skir t (model I ) has the least normal-force-curve

    slope. Model

    I11

    develops more

    l i f t

    th an model

    IV,

    as

    would be expected,

    from consideration of the geometry of the two models.

    A comparison of model I1 and model I V shows that the

    s k i r t

    f o r

    model

    I1 i s

    approximately as long a s th e f i n s of model

    I V,

    but the

    leading-edge angle of th e fi n s of model

    IV

    i s much la rg e r. The da ta

    indicate that model

    I1

    develops

    s l i g h t l y l e s s l i f t and has more drag

    than model

    N.

    S i mil a r r e s u l t s i n r e f e rence

    2

    point out that an increase

    i n the leading-edge angle or length of

    a

    s k i r t

    w i l l

    increase the l i f t

    developed by th e s k i r t . The use of

    a

    sk ir t , however, leads t o

    a

    drag

    penal ty with a corresponding

    10

    -

    ss i n l i f t - d r a g r a t i o .

  • 8/20/2019 19710066227

    11/91

    NACA RM L58D04

    9

    Figure 1.7 al so shows th a t some sta bi l i z in g device

    i s

    necessary

    f o r model I a t the low angles

    of a t t ack i n or der t o ob t a i n a longi tudi-

    na l ly s ta bl e mis s i le i n the t e s t Mach number range wi th the cente r of

    g r a v i t y a t

    50

    per cen t of th e body leng th.

    Mach numbers s l i g h tl y below th e t e s t range, th e s k i r t used on modelV

    may not be l arg e enough t o produce pos i t i ve longi t udina l s ta b i l i t y .

    The lopg itud ina l s t a b i l i t y of t h e s ki r t ed models in crea ses somewhat

    wi th in cr ea se i n Mach number a t the low and high angles of at tack,

    whereas the long i tudin al s ta b i l i t y of model N decreases with increase

    i n Mach number.

    These da ta ind ica te tha t

    a t

    Model I11 has the l ar ge s t s t a t i c margin of th e models tes t ed .

    A t

    t he low angl es of a t t ack , t he l ong i t ud ina l s t ab i l i t y ch a r ac t e r i s t i c s f o r

    model I11 are re la t i ve ly cons tant wi th var i at ion i n Mach number i n the

    t e s t Mach number ra nge.

    It may a ls o be seen i n f ig ur e 17 tha t the da ta ob ta ined a t t h e

    (Ref. 1 dat a are indica ted by symbols i n

    t e s t Mach numbers agree very we ll with da ta shown i n refe ren ce

    1

    a t a Mach number of 2.01.

    f i g . 17.)

    D i re c ti on a l s t a b i l i t y

    Models I11 and

    I V,

    th e fin ned models, were th e only models te s te d

    i n s i d e sl i p .

    show the mi ss i le s , i n general , t o be di re ct ion al ly s ta ble . These f i g -

    ures also show

    a

    no nl in ea rit y i n th e yawing-moment curve a t low side-

    s l i p angles . This nonl i near i ty inc reases wi th angle of a t ta ck and,

    i n some ins tances , the mis s i l es a r e d i re c t io na l ly unstab le fo r a small

    s id es l ip r ange near 0 .

    higher s ide s l i p angles . These f igu res also show l i t t l e change i n

    l o n g i t u d i n a l s t a b i l i t y o r normal-force co eff ici en t throughout the angle-

    of - s ides l ip r ange .

    s ent ed i n f i gu r e s

    18

    and

    19

    f o r bo th f i nned mi s s i l e s a r e f o r s lopes

    between +2O of si d es li p , and because of th e aforementioned no nl in ea rit y

    i n the yawing-moment curves do not prese nt th e complete s t a b i l i t y pic tu re

    Data presen ted i n f igu res 12 t o 16 fo r the f inned miss i les ,

    This i n s t ab i l i t y d i sappear s , however, a t the

    The yawing-moment and si de -f or ce der iv at iv e s pr e-

    It

    may be seen i n fig ur es

    18

    and

    19

    t h a t

    a t

    the lower angles of

    a t t ack , 0 and 7.0 f o r model

    I11

    and 0 for model N, t h e d i r e c t i o n a l

    s t ab i l i t y of t he f inned mi s s i l e s

    dec rease s wit h in cr ea se i n Mach number;

    however, a t the higher angles of a t tac k (14.5' and 2O.9O) t he d i r ec -

    t i o na l s ta b i l i t y increases wi th increa se i n Mach number. It

    i s

    a l s o

    i n t e r e s t i n g t o n o te t h a t a t th e hig her t e s t Mach numbers and a t

    an

    angle of a t t ac k of 20.9' th e di rec t io na l s t a b i l i t y fo r model I11 (and

    t o a l im ited ex tent, model

    N

    ecomes greater than that experienced

    a t angles

    of

    at tack near 0 . It

    i s

    be l ieved t ha t t he r ea son f o r t h i s

  • 8/20/2019 19710066227

    12/91

    10

    NACA

    RM L58D04

    phenomenon

    i s

    t h a t a t the high angles of a t ta ck there

    i s

    an increase in

    dynamic pressure on the lower f i n which increas es t he effe ctiv en ess of

    t h e l ower f i n a t

    a

    g r e a t e r r a t e t h an t h a t

    a t

    which the upper f i n

    i s

    los ing e f fec t iveness .

    and

    I la

    The pitching-moment-curve and norma l-force-curve slo pe s

    of the se hypersonic mis sil es a t a Mach number of 2.01 have been

    C

    NCL)

    obtained from reference 1 and a r e p l o t t ed i n f i gu r e s 18 and 19. Since

    th e models a re

    a l l

    symmetrical, it

    i s

    perm issible t o compare C and

    C

    a t zero angle of s ide s l i p w i th

    at ta ck . These slope s, shown i n symbol form i n fi gu re s

    18

    and

    19,

    show

    excellent agreement with the data reported on herein.

    ma

    a t zero angle of

    CnP and cyP

    a

    The da ta on the bas ic p lo t s ind ica te th a t the d ihedra l e f fe c t

    i s

    es se nt ia l l y zero f o r th e f inne d models through t he t e s t Mach number

    and ang le-of-a ttack range.

    Figures

    18

    and

    19

    indicate negat ive values of

    C

    a t a l l a ngles

    of a t tack.

    A

    comparison

    of

    these two

    f igures

    shows t h a t model

    I11

    has

    the la rg er negat ive values of

    bas is

    of th e d iff er en ce i n model geometry.

    . This would be expected on the

    cyP

    A l l models other than I11 and

    N

    are symmetrical models and would

    t he r e f o r e have i de n t i c a l l ong it ud i na l and l a t e r a l s t ab i l i t y cha rac t er -

    i s t i c s a round

    0

    angle of a t ta ck and s id es l ip .

    Reynolds Number Effect

    The s t a b i l i t y da ta f o r models

    I1

    and

    I11

    a t Reynolds numbers of

    I t i s

    eas i ly seen tha t the p i t ch and s ides l ip curves

    6 6

    6

    6

    2.3 x 10 5.0 X

    10 7.5

    X 10 and 12.5 X 10 are shown in f i gu res 8,

    9, 12, and 14.

    have th e same r e la ti v e shape, re ga rd le ss of Reynolds number i n th e t e s t

    Reynolds number range.

    however, f o r th e thr ee t e s t Reynolds numbers, dependent on a t ti t u d e

    and

    Mach number. I t i s bel ieved, moreover, th at th e data taken a t a

    Reynolds number of

    12.3 X

    10

    s ince the balance loads a t t h i s higher Reynolds number a re i n the range

    t o ob ta in accura te da ta .

    Reynolds numbers t o check th ose take n a t t h e hig her Reynolds

    number

    i s bel ieved t o be e nt i r el y due t o balance accuracy.

    e n ti t l e d Corrections and Accuracy. )

    There

    i s

    a gen eral intermixing of data points ,

    6

    accura te ly def ine the s t ab i l i ty curves ,

    The in a bi l i ty of th e data taken

    a t

    the lower

    (See sect ion

  • 8/20/2019 19710066227

    13/91

    NACA

    RM

    L58DO4

    CONC

    WSIONS

    11

    The re su l t s of an inve s t igat io n of f iv e hypersonic mis s i le configura-

    t i o n s

    a t

    Mach numbers of 2.29, 2.75, 3.22,

    3.71,

    and

    4.65

    and a t Reynolds

    numbers, b ased on the body le ngt h, from approxim ately

    2.5 X 10

    15

    X

    10

    indicate the following conclusions:

    6

    t o

    6

    1.

    With th e c enter of gr av ity a t 50 perce nt of th e body length,

    the sk i r t ed and finned models a re d i rec t ion a l ly s t ab le

    a t

    the low angles

    of a t tack. A t

    the higher t e s t Mach numbers and a t th e h igher angles of

    a t t a ck , t h e d i r e c t i o n a l s t a b i l i t y

    f o r

    th e finn ed models becomes g re at er

    than that experienced

    a t

    angles of a t ta ck near Oo.

    high ang les of a tt a ck and low Mach numbers, th e fi nn ed models te nd

    toward ins tab i l i ty .

    However, a t t h e

    2.

    A s k i r t of t he t ype t e s t ed

    i s

    ef fe c t iv e in producing

    l i f t

    and

    pitching moment

    i n th e t e s t angle-of-attack range. The use of

    a

    s k i r t ,

    however,

    leads t o a drag penal ty wi th a corresponding l oss i n l i f t - d ra g

    r a t i o .

    3.

    The model with the 5 O f i n s has the l a rg es t s t a t i c marg in and

    normal-force-curve slope of th e models te st ed .

    4.

    There

    i s

    l i t t l e e ff e ct of Mach number on th e slope of th e

    normal-force curve a t low angles of at tack.

    Langley Aeronautical Laboratory,

    National Advisory Committee for Aeronautics,

    Langley Field,

    V a . ,

    March

    19, 1958.

    1.

    Robinson, Ross

    B.:

    Wind-Tunnel Investigation

    a t

    a

    Mach Number of

    2.01 of th e Aerodynamic Ch m a ct e ri st ic s i n Combined Angles of Atta ck

    and Sid es li p of S ev era l Hypersonic M iss ile Configurations With

    Various Canard Controls.

    NACA

    RM ~ 5 8 ~ 2 1 ,

    958.

    2.

    Lavender, Robert E.: Normal Forc e, P it ch in g Moment, and Center

    of

    Pressure of Eighty Cone-Cylinder-Fruskum Bodies of Revolution a t

    Mach Number 1.50. Rep.

    6R3N3

    Ord. Missile Labs., Redstone Arsenal

    (Huntsvi l le , Ala.), Apr. 5, 1956.

  • 8/20/2019 19710066227

    14/91

    12

    TABLF: I.

    MODEL GEOME?ITIC CHARACTEKCSTICS

    NACA

    FU

    L58DO4

    lody :

    Length, in. . . . . . . . . . .

    Cross-sect ional area , sq i n . .

    Fineness ra t io of nose . . . .

    Length-diameter ratio . . . . .

    Moment-center location, per-

    cent length

    . . . . . . . . .

    Diameter, in. . . . . . . . . .

    ik i r t :

    Length, in. . . . . . . . . .

    Base diameter, in .

    . . . . . .

    Leading-edge angle, deg

    . . . .

    ase mea, sq i n . . . . . . .

    ' ins

    :

    Area exposed,

    2

    f i n s ,

    sq

    i n .

    .

    Root chord, in. . . . . . . . .

    Tip chord, i n . . . . . . . . .

    Span exposed, in.

    . . . . . .

    Span to ta l , in .

    . . . . . . .

    Taper ra t io . . . . . . . . . .

    Aspect ratio, exposed

    . . . . .

    Span diameter ratio . . . . . .

    Leading-edge angle, deg . . . .

    odel

    I

    io. OC

    3 . 0 ~

    7-07

    5.0C

    -0.oc

    j0.

    OC

    ode ?

    I1

    30.oc

    3 . 0 ~

    7.0;

    5 . 0 ~

    LO.

    oc

    jO.O(

    6.0:

    5.1:

    20.6t

    LO

    O(

    odel

    I11

    30.00

    3.00

    7-07

    5.00

    10.00

    50.00

    34.36

    19.12

    0

    3.20

    6 . 2 ~

    0

    0.26e

    2.07

    5

    Iode1

    rv

    50.00

    3.00

    7-07

    5 00

    LO. 00

    50.00

    9.55

    5.97

    0

    3 . 2 ~

    6 . 2 ~

    0

    1.07

    2.07

    15

    ode1

    v

    35

    *

    11

    3.00

    7.07

    5.00

    11.70

    50 00

    4.67

    4.64

    16.91

    10.00

  • 8/20/2019 19710066227

    15/91

    NACA RM L’j8Do4

    7.00

    8.00

    9.00

    10.00

    11.00

    12.00

    13.00

    14.00

    13

    1.073

    1.176

    1.262

    1.335

    1.394

    1.441

    1.474

    1.493

    Tangency points

    t - d 30ad .

    models I , 11, I11

    and IV noses

    6.63’

    p=fF

    .30 .300

    5 13

    l oo

    25.25 rad;

    Model

    I1

    I 6.00 .963

    15.00 I 1.500

    6.20

    A.

    .094 rad.

    Model I11

    -1.60

    -

    6

    .

    -----.AI koord ina te s

    f o r 1

    Model

    IV

    X-

    1 1 7 . 5 5

    Model V

    1.698

    1.947

    3.693

    3.945

    4.938

    5.076

    6.444

    7.944

    9.444

    10.994

    12.453

    13.944

    15.444

    .768

    .918

    1.059

    1.188

    1.296

    1.389

    1.461

    Figure

    1.

    Miss i le conf igurat ions tes ted.

    All

    dimensions

    i n

    inches

    unless otherwise s ta ted. )

    t

  • 8/20/2019 19710066227

    16/91

    14

  • 8/20/2019 19710066227

    17/91

    NACA

    RM

    L58DO4

    a =

    - 2 . 4O

    a = O o

    a

    =

    2 . 0 °

    a = 6 . 2 O a =

    20.9O

    a )

    M = 2.29. L-58

    180

    Figure

    3 .

    Typical sch lie ren photographs

    of model 11.

    B =

    Oo

  • 8/20/2019 19710066227

    18/91

    16

    NACA

    RM

    L58DO4

    a

    O o

    a = - 2 .40

    a

    = 2 . 0 °

    a =

    6 . 2 O

    (b)

    M = 2.75.

    Figure 3 . - Continued.

    a

    = 20.9O

    I,-38-181

  • 8/20/2019 19710066227

    19/91

    NACA RM

    L58DO4

    i

    a = - 2 . 5 0

    a

    O o

    a

    = 2 . 0 0

    a = 6 . 1 °

    a = 20.7O

    (c)

    M

    = 3.22. L-58-182

    Figure 3 . - Continued.

  • 8/20/2019 19710066227

    20/91

    18

    NACA

    RM L38DO4

    a =

    - 2 .4

    a = 0

    a = 2 .1

    a

    = 6 . 1

    d ) M = 5-71.

    Figure 3 . -

    Continued.

    a 20.7

    L-58-183

  • 8/20/2019 19710066227

    21/91

    NACA RM

    L58D04

    0

  • 8/20/2019 19710066227

    22/91

    20

    NACA

    RM L58D04

    a=-2.4O a

    = O o

    a

    =

    2.0°

    a = 12.4O a

    = 20.6O

    a) M

    =

    2.29. L-38-18?

    Figure 4. Typica l sch l i e ren photographs of

    model

    111.

    p =

    0 .

  • 8/20/2019 19710066227

    23/91

    NACA

    EM L58DO4

    21

    a

    = 2 . 4 O a

    = O o

    a

    = 2.O0

    a

    =

    12.3O

    (b)

    M

    = 2.75.

    Figure 4.- Continued.

    a

    20.50

    1-58-

    186

  • 8/20/2019 19710066227

    24/91

    22

    a

    = -2.40

    NACA RM L58D04

    a

    =

    12 .2O

    a O o

    a = 2 . 0 °

    ( e ) M =

    3.71.

    Figure

    4.-

    Concluded.

    a 20.2O

    L-58-187

  • 8/20/2019 19710066227

    25/91

    NACA RM

    L58DO4

    A B

    C

    Fi gur e 5.- Variat ion of base ax ia l - force coef f i c ien t w i th angle of

    attack.

    f3

    = 0 .

    3

  • 8/20/2019 19710066227

    26/91

    24

    NACA RM ~ 5 8 ~ 0 4

    C

    m

    .6

    .4

    .2 c

    0

    '.2

    a )

    M

    = 4. 63; l = Oo.

    Figure

    6.-

    Effect of base

    block

    on aerodynamic chasacteris t ics of

    model 111.

    R = 7.5 x

    106.

  • 8/20/2019 19710066227

    27/91

    NACA

    RM L58D04

    Y

    d e g

    (b)

    M =

    4.65;

    CL

    =

    Oo.

    Figure

    6.

    - Concluded.

    C

    n

  • 8/20/2019 19710066227

    28/91

    NACA RM L58D04

    Fi gur e

    7. -

    Aer odynam c char act er i st i cs

    of

    model

    I

    in

    pi t ch.

    p

    =

    Oo;

    R =

    12.5 x

    106-

  • 8/20/2019 19710066227

    29/91

    NACA

    RM L58D04

    0 4 8 12

    16 20

    24 28

    a , d e g

    Figure

    8.-

    [email protected]

    c h a r a c t e r i s t i c s of

    model I1

    i n

    p i t ch .

    f3

    =

    Oo.

  • 8/20/2019 19710066227

    30/91

    NACA €34 L58DO4

    4

    0

    3

    (a) M = 2.29.

    Fi gur e 9.- Aerodynamic characteris t ics of

    model

    111 in p i t c h .

    f3 = 0’.

  • 8/20/2019 19710066227

    31/91

    NACA

    RM

    L58m4

    a , d e g

    ( b ) M

    =

    2.73.

    Figure

    9.-

    Continued.

  • 8/20/2019 19710066227

    32/91

    NACA

    RM

    L58D04

    c ) M

    = 3.22.

    Figure

    9.-

    Continued.

  • 8/20/2019 19710066227

    33/91

    (d) M = 3.71.

    8

    Figure

    9.-

    Continued.

  • 8/20/2019 19710066227

    34/91

    NACA RM ~581x14

    e )

    M

    = 4.63.

    Figure 9.- Concluded.

  • 8/20/2019 19710066227

    35/91

    NACA

    RM L58Do4

    n

    .

    .

    4

    Figure

    10.-

    Aerodynamic cha r ac t e r i s t i c s of m o d e l I V i n p i t c h .

    p =

    00;

    R

    = 12.5 x 106.

  • 8/20/2019 19710066227

    36/91

    Cm

    N

    .4

    4

    NACA RM L58D04

    G

    Figure

    11.

    Aerodynamic ch ar ac te ri s t ic s of modelV in pitc h.

    p

    =

    Oo;

    R = 13 x l o6.

  • 8/20/2019 19710066227

    37/91

    NACA RM L58Do4

    .8

    .4

    Cn

    0

    '

    .4

    -3 -2 0

    2

    4 6 8 IO 12 14

    9

    d e g

    (a)

    M

    = 2.29.

    Figure 12.- Aerodynamic characteris t ics

    of

    model 111 i n s i d e s l i p .

    a = oo.

  • 8/20/2019 19710066227

    38/91

    NACA

    RM L58Do4

    -4 -2 0 2 4 6 8 IO 12 14

    8 , d e g

    (a)

    Concluded.

    Figure

    12.-

    Continued.

  • 8/20/2019 19710066227

    39/91

    NACA

    RM L58D04

    CY

    (b)

    M = 2.75.

    Figure 12.- Continued.

    .8

    .4

    Cn

    0

    .4

  • 8/20/2019 19710066227

    40/91

    (b)

    Concluded.

    Figure 12.

    Continued.

    NACA

    RM L78DO4

  • 8/20/2019 19710066227

    41/91

    NACA

    RM L38DO4

    -4 -2 0 2

    8 IO I 2 14

    ( c ) M =

    3.22.

    Figure

    12.

    Continued.

    .4

    (

    0

    .4

  • 8/20/2019 19710066227

    42/91

    NACA RM

    L38D04

    ( c ) Concluded.

    Figure 12. - Continued.

  • 8/20/2019 19710066227

    43/91

    NACA

    RM

    L58D04

    .8

    .4

    Cn

    0

    -

    .4

    4

    (a)

    M =

    3.71.

    Figure 12.-

    Continued.

  • 8/20/2019 19710066227

    44/91

    NACA

    RM L38D04

    (d) Concluded.

    Figure 12.

    Continued

  • 8/20/2019 19710066227

    45/91

    NACA

    RM

    L58D04

    43

    C Y

    -4

    -2 0 2 4 6

    8

    IO 12 14

    8 9

    d e g

    ( e )

    M = 4.63.

    .8

    0

    Figure

    12.

    Continued.

  • 8/20/2019 19710066227

    46/91

    NACA

    RM

    L58D04

    -4

    -2 0 2 4 6 a

    IO 12 14

    B d e 4

    ( e )

    Concl uded.

    Figure 12.-

    Concl uded.

    NACA

    RM L58D04

  • 8/20/2019 19710066227

    47/91

    . 8

    .4

    c n

    .o

    .4

    (a)

    M =

    2.29.

    Figure 13 . - Aerodynamic

    c h ma c t e r i s t i c s

    of model I11 in sideslip.

    a

    = 7.20; R

    = 12. 5x

    106.

  • 8/20/2019 19710066227

    48/91

    NACA .RM

    L58Do4

    -4

    -2

    0

    2 4 6 8 IO I2 14

    8 9

    d e g

    a ) Concluded.

    Figure 13 . - Continued.

  • 8/20/2019 19710066227

    49/91

    NACA RM

    L58DO4

    4 -2 0 2

    4

    6 8 IO 12 14

    B

    d e g

    (b)

    M =

    2.75.

    Figure

    1 3 . -

    Continued.

  • 8/20/2019 19710066227

    50/91

    NACA RM

    L58DO4

    -4

    -2

    0

    2 4 6 8 IO

    I2 14

    B ,

    d e g

    (b)

    Concluded.

    Figure

    13 . -

    Continued.

  • 8/20/2019 19710066227

    51/91

    NACA RM L58DO4

    -4

    -2 0 2 4

    6 8

    10 12 14

    9 d e g

    c )

    M = 3.22.

    Figure 1 3 . - Continued.

  • 8/20/2019 19710066227

    52/91

    NACA RM

    L58DO4

    -4 -2

    0 2

    ( c)

    Concluded.

    Figure 13 .

    -

    Continued.

    2

    3

    NACA RM

    ~ 3 8 ~ 0 4

  • 8/20/2019 19710066227

    53/91

    -4 -2 0 2 4

    6 8

    IO 12

    14

    8 9 d e g

    .8

    ,.4

    (d) M

    =

    3.71.

    Figure

    13 . - Continued.

  • 8/20/2019 19710066227

    54/91

    NACA RM L58Do4

    (d) Concluded.

    Figure

    13 . -

    Continued.

    NACA RM ~ 3 8 ~ 0 4

  • 8/20/2019 19710066227

    55/91

    -4

    2

    0

    2

    4 6 8

    10 12  

    B , d e g

    .

    (e)

    M

    =

    4. 65.

    0

    -

    -4

    4

    Figure 13 . -

    Continued.

  • 8/20/2019 19710066227

    56/91

    54

    NACA

    RM L58DO4

    -4 -2 0 2

    4

    6 a

    IO

    12 14

    8 ,

    d e g

    ( e )

    Concl uded.

    Fi gur e 1 3 . - Concl uded.

    NACA RM L58DO4

  • 8/20/2019 19710066227

    57/91

    CY

    .8

    .4

    Cn

    0

    -4

    -2 0

    2

    4 6 IO I2 14

    8 , d e g

    a)

    M

    =

    2.29.

    Fi gur e

    14. -

    Aer odynam c char act er i st i cs of model I11 i n si desl i p.

    CG = 146.

  • 8/20/2019 19710066227

    58/91

    NACA RM L58Do4

    (a) Concl uded.

    Fi gur e

    14. -

    Cont i nued.

  • 8/20/2019 19710066227

    59/91

    -4 -2 0 2 4

    6 8

    I O

    I2 14

    8 , d e g

    .8

    .4

    Cn

    0

    .4

    (b) M = 2.75.

    Figure 1-4.-

    Continued.

  • 8/20/2019 19710066227

    60/91

    NACA RM

    ~ 3 8 ~ 0 4

    ( b ) Concluded.

    Figure

    14.-

    Continued.

    NACA

    RM ~38~04

  • 8/20/2019 19710066227

    61/91

    CY

    -4

    -2

    0 2

    8 IO 12 i

    ( c ) M = 3.22.

    Figure

    14. -

    Continued.

    0

    -.4

    4

  • 8/20/2019 19710066227

    62/91

    NACA RM L58Do4

    ( c ) Concluded.

    Figure 14.- Continued.

    4

    NACA F N L58DO4

  • 8/20/2019 19710066227

    63/91

    .8

    .4

    Cn

    0

    -

    .4

    -4

    -2 0 2 4 6 8 IO 12 14

    B ,

    d e g

    d) M =

    3.71.

    Figure 14.- Cont i nued.

  • 8/20/2019 19710066227

    64/91

    NACA RM L58DO4

    4 -2

    0

    2

    4 6 8

    IO

    12

    14

    8 ,

    d e g

    (

    d)

    Concl uded.

    Figure

    14. - Continued.

    NACA

    RM L38D04

  • 8/20/2019 19710066227

    65/91

    -4

    -2 0 2

    4 6 8 IO

    12 14

    8 , d e g

    .8

    .4

    Cn

    0

    - .4

    (e ) M = 4.65.

    Figure 14. - Continued.

  • 8/20/2019 19710066227

    66/91

    64

    NACA

    RM

    ~ 7 8 ~ 0 4

    4 -2 0

    2

    4 6 a to

    I2

    14

    8 9

    d e g

    (e) Concluded.

    Figure

    14.

    Concluded.

    NACA RM L58D04

  • 8/20/2019 19710066227

    67/91

    Fi gur e

    15.-

    Aer odynam c char act er i st i cs

    of model I11 i n

    si desl i p.

    a

    =

    20.90;

    R

    =

    12.5 x

    106.

    .8

    .4

    Cn

    0

    .4

    66

    NACA RM

    L58D04

  • 8/20/2019 19710066227

    68/91

    (a) Concluded.

    Figure

    15.

    Continued.

    NACA RM L38DO4

  • 8/20/2019 19710066227

    69/91

    CY

    -4 -2 0 2 4 6

    8

    10

    12

    14

    B

    d e g

    .8

    .4

    Cn

    0

    .4

    (b)

    M

    =

    2.75.

    Figure 15 Continued.

    NACA RM L58D04

  • 8/20/2019 19710066227

    70/91

    -4

    -2 0 2

    4

    6 a 10

    12

    14

    B ,

    d e g

    (b)

    Concl uded.

    Fi gur e

    15.-

    Cont i nued.

  • 8/20/2019 19710066227

    71/91

    -4

    -2 0 2

    4

    6 8

    IO

    I2 14

    P 9 d e g

    ( c ) M =

    3.22.

    .8

    .4

    Cn

    0

    4

    Figure 15.- Conti nued.

    NACA RM

    ~581x14

  • 8/20/2019 19710066227

    72/91

    4 -2 0 2 4 6 8 IO

    I2

    14

    B d e g

    c) Concl uded.

    Fi gur e 15.- Cont i nued.

  • 8/20/2019 19710066227

    73/91

    CY

    4

    -2 0 2 4 6 8 IO 12 14

    B

    d e g

    (d )

    M

    =

    3.71.

    Figure 15. - Continued.

    .8

    .4

    Cn

    0

    .4

    72

    NACA RM ~ 3 8 ~ 0 4

  • 8/20/2019 19710066227

    74/91

    d ) Concluded.

    Figure 15.- Continued.

    NACA RM

    L58DO4

    7

  • 8/20/2019 19710066227

    75/91

    4 -2

    0

    2 4

    6

    8 I O I2 14

    B , d e g

    ( e ) M = 4.65.

    .8

    .4

    0

    .4

    Cn

    Figure 15.- Continued.

    74

    NACA

    RM

    L58DO4

  • 8/20/2019 19710066227

    76/91

    -4 -2

    0 2

    4 6 a IO 12 14

    B 1 d e g

    (e) Concluded.

    Figure 15.- Concluded.

    NACA

    FM

    L58DO4 75

  • 8/20/2019 19710066227

    77/91

    2

    Y

    -4

    -2

    .4

    0

    .4

    0

    2

    8 I O

    I2

    14

    a )

    M

    =

    2.29.

    Figure 16.-

    Aerodynamic characteristics of model

    I V

    in

    s i d e s l i p .

    R

    = 12.3 x lo6.

    MACA RM L58DO4

  • 8/20/2019 19710066227

    78/91

    (a) Concluded.

    Figure

    16.- Continued.

      3

    f

    NACA RM L58DOk >

    77

  • 8/20/2019 19710066227

    79/91

    CY

    8 9

    d e g

    (b) M = 2.75.

    Figure

    16. Continued.

    .4

    o

    Cn

    -

    .4

    4

    78

  • 8/20/2019 19710066227

    80/91

    -4 -2 0 2 4 6 8 IO I2 14

    8 ,

    d e g

    (b)

    Concluded.

    Figure

    16.

    Continued.

    79

  • 8/20/2019 19710066227

    81/91

      4

    -2

    0

    2 4 6

    0 IO 12

    14

    8 9

    d e g

    c)

    M =

    3.22.

    .4

    o

    Cn

    .4

    Figure

    16.

    - Continued.

    80

    NACA RM ~ 3 8 ~ 4

  • 8/20/2019 19710066227

    82/91

    -2 0 2 4 6 a I O 12 14

    8 , d e g

    ( e )

    Concluded.

    Fi gure 16. - Continued.

    NACA RM

    ~ 3 8 ~ 0 4

    81

  • 8/20/2019 19710066227

    83/91

    -4

    -2

    0

    2 4 6 8

    IO

    12 14

    8 , dell

    .4

    0

    .4

    -l

    (d)

    M =

    3.71.

    Figure

    16.

    Continued.

    82

  • 8/20/2019 19710066227

    84/91

    -4 -2 0 2 4 6 8 IO I2 14

    B d e n

    (a)

    Concluded.

    Figure

    16.

    Continued.

  • 8/20/2019 19710066227

    85/91

    CY

    -4 -2

    0

    2 4

    6

    8 IO 12 I

    8 , d e g

    ( e ) M = 4.65.

    Figure

    16. Continued.

    .4

    0

    - .4

    4

  • 8/20/2019 19710066227

    86/91

      e) Concl uded.

    Figure

    16.

    Concl uded.

    85

  • 8/20/2019 19710066227

    87/91

    .o

    .o

    C

    ma

    . o

    .o

    -

    .o

    M

    ( a ) u = O.

    . 8

    Figure 17.- L o ng it ud in al s t a b i l i t y c h a ra c t e r i s t i c s o f t h e f i v e mi s s i l e

    configura t ions

    .

    86

  • 8/20/2019 19710066227

    88/91

    M

    (b)

    CY = 6O t o 20 .

    Figure 17.

    -

    Concluded.

    > 3

    NACA RM L58DO4

    87

  • 8/20/2019 19710066227

    89/91

    B

    M

    Figure 18.- L a t e r a l s t a b i l i t y c h a r a c te r i st i c s

    of

    model

    111.

    88

    NACA

    RM

    L58DO4

  • 8/20/2019 19710066227

    90/91

    .

    M

    Fi gur e

    19.

    L a t e r a l s t a b i l i t y c h a r a c t e r is t i c s

    of model I V.

    NACA Langley Field

    Va.

  • 8/20/2019 19710066227

    91/91