122
1 Two-Degree of Freedom Systems Introduction Equation of Motion Free Vibration of an Undamped System Torsional System Coordinate Coupling Forced Vibration Analysis

2DOF_1

Embed Size (px)

Citation preview

Page 1: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 1/122

1

Two-Degree of Freedom Systems

Introduction

Equation of Motion

Free Vibration of an Undamped System

Torsional System

Coordinate Coupling

Forced Vibration Analysis

Page 2: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 2/122

2

Introduction

Page 3: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 3/122

3

Importance of the Study of

Vibration

Why study vibration? Vibrations can lead to excessive deflections

and failure on the machines and structures

To reduce vibration: proper design ofmachines and their mountings

To utilize profitably in several consumer andindustrial applications

To improve the efficiency of certain machining,

casting, forging & welding processes

Page 4: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 4/122

4

Basic Concepts of Vibration

Vibration = any motion that repeatsitself after an interval of time

Vibratory System consists of:1) spring or elasticity

2) mass or inertia

3) damper 

Involves transfer of potential energy tokinetic energy and vice versa

Page 5: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 5/122

5

Basic Concepts of Vibration

Degree of Freedom (d.o.f.): min. no. of independent

coordinates required to determine completely the

positions of all parts of a system at any instant of time

Examples of single degree-of-freedom systems:

Page 6: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 6/122

6

Basic Concepts of Vibration

Examples of single degree-of-freedom

systems:

Page 7: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 7/122

Stiffness and Mass

Vibration is cause by the interaction of two different forces

one related to position (stiffness) and one related to

acceleration (mass).

Displacement

Mass Spring

Stiffness (k )

Mass (m )

)(t kx F k   

)()(   t  x mt maF m  

Proportional to displacement

Proportional to acceleration

statics

dynamics

Page 8: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 8/122

Equation of Motion

From Newton’s Law for this simple mass-spring systemthe two forces must be equal i.e. F M = F k .

k x 

Displacement

Mass Spring

0

)()(

)()(

t kx t  x m

t kx t  x m

 or 

 

This is a 2nd order differentialequation and all phenomena that

have differential equations of this

type for their equation of motion

will exhibit oscillatory behavior.

Page 9: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 9/122

Examples of Single-Degree-of-Freedom

Systems

m

 

l =length

Pendulum

0   )()(   t l 

g t    q q 

Gravity g 

Shaft and Disk

 

0   )()(   t k t J    q q 

TorsionalStiffness

k Moment

of inertia

NEWTON’s Law

Page 10: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 10/122

10

Basic Concepts of Vibration

Examples of Two degree-of-freedom

systems:

Page 11: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 11/122

11

Basic Concepts of Vibration

Examples of Three degree of freedom

systems:

Page 12: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 12/122

12

Basic Concepts of Vibration

Example of Infinite-number-of-degrees-of-freedom system:

Infinite number of degrees of freedom system

are termed continuous or distributed systems

Finite number of degrees of freedom are termeddiscrete or lumped parameter systems

More accurate results obtained by increasing

number of degrees of freedom

Page 13: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 13/122

13

Classification of Vibration

Free Vibration: A system is left to vibrate on its own after an

initial disturbance and no external force acts on

the system. E.g. simple pendulum

Forced Vibration: A system that is subjected to a repeating

external force. E.g. oscillation arises from diesel

engines

Resonance occurs when the frequency of the

external force coincides with one of the

natural frequencies of the system

Page 14: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 14/122

14

Classification of Vibration

Undamped Vibration:When no energy is lost or dissipated in friction

or other resistance during oscillations

Damped Vibration:

When any energy is lost or dissipated in friction

or other resistance during oscillations

Linear Vibration:

When all basic components of a vibratorysystem, i.e. the spring, the mass and the damper

behave linearly

Page 15: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 15/122

15

Classification of Vibration

Nonlinear Vibration:If any of the components behave nonlinearly

Deterministic Vibration:

If the value or magnitude of the excitation (force

or motion) acting on a vibratory system is known

at any given time

Nondeterministic or random Vibration:

When the value of the excitation at a given timecannot be predicted

Page 16: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 16/122

16

Classification of Vibration

Examples of deterministic and randomexcitation:

Page 17: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 17/122

17

Vibration Analysis Procedure

Step 1: Mathematical Modeling

Step 2: Derivation of Governing

EquationsStep 3: Solution of the Governing

Equations

Step 4: Interpretation of the Results

Page 18: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 18/122

18

Vibration Analysis Procedure

Example of the modeling of a forginghammer:

Page 19: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 19/122

19

Using mathematical model to representthe actual vibrating system

E.g. In figure below, the mass and damping

of the beam can be disregarded; the system

can thus be modeled as a spring-mass

system as shown.

Mass or Inertia Elements

Page 20: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 20/122

20

30.1sinsin   t  A A x    q  

31.1cos   t  Adt 

dx  

32.1sin   22

2

2

 xt  Adt 

 xd      

Harmonic Motion

Periodic Motion: motion repeated after equal intervals

of time.

Harmonic Motion: simplest type of periodic motion.

Displacement ( x): (on horizontal axis)

Velocity:

 Acceleration:

Page 21: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 21/122

21

Page 22: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 22/122

22

Definitions of Terminology:

 Amplitude ( A) is the maximum displacement

of a vibrating body from its equilibrium

position

Period of oscillation (T ) is time taken to

complete one cycle of motion

Frequency of oscillation ( f  ) is the no. of

cycles per unit time

59.1

2

 

 

60.12

1

 

 

T  f  

Harmonic Motion

Page 23: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 23/122

Summary of simple harmonic motion

x(t) 

0 x 

Slope

here is v 0 

 

Period

n

T  

 2

Amplitude

A

Maximum

Velocity

 An 

Hzs

cycles

rad/cycle

rad/s

 

 

 

 

 

 

222

nnnnf   

Page 24: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 24/122

Initial Conditions

If a system is vibrating then we must assume that somethingmust have (in the past) transferred energy into to the system

and caused it to move. For example the mass could have

been:

•moved a distance x 0 and then released at t=0 (i.e. given

Potential energy) or

•given an initial velocity v 0 (i.e. given Kinetic energy) or 

•Some combination of the two above cases

From our earlier solution we know that:

 ))

 ))

     

   

cos(cos()(

sin(sin()(

 A A x v 

 A A x  x 

nnn

n

00

00

0

0

Page 25: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 25/122

25

Harmonic Motion

Definitions of Terminology:

Natural frequency is the frequency which a system oscillates

without external forces

Phase angle ( ) is the angular difference between two

synchronous harmonic motions

62.1sin

61.1sin

22

11

  

 

t  A x

t  A x

Page 26: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 26/122

26

62.1sin61.1sin

22

11

   

t  A x

t  A x

Page 27: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 27/122

27

Page 28: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 28/122

28

•Complex Fourier Series:

The Fourier series can also be represented in

terms of complex numbers.

Harmonic Analysis

)79.1(sincos)78.1(sincos

t it e

t it e

t i

t i

    

 

 

 Also,

)81.1(2

sin

)80.1(2cos

i

eet 

eet 

t it i

t it i

  

  

 

 

and

Page 29: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 29/122

29

Page 30: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 30/122

30

Page 31: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 31/122

31

Page 32: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 32/122

32

Page 33: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 33/122

33

Page 34: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 34/122

34

Page 35: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 35/122

35

Page 36: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 36/122

36

Page 37: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 37/122

37

Page 38: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 38/122

38

Page 39: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 39/122

39

Page 40: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 40/122

40

Page 41: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 41/122

41

Page 42: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 42/122

42

Page 43: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 43/122

43

Page 44: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 44/122

44

Page 45: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 45/122

45

Page 46: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 46/122

46

Page 47: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 47/122

47

Page 48: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 48/122

48

Page 49: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 49/122

49

Page 50: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 50/122

50

Page 51: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 51/122

51

Page 52: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 52/122

x(t)

t

undampedoverdamped

underdamped

Critically

damped

d  

 2

nd      

 

1

 2

x0

Comparison of motion with different types of damping

Page 53: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 53/122

OTHER EXAMPLE

53

Page 54: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 54/122

54

Page 55: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 55/122

55

Page 56: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 56/122

56

Page 57: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 57/122

57

Page 58: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 58/122

58

Page 59: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 59/122

59

Page 60: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 60/122

60

Page 61: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 61/122

61

Page 62: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 62/122

Page 63: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 63/122

63

Two-Degree of Freedom Systems

Equation of Motion

Page 64: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 64/122

64

Two degree of freedom systems are defined as

systems that require two independentcoordinates to describe their motion.

Consider the motor-pump system shown in

Fig.5.1. The vertical displacement of the system

and the angular coordinate denoting the rotation

of the mass about its C.G. make up two

independent coordinates.

Figure 5.1: Motor-pump system

Page 65: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 65/122

65

Consider the system shown in Fig.5.2.

The general rule for the computation of the

number of degrees of freedom can be stated as

follows:

No. of degrees No. of masses in the system

of freedom of = x no. of possible types of the system motion of each mass

Figure 5.2: Packaging of an instrument

Page 66: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 66/122

66

Page 67: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 67/122

67

Page 68: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 68/122

68

0

Page 69: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 69/122

69

0

Page 70: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 70/122

70

Page 71: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 71/122

71

Page 72: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 72/122

72

Page 73: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 73/122

73

Page 74: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 74/122

74

Page 75: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 75/122

75

Page 76: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 76/122

76

Page 77: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 77/122

77

Page 78: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 78/122

78

Page 79: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 79/122

79

Page 80: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 80/122

80

Page 81: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 81/122

81

Page 82: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 82/122

82

Page 83: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 83/122

OTHER EXAMPLE

83

Deriving 2-DOF mathematical model

Page 84: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 84/122

84

Deriving 2 DOF mathematical model

Page 85: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 85/122

Page 86: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 86/122

86

Free Vibration of an Undamped 2-DOF

System

These are coupled eqns of motion. For normal mode of oscillation, each

mass undergoes harmonic motion of same freq passing through theequilibrium position.

In matrix form, (1)

)1(0)(

0)(

1223222

2212111

 xk  xk k  xm

 xk  xk k  xm

0)(

)(

0

0

2

1

322

221

2

1

2

1

 x

 x

k k k 

k k k 

 x

 x

m

m

Page 87: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 87/122

87

Free Vibration of an Undamped 2-DOF

System

Assume harmonic motion. Let,

)sin((

2

)sin(

2

2

1

2

1

2

1

2

1

   

  

t  X  X 

 x x

t  X 

 X 

 x

 x

Page 88: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 88/122

88

Subst. (2) into (1)

)3(0)(

(

0)(

)(

0

0

2

1

2

2322

2

2

121

2

1

322

221

2

1

2

2

2

1

 X 

 X 

mk k k 

k mk k 

or 

 X 

 X 

k k k 

k k k 

 X 

 X 

m

m

 

 

 

 

Page 89: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 89/122

89

For non-trivial solution,

0))(())((

0

':

12212211

2221

1211

 A A A A

 A A

 A A

 Rule sCramer  Note

  0)(

)(det

32

2

22

221

2

1

k k mk 

k k k m

 

 

or

Page 90: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 90/122

90

or 

  0))((

)()()(

2

23221

132221

4

21

k k k k k 

mk k mk k mm     

 A

 AC  B B x

c Bx Ax

 x

Substitute

mm

k k k k k k 

m

k k 

m

k k 

2

4

0

,

0)()()(

2

2

2

21

1332212

2

32

1

214

 

 

 

 

   

 

 

 

   

 

  

Page 91: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 91/122

To determine the values of X1 and X2,

Page 92: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 92/122

92

The normal modes of vibration corresponding to ω12 and ω22 canbe expressed, respectively, as

)11.5()(

)(

)()(

)3(

32

2

22

2

2

21

2

21

)2(

1

)2(

22

32

2

12

2

2

21

2

11)1(

1

)1(

21

k k m

k k m

 X 

 X r 

k k mk 

k k k m

 X  X r 

 From

 

 

  

1 2,

)12.5( and )2(

12

)2(

1

)2(

2

)2(

1)2(

)1(

11

)1(

1

)1(

2

)1(

1)1(

 X r 

 X 

 X 

 X  X 

 X r 

 X 

 X 

 X  X 

Known as the modal vectors of the system.

Page 93: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 93/122

93

Modal vector

First mode

Second mode

.)2(

2

)2(

12

)1(

2

)1(

1121

 X and  X asat and 

 X and  X astocorrespond  X and  X of  Values

 

 

The free vibration solution or the motion in time can be

Page 94: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 94/122

94

In i t ial condi t ions . The initial conditions are

(5.13)modesecond

)cos(

)cos(

)(

)()(

modefirst)cos(

)cos(

)(

)()(

22

)2(

12

22

)2(

1

)2(

2

)2(

1)2(

11

)1(

11

11

)1(

1

)1(

2

)1(

1)1(

  

  

  

  

t  X r 

t  X 

t  x

t  xt  x

t  X r t  X 

t  xt  xt  x

The free vibration solution or the motion in time can be

expressed itself as

0)0(,)0(

,0)0(constant,some)0(

2

)(

12

1

)(

11

t  x X r t  x

t  x X t  x

i

i

i

Page 95: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 95/122

Page 96: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 96/122

96

Substituting into Eq.(5.15) leads to

)16.5()0()0(),0()0(

),0()0(),0()0(

2222

1111

 xt  x xt  x

 xt  x xt  x

)17.5(sinsin)0(

coscos)0(

sinsin)0(coscos)0(

2

)2(

1221

)1(

1112

2

)2(

121

)1(

112

2

)2(

121

)1(

111

2

)2(

11

)1(

11

    

  

      

 X r  X r  x

 X r  X r  x

 X  X  x X  X  x

Page 97: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 97/122

97

The solution can be expressed as

)()0()0(sin,

)()0()0(sin

)0()0(cos,

)0()0(cos

122

2112

)2(1

121

2121

)1(1

12

2112

)2(

1

12

2121

)1(

1

r r  x xr  X 

r r  x xr  X 

r r 

 x xr  X 

r r 

 x xr  X 

  

  

  

from which we obtain the desired solution

Page 98: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 98/122

98

   

 

   

 

)18.5()0()0([

)0()0(tan

cos

sintan

)0()0([

)0()0(

tancos

sin

tan

)0()0()0()0(

)(

1

sincos

)0()0()0()0(

)(

1

sincos

2112

2111

2

)2(

1

2

)2(

11

2

2121

2121

1)1(

1

1

)1(

11

1

2/1

2

2

2

2112

211

12

2/12

2

)2(

1

2

2

)2(

1

)2(

1

2/1

2

1

2

2122

212

12

2/12

1

)1(

1

2

1

)1(

1

)1(

1

 

 

 x xr 

 x xr 

 X 

 X 

 x xr 

 x xr 

 X 

 X 

 x xr  x xr 

r r 

 X  X  X 

 x xr  x xr 

r r 

 X  X  X 

  

  

  

 

 

 

  

 

  

Example 5.3

Page 99: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 99/122

99

p

Find the free vibration response of the system

shown with k1 = 30, k2 = 5, k3 = 0, m1 = 10, andm2 = 1 for the initial conditions

).0()0()0( ,1)0( 2211   x x x x    

Page 100: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 100/122

100

Solut ion : For the given data, the eigenvalue problem,

Eq.(5.8), becomes

(E.1)0

0

55- 

5 3510

0

0

2

1

2

2

2

1

322

22

221

2

1

 X 

 X 

 X 

 X 

k k mk 

k k k m

 

 

 

 

or 

By setting the determinant of the coefficient matrix in

Page 101: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 101/122

101

from which the natural frequencies can be found as

By setting the determinant of the coefficient matrix in

Eq.(E.1) to zero, we obtain the frequency equation,

(E.2)01508510   24     

)2(

1

)2(

2

2

2

2

)1(

1

)1(

2

2

1

2

21

22

21

5)1(0.6

2)1(5.2Subst

E.3)(4495.2,5811.1

0.6,5.2

 X  X toleads E in

 X  X toleads E in

  

  

  

  

Page 102: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 102/122

102

The normal modes (or eigenvectors) are given by

E.5)(5

E.4)(2

1

)2(

1)2(

2

)2(1)2(

)1(

1)1(

2

)1(

1)1(

 X  X 

 X  X 

 X  X 

 X  X 

The free vibration responses of the masses m1 and m2

Page 103: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 103/122

103

By using the given initial conditions in Eqs.(E.6) and

(E.7), we obtain

The free vibration responses of the masses m1 and m2

are given by (see Eq.5.15):

(E.7))4495.2cos(5)5811.1cos(2)((E.6))4495.2cos()5811.1cos()(

2

)2(

11

)1(

12

2

)2(

11

)1(

11

    

t  X t  X t  x

t  X t  X t  x

(E.11)sin2475.121622.3)0(

(E.10)sin4495.2sin5811.10)0(

(E.9)cos5cos20)0(

(E.8)coscos1)0(

2

)2(

1

)1(

12

2

)2(

11

)1(

11

2

)2(

11

)1(

12

2

)2(

11

)1(

11

 

  

  

  

 X  X t  x

 X  X t  x

 X  X t  x

 X  X t  x

Page 104: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 104/122

104

while the solution of Eqs.(E.10) and (E.11) leads to

The solution of Eqs.(E.8) and (E.9) yields

(E.12)7

2cos;7

5cos 2

)2(

11

)1(

1          X  X 

(E.13)0sin,0sin 2

)2(

11

)1(

1          X  X 

Equations (E.12) and (E.13) give

(E.14)0,0,7

2

,7

521

)2(

1

)1(

1        X  X 

Page 105: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 105/122

105

Thus the free vibration responses of m1 and m2 are

given by

(E.16)4495.2cos7

105811.1cos7

10)(

(E.15)4495.2cos7

25811.1cos

7

5)(

2

1

t t t  x

t t t  x

Page 106: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 106/122

Page 107: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 107/122

107

1 1 1 2 2 1

2 2 2 2 2

0 ( )   0

0   0

m x k k k x

m x k k x

   

1 1

2 2

sin( )sin( )

 x A t  x A t 

  

2

1 1

2

2 2

sin( )

sin( )

 x A t 

 x A t 

 

 

2

1 1 2 2 11

22 2 2 22

( )   00

00

 A k k k Am

 A k k Am

 

 

   

   

2

1 2 1 2 1

222 2 2

( ) 0

0

k k m k     A

 Ak k m

 

 

       

Can be solvedonly if 

2

1 2 1 2

2

2 2 2

( )0

k k m k  

k k m

 

 

Page 108: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 108/122

108

21 2 1 2

2

2 2 2

4 2 2

1 2 1 2 2 2 1 1 2 2 2

( )0

( ) ( ) ( ) 0

k k m k  

k k m

m m k k m k m k k k k  

 

 

 

2 2

1 2 2 2 1 1 2 2 2 1 1 2 1 2 2 22 2

1 2

1 2

( ) ( ) 4( ) ( ),

2( )

k k m k m k k m k m m m k k k k  

m m  

1 1

2 2

 first natural frequency

 first natural frequency

n

n

 

 

Page 109: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 109/122

Page 110: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 110/122

110

x 1 

x 2 

For a case

2 4 2 2( ) 3 0m km k    

2 2 2 2 2 2

21   2 2

2

2

1

2

3 9 4 3 52 2

3 5 3 5

2 4 2 4

1.618

0.618

n

n

n

km k m m k km m k  m m

k k k k  

m m m m

m

m

 

 

 

4 2 21 2 1 2 2 2 1 1 2 2 2( ) ( ) ( ) 0m m k k m k m k k k k    

m1= m2

= m

k 1= k 

2= k 

Page 111: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 111/122

111

Mode shapes

(1)   2

2

(1)

1

(2 ) (1.618) ( / )0.618

 A k m k m

 A k 

(1) 2

2

(1)

1

(2 ) (0.618) ( / )1.618

 A   k m k m

 A k 

1.0

-0.618

1.0

1.618

1

1.0

0.618 

   

2

1.0

1.618 

   

Page 112: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 112/122

However for any other general initial conditions both

Page 113: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 113/122

113

However, for any other general initial conditions, bothmodes will be excited. The resulting motion can beobtained by a linear superposition of the two normal

modes

)()()( 2211   t  xct  xct  x 

)cos()cos()()()(

)cos()cos()()()(

22

)2(

1211

)1(

11

)2(

2

)1(

22

22)2(111)1(1)2(1)1(11

    

    

t  Ar t  Ar t  xt  xt  x

t  At  At  xt  xt  x

asexpressedbecanvectortheof componentstheThus

.generalityof lossnowithchoosecanweand

constantsunknowntheinvolvealreadyandSince

constants.areandwhere

 )(

 1,

 )()(

 

21

)2(

1

)1(

1

)2()1(

21

t  x

cc A A

t  xt  x

cc

Page 114: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 114/122

114

:conditionsinitialthefrom

determinebecanandconstantsunknownthewhere   21

)2(

1

)1(

1   ,,    A A

)0()0( ),0()0(

)0()0( ),0()0(

2222

1111

 xt  x xt  x

 xt  x xt  x

2

)2(

1221

)1(

1112

2

)2(

121

)1(

112

2

)2(

121

)1(

111

2

)2(

11

)1(

11

sinsin)0(

coscos)0(

sinsin)0(

coscos)0(

    

  

    

  

 Ar  Ar  x

 Ar  Ar  x

 A A x

 A A x

Page 115: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 115/122

Example

115

Page 116: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 116/122

116

Page 117: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 117/122

Page 118: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 118/122

118

Page 119: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 119/122

Example

119

Page 120: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 120/122

120

Page 121: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 121/122

121

Page 122: 2DOF_1

8/12/2019 2DOF_1

http://slidepdf.com/reader/full/2dof1 122/122