Chuối Lũy Thừa Hình Thức Và Hàm Sinh

Embed Size (px)

DESCRIPTION

toán học

Citation preview

  • i Hc Thi Nguyn

    Trng i Hc Khoa Hc

    Hong Vn Qu

    Chui lu tha hnh thc v hm sinh

    Chuyn ngnh : Phng Php Ton S Cp

    M s: 60.46.40

    Lun Vn Thc S Ton Hc

    Ngi hng dn khoa hc: PGS.TS. m Vn Nh

    Thi Nguyn - 2011

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Cng trnh c hon thnh ti

    Trng i Hc Khoa Hc - i Hc Thi Nguyn

    Phn bin 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Phn bin 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Lun vn s c bo v trc hi ng chm lun vn hp ti:

    Trng i Hc Khoa Hc - i Hc Thi Nguyn

    Ngy.... thng.... nm 2011

    C th tm hiu ti

    Th Vin i Hc Thi Nguyn

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Mc lc

    1 Kin thc chun b 4

    1.1 Khi nim vnh v ng cu . . . . . . . . . . . . . . . . . . . 4

    1.1.1 Vnh . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.1.2 c ca khng. Min nguyn . . . . . . . . . . . . . . 4

    1.1.3 ng cu . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.1.4 Trng . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.2 Vnh a thc v nghim . . . . . . . . . . . . . . . . . . . . . 5

    2 Vnh cc chui ly tha hnh thc 11

    2.1 Vnh cc chui ly tha hnh thc . . . . . . . . . . . . . . . 11

    2.2 Dy hiu ca mt dy . . . . . . . . . . . . . . . . . . . . . . 17

    2.3 Hm sinh thng v dy Fibonacci, dy Catalan . . . . . . . . 20

    2.4 Hm sinh m v dy s Stirling . . . . . . . . . . . . . . . . . 24

    2.5 Hm sinh ca dy cc a thc Bernoulli . . . . . . . . . . . . 27

    2.6 Hm sinh Dirichlet v hm Zeta-Riemann . . . . . . . . . . . 34

    2.7 Tch v hn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    2.8 ng nht thc Newton . . . . . . . . . . . . . . . . . . . . . 41

    2.9 Dy truy hi vi hm sinh . . . . . . . . . . . . . . . . . . . . 48

    1

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • M u

    Trong ton hc vic s dng cc kin thc ton cao cp gii quyt cc bi

    ton ph thng l iu rt quan trng. N khng ch gip ngi lm ton

    c nhiu phng php la chn li gii, m rng tm hiu bit ton hc m

    cn pht huy c s thng minh v sc sng to, tm bao qut bi ton, m

    rng bi ton di nhiu hng khc nhau.

    S dng cc kin thc v chui s gii quyt cc bi ton v dy s

    l mt vn nh vy. Nh chng ta bit cc vn lin quan n dy

    s l mt phn quan trng ca i s v gii tch ton hc. Khi tip cn vn

    ny cc em hc sinh gii, sinh vin v kh nhiu thy c gio ph thng

    thng rt phi i mt vi rt nhiu bi ton kh lin quan n chuyn

    ny.

    Trong cc k thi hc sinh gii quc gia, thi Olimpic ton quc t, thi

    Olimpic ton sinh vin gia cc trng i hc, cao ng, cc bi ton lin

    quan n dy s cng hay c cp v thng loi rt kh, i hi ngi

    hc, ngi lm ton phi c mt tm hiu bit rng v rt su sc cc kin

    thc v dy s v chui s mi a ra cc phng php gii ton hay v hon

    thin c bi ton.

    phc v cho vic bi dng hc sinh gii v vic trao i kinh nghim

    vi cc thy c gio bi dng hc sinh gii quan tm v tm hiu thm v

    phn ny, c s hng dn ca thy m Vn Nh tc gi hc tp thm

    v vit ti " Chui lu tha hnh thc v hm sinh".

    ti gii quyt cc vn trng tm :

    Chng I : Kin thc chun b .Tc gi nhc li cc kin thc c bn nht

    v :

    1.1 Khi nim vnh v ng cu

    1.1.1 Vnh.

    1.1.2 c ca khng. Min nguyn.

    2

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 31.1.3 ng cu.

    1.1.4 Trng.

    1.2 Vnh a thc v nghim.

    Chng II : Vnh cc chui lu tha hnh thc. Tc gi gii thiu cc kin

    thc.

    2.1 Vnh cc chui lu tha hnh thc.

    2.2 Dy hiu ca mt dy .

    2.3 Hm sinh thng v dy Fibonacci, dy Catalan.

    2.4 Hm sinh m v dy s Stirling.

    2.5 Hm sinh ca dy cc a thc Bernoulli.

    2.6 Hm sinh Dirichlet v hm Zeta-Riemann.

    2.7 Tch v hn.

    2.8 ng nht thc Newton.

    2.9 Dy truy hi vi hm sinh.

    Lun vn ny c hon thnh di s hng dn v ch bo tn tnh ca

    PGS.TS m Vn Nh - i hc S Phm H Ni. Thy dnh nhiu thi

    gian hng dn v gii p cc thc mc ca tc gi trong sut qu trnh lm

    lun vn. Tc gi xin by t lng bit n su sc n Thy.

    Tc gi xin gi ti cc thy (c) khoa Ton, phng o to Trng i

    Hc Khoa Hc - i Hc Thi Nguyn, cng cc thy c tham gia ging

    dy kha Cao hc 2009-2011 li cm n su sc v cng lao dy d trong

    thi gian qua. ng thi xin gi li cm n tp th lp Cao hc Ton K3B

    Trng i Hc Khoa Hc ng vin gip tc gi trong qu trnh hc

    tp v lm lun vn ny.

    Tc gi xin cm n ti S Ni V, S Gio dc v o to Bc Ninh, Ban

    gim hiu v t Ton trng THPT Lng Ti 2 to iu kin gip

    tc gi hon thnh kha hc ny.

    Tc gi

    Hong Vn Qu

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng 1

    Kin thc chun b

    1.1 Khi nim vnh v ng cu

    1.1.1 Vnh

    nh ngha . Ta gi l vnh mt tp hp X cng vi hai php ton hai ngi

    cho trong X k hiu theo th t bng cc du + v . (ngi ta thng k

    hiu nh vy) v gi l php cng v php nhn sao cho cc iu kin sau

    tha mn:

    1) X cng vi php cng l mt nhm aben.

    2) X cng vi php nhn l mt na nhm.

    3) Php nhn phn phi vi php cng: Vi cc phn t ty x, y, z X tac:

    x(y + z) = xy + xz(y + z)x = yx+ zx

    Phn t trung lp ca php cng th k hiu l 0 v gi l phn t khng.

    Phn t i xng (i vi php cng ) ca mt phn t x th k hiu l -x

    v gi l i ca x . Nu php nhn l giao hon th ta bo vnh X l giao

    hon. Nu php nhn c phn t trung lp th phn t gi l phn t n

    v ca x v thng k hiu l e hay 1 .

    1.1.2 c ca khng. Min nguyn

    nh ngha1 : Ta gi l c ca 0 mi phn t a 6= 0 sao cho c b 6= 0 thamn quan h ab=0.

    nh ngha2 : Ta gi min nguyn mt vnh c nhiu hn mt phn t, giao

    4

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 5hon, c n v, khng c c ca 0.

    1.1.3 ng cu

    nh ngha. Mt ng cu (vnh) l mt nh x t mt vnh X n mt

    vnh Y sao cho:

    f (a+ b) = f (a) + f (b)f (ab) = f (a) f (b)

    vi mi a, b X. Nu X = Y th ng cu f gi l mt t ng cu ca X .Ta cng nh ngha n cu, ton cu, ng cu tng t nh nh ngha

    trong nhm.

    1.1.4 Trng

    nh ngha: Ta gi l trng mt min nguyn X trong mi phn t khc

    khng u c mt nghch o trong v nhm nhn X. Vy mt vnh X giao

    hon, c n v, c nhiu hn mt phn t l mt trng nu v ch nu

    X {0} l mt nhm i vi php nhn ca X.

    1.2 Vnh a thc v nghim

    Kt qu chnh

    Cho vnh giao hon R v mt bin x trn R. Vi cc n N, xt tp hp:

    R[x] = {a0 + a1x+ a2x2 + + anxn | ai R} ={ n

    i=0

    aixi | ai R

    }.

    Mi phn t f(x) R[x] c gi l mt a thc ca bin x vi cc h sai thuc vnh R. H s an c gi l h s cao nht, cn h s a0 c gil h s t do ca f(x). Khi an 6= 0 th n c gi l bc ca f(x) v c

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 6k hiu deg f(x). Ring a thc 0 c quy nh c bc l hoc 1.Nu f(x) =

    ni=0

    aixi, g(x) =

    mi=0

    bixi R[x] th

    f(x) = g(x) khi v ch khi m = n, ai = bi vi mi 0 6 i 6 n

    f(x) + g(x) =i=0

    (ai + bi)xi, f(x)g(x) =

    i=0

    (i

    j=0

    aijbj)xi.

    nh l 1.2.1. Ta c R[x] l mt vnh giao hon. Hn na, nu R l mtmin nguyn th R[x] cng l mt min nguyn.

    nh l 1.2.2. Gi s k l mt trng. Vi cc a thc f(x), g(x) k[x] vg(x) 6= 0 c hai a thc duy nht q(x), r(x) sao cho f(x) = q(x)g(x)+r(x)vi deg r(x) < deg g(x).

    V d 1.2.3. Cho hai s t nhin n v p vi n > p > 1. Tm iu kin cnv xn an chia ht cho xp ap vi a R, a 6= 0.Bi gii: Biu din n = qp+ r trong Z vi 0 6 r < p. Khi c biu din

    xn an = (xp ap)(xnp + apxn2p + + a(q1)pxnqp) + aqp(xr ar).Vy, iu kin cn v xn an chia ht cho xp ap l n : p.nh l 1.2.4. Gi s k l mt trng. Khi vnh k[x] l mt vnh chnhv n l vnh nhn t ha.

    Gi s R v a thc f(x) =ni=0

    aixi R[x]. Biu thc f() =

    ni=0

    aii R c gi l gi tr ca f(x) ti . Nu f() = 0 th cgi l mt nghim ca f(x) trong R. Gi s s nguyn m > 1 v k.f() = 0 c gi l mt nghim bi cp m ca f(x) trong k nu f(x) chiaht cho (x )m v f(x) khng chia ht cho (x )m+1.nh l 1.2.5. a thc f(x) k[x] bc n > 1. Khi ta c cc kt qu sau:(i) Nu k l nghim ca f(x) th f(x) = (x)g(x) vi g(x) k[x].(ii) f(x) c khng qu n nghim phn bit trong k.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 7i khi tm mi lin h gia cc nghim hay mt tnh cht no ca

    nghim a thc ta thng s dng kt qu sau y:

    nh l 1.2.6. [Vit] Gi s x1, . . . , xn l n nghim ca a thc bc n sauy: f(x) = xn 1xn1 + 2xn2 + (1)nn. Khi c cc h thc

    1 = x1 + x2 + + xn2 = x1x2 + x1x3 + + xn1xn...

    n = x1x2 . . . xn.

    nh l 1.2.7. Gi s f(x1, x2, . . . , xn) k[x1, x2, . . . , xn] l mt a thci xng khc 0. Khi tn ti mt v ch mt a thc s(x1, x2, . . . , xn) k[x1, x2, . . . , xn] sao cho f(x1, x2, . . . , xn) = s(1, 2, . . . , n).

    Mt s v d

    V d 1.2.8. Gi s f(x) = x4 5x3 + 9x2 10x+ 28. Tnh f(1 + 33).Bi gii: V 1 + 3

    3 l nghim ca g(x) = x3 3x2 + 3x 4 = 0 v

    f(x) = (x 2)g(x) + 20 nn f(1 + 33) = 20.V d 1.2.9. [VMO 1990] Gi s f(x) = a0x

    n+a1xn1+ +an1x+an

    R[x] vi a0 6= 0 v tha mn f(x)f(2x2) = f(2x3 + x) vi mi gi tr thcx. Chng minh rng f(x) khng th c nghim thc.

    Bi gii: So snh h s ca x3n v x0 hai v, nn t f(x)f(2x2) = f(2x3+x) ta suy ra a20 = a0 v a

    2n = an.V a0 6= 0 nn a0 = 1; cn an = 0 hoc an =

    1. Nu an = 0 th f(x) = xrg(x) vi g(0) 6= 0. Vy xrg(x)2rx2rg(2x2) =

    xr(2x2 + 1)rg(2x3 + x) hay g(x)2rx2rg(2x2) = (2x2 + 1)rg(2x3 + x). Vg(0) 6= 0 nn ta nhn c g(0) = 0 : mu thun. Vy an = 1. Gi sf(x) = 0 c nghim thc x0. Khi x0 6= 0 v an 6= 0. V f(2x30 + x0) =f(x0)f(2x

    20) = 0 nn x1 = 2x

    30 + x0 cng l nghim thc ca f(x). V hm

    y = 2x3 + x l n iu tng nn dy (xr+1 = 2x3r + xr)r>0 v x0 6= 0 lmt dy v hn v mi s hng u l nghim ca f(x) hay f(x) c nhiuv hn nghim: mu thun theo nh l 1.2.5. Vy f(x) khng c nghimthc.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 8V d 1.2.10. [IMO 1991] Gi s s hu t a (0; 1) tha mn phngtrnh cos 3pia+ 2 cos 2pia = 0. Chng minh rng a =

    2

    3.

    Bi gii: t x = cospia. Khi 4x3+4x23x2 = 0 hay (2x+1)(2x2+x2) = 0. Nu cos pia = x = 1

    2th a =

    2

    3. Nu x 6= 1

    2th 2x2+x2 =

    0, v nh vy x l s v t. Do |x| 6 1 nn cospia = x = 1 +

    17

    4. Bng

    quy np, c th ch ra cos 2npia =an + bn

    17

    4vi s nguyn l an, bn. V

    an+1 + bn+1

    17

    4= cos 2n+1pia = 2 cos2 2npia 1 = 2[an + bn

    17

    4]2 1

    nn an+1 =a2n + 17b

    2n 8

    2> an. Do dy (an) l mt dy tng nghim

    ngt v nh vy tp cc gi tr ca cos 2npia vi n = 0, 1, 2, ... l tp vhn (*) v

    17 l s v t. Nhng do a l s hu t nn tp cc gi trca cosmpia vi m = 0, 1, 2, ... phi l hu hn: mu thun vi (*). Do d

    a =2

    3.

    V d 1.2.11. Gi thit a thc f(x) bc n c tt c cc nghim u thc.Khi tt c cc nghim ca af(x) + f (x) cng l nhng s thc.

    Bi gii: Gi s f(x) c cc nghim thc x1, x2, . . . , xk vi bi tng ngr1, r2, . . . , rk v ta sp xp x1 < x2 < < xk. Hm s

    g(x) =f (x)f(x)

    =1

    x x1 +1

    x x2 + +1

    x xkl hm lin tc trong cc khong (;x1), (x1;x2), . . . , (xk1;xk), (xk;).Da vo s bin thin ca cc hm

    1

    x xj , phng trnh g(x) = a c thmk nghim mi na khc x1, x2, . . . , xk khi a 6= 0. Vy f(x)[g(x) +a] = 0 ctt c (r1 1) + + (rk 1) + k = deg f(x) nghim thc. Vy tt c ccnghim ca af(x)+f (x) u thc. Khi a = 0 th g(x) = 0 c k1 nghimthc mi na. Vy f(x)[g(x)+0] = 0 c tt c (r11)+ +(rk1)+k1 =deg f (x). Tm li tt c cc nghim ca af(x)+f (x) l nhng s thc.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 9V d 1.2.12. Gi thit tt c cc nghim ca a thc f(x) v a thc g(x) =a0x

    n + a1xn1 + + an u l nhng s thc. Khi tt c cc nghimca F (x) = a0f(x) + a1f

    (x) + + anf (n)(x) cng u l nhng s thc.Bi gii: Biu din g(x) = a0(x+ 1)(x+ 2) . . . (x+ n) vi cc j thc.K hiu F0(x) = a0f(x), F1(x) = F0(x) + 1F

    0(x) = a0[f(x) + 1f

    (x)],F2(x) = F1(x)+2F

    1(x) = a0[f(x)+(1+2)f

    (x)]+12f (x)],v.v... cuicng Fn(x) = Fn1(x) + nF n1(x) = a0f(x) + a1f

    (x) + + anf (n)(x).Theo V d 1.2.11 suy ra tt c cc nghim ca F0, F1, . . . , Fn u thc.

    V d 1.2.13. Cho f = cosu + C1n cos(u + )x + + Cnn cos(u + n)xn.Gii phng trnh f(x) = 0.

    Bi gii: t g = sinu+ C1n sin(u+)x+ + Cnn sin(u+n)xn. Khi f + ig = z + C1n ztx+ + Cnn ztnxn = z(1 + tx)nf ig = z + C1n ztx+ + Cnn ztnxn = z(1 + tx)n

    z = cosu+ i sinu

    t = cos + i sin.

    Do 2f = z(1 + tx)n + z(1 + tx)n. Phng trnh f(x) = 0 tng

    ng vi z(1 + tx)n + z(1 + tx)n = 0 hay(1 + tx

    1 + tx

    )n= z

    z= z2.

    Nh vy

    (1 + tx1 + tx

    )n= cos(2u + pi) + i sin(2u + pi) v c

    1 + tx

    1 + tx=

    cos(2u+ pi + k2pi

    n) + i sin(

    2u+ pi + k2pi

    n) vi k = 0, 1, . . . , n 1. T c x.

    V d 1.2.14. Gi s a1, . . . , an, b R \ {0} v 1, . . . , n l nhng s thcphn bit. Khi f(x) = b+

    nk=1

    a2kx k ch c nghim thc.

    Bi gii: Ta c f(c+ id) = b+nk=1

    a2kc+ id k = b+

    nk=1

    a2k(c k id)(c k)2 + d2 .

    Phn o Im(f(c + id)) = dnk=1

    a2k(a k)2 + b2 6= 0 khi d 6= 0. Vy f(c +

    id) 6= 0 khi d 6= 0. Khng hn ch c th coi 1 < 2 < < n1 < n.Hin nhin f(x) = 0 c n 1 nghim thc k tha mn

    1 < 1 < 2 < 2 < < n1 < n1 < n

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 10

    v thm ng mt nghim tha mn hoc (, 1) hoc (n,+). T suy ra hm f(x) ch c cc nghim thc.V d 1.2.15. Cho a thc P (x) = 1 + x2 + x9 + xn1 + ...+ xns + x1992

    vi n1, ..., ns l cc s t nhin cho trc tha mn 9 < n1 < ... < ns k(k + 1) nn|b0ak1 + b1ak2 + + bk2a1 + bk1| 6 2

    (|ak1|+ |ak2|+ + |a1|+ 1)v nh th k(k + 1) < |kak| 6 2

    (k + (k 1) + + 2 + 1) = k(k + 1) :mu thun. Nh vy |an| 6 n+ 1 vi mi n.V d 2.1.12. Chng minh rng 2

    12 (22)

    122 (2n) 12n < 4 vi mi s nguyndng n.

    Bi gii: V 212 (22)

    122 (2n) 12n = 2

    nk=1

    k

    2knn ch cn chng minh

    nk=1

    k

    2k 1 :an = 2an1 + (2n 1)2an2, bn = 2bn1 + (2n 1)2bn2.

    Bi gii: Bng quy np theo n ta nhn c cc cng thc bn =nk=0

    (2k+ 1)

    v an = (2n + 1)an1 + (1)nn1k=0

    (2k + 1). Vyanbn

    =an1bn1

    +(1)n2n+ 1vi

    mi s nguyn n > 0. Nh vy anbn

    = 1 13

    +1

    5+ + (1)

    n

    2n+ 1. Chuyn

    qua gii hn ta c limn+

    anbn

    = arctan 1 =pi

    4.

    V d 2.1.14. Cho hai dy s nguyn (an) v (bn) tha mn:{a0 = 1, b0 = 1an = 2n 1, bn = n2, n > 1.Xy dng hai dy cc s nguyn (An) v (Bn) nh sau:{

    A0 = 0, B0 = 1, A1 = 1, B1 = a1

    An+1 = an+1An + bnAn1, Bn+1 = an+1Bn + bnBn1, n > 1.

    (i) Tnh An, Bn theo n.

    (ii) Chng minh

    AnBn Q \ Z.

    (iii) Tm limn

    BnAn

    .

    (iv) Chng minh

    nk=1

    1

    k=

    1

    1 12

    3 22

    5 32

    .

    .

    . 2n 3 (n 1)

    2

    2n 1

    .

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 17

    Bi gii: Bng quy np theo n ta nhn c cc cng thc Bn = n! v

    An = (nk=1

    1

    k)n!.

    (ii) Ta c

    AnBn

    =nk=1

    1

    k Q \ Z.

    (iii) V

    BnAn

    =1nk=1

    1

    k

    nn limn

    BnAn

    = limx1+

    1

    ln(1 + x)= 0.

    (iii) Do

    nk=1

    1

    k=AnBn

    =1

    1 12

    3 22

    5 32

    .

    .

    . 2n 3 (n 1)

    2

    2n 1

    .

    2.2 Dy hiu ca mt dy

    nh ngha 2.2.1. Cho dy s {an} = {an}nN. Dy {Dan}nN vi Dan =an+1 an, n > 0, c gi l dy hiu ca dy {an}.V dy hiu cng l mt dy s nn ta c th lp dy hiu ca n v k hiu

    qua {D2an}. Hin nhinD2an = Dan+1 Dan = an+2 2an+1 + an.Tng qut Dk+1an = D

    kan+1 Dkan v Dk(Dhan) = Dk+han.V d 2.2.2. Vi s nguyn dng r, dy (an), trong an =

    (nr

    ), tha mnh thc Dan = an+1 an =

    (nr1).

    B 2.2.3. Vi hai dy s {an} v {bn} ta cD(ran+sbn) = rDan+sDbnv Dk(ran + sbn) = rD

    kan + sDkbn vi mi s r, s v s t nhin k, n.

    Chng minh: VD(ran+sbn) = rDan+sDbn = r(an+1an)+s(bn+1bn)nn c ngay kt qu D(ran + sbn) = rDan + sDbn. Tng qut D

    k(ran +sbn) = rD

    kan + sDkbn c chng minh d dng bng qui np theo k.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 18

    B 2.2.4. Cho dy s {an}. Nu Dr+1an = 0 vi mi n > 0 th r + 1 shng a0, Da0, . . . , D

    ra0 xc nh hon ton tt c cc Dkan vi mi k, n.c bit, nu dy s {bn} tha mn Djb0 = Dja0 v Dr+1bn = 0 vi min > 0, 0 6 j 6 r, th an = bn vi mi n.Chng minh: Hin nhin.

    nh l 2.2.5. Cho dy s {an}. Nu c a thc p(x) bc r tha mn an =p(n) vi mi n > 0 thDr+1an = 0 vi mi n > 0. Ngc li, nuDr+1an =0 vi mi n > 0 th

    an =

    (n

    0

    )a0 +

    (n

    1

    )Da0 + +

    (n

    s

    )Dsa0 + +

    (n

    r

    )Dra0.

    Chng minh: Gi s a thc p(x) bc r tha mn an = p(n) vi mi n > 0.Ta ch ra Dr+1an = 0 bng phng php qui np theo r. Khi r = 0 can = p(n) = a. Vy D

    1an = a a = 0. Gi s kt lun ng cho r 1 vp(x) = crx

    r+ +c0. V an = p(n) vi mi n > 0 nn Dan = an+1an =p(n+ 1) p(n). t q(x) = p(x+ 1) p(x) tha mn Dan = q(n). V q(x)l a thc bc r 1 nn Dr(Dan) = 0 theo gi thit qui np. Vy ta nhnc Dr+1an = 0.Gi thit dy {an} tha mn Dr+1an = 0 vi mi n > 0. nh ngha dymi {bn} xc nh bi:

    bn =

    (n

    0

    )a0 +D

    (n

    1

    )a0 + +Ds

    (n

    s

    )a0 + +Dr

    (n

    r

    )a0, n > 0.

    Theo B 2.2.3 ta c ngay

    Dbn = D

    (n

    0

    )a0 +D

    2

    (n

    1

    )a0 + +Dr+1

    (n

    r

    )a0

    =

    (n

    0

    )Da0 +

    (n

    1

    )D2a0 + +Dr+1

    (n

    r 1)Dra0

    v Dr+1a0 = 0. Lp li, vi D2, . . . , Dj v ta nhn c

    Djbn =

    (n

    0

    )Dja0 +

    (n

    1

    )Dj+1a0 + +

    (n

    r j)Dra0

    v n Drbn = Dra0(nrr)

    = Dra0. Do Dr+1bn = D

    r+1a0 = 0 vi min > 0 v Djb0 = Dja0 vi mi 0 6 j 6 r. Vy theo B 2.2.4 c an = bnvi mi n > 0.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 19

    V d 2.2.6. Cho dy (an) vi a0 = 3 v an+1 = an + 4n+ 1 vi mi n > 0.Chng minh rng vi mi s t nhin dngm u c n an3n1 = 2m2.Bi gii: V Dan = an+1 an = 4n + 1, D2an = Dan+1 Dan = 4(n +1) + 1 4n 1 = 4 v D3an = 0 nn theo nh l 2.2.5 ta c ngayan = 3

    (n0

    )+Da0

    (n1

    )+D2a0

    (n2

    )+ 0 = 3 +n+ 2n(n 1) = 2n2n+ 3 hay

    an 3n 1 = 2(n 1)2 vi mi n > 0. Vy vi mi m c am+1 3(m+1) 1 = 2m2.V d 2.2.7. Cho dy (an) vi a0 = 3, a1 = 2 v an+2 = 3an+1 2an 6n2 + 14n 5 vi mi n > 0. Xc nh an theo n.Bi gii: V an+2 2an+1 = an+1 2an 6n2 + 14n 5 nn khi tbn = an+1 2an ta s c bn+1 = bn 6n2 + 14n 5 v dy (bn) vib0 = 4, bn+1 = bn 6n2 + 14n 5 vi mi n > 0. V Dbn = bn+1 bn =6n2 + 14n 5, D2bn = Dbn+1 Dbn = 6(n + 1)2 + 14(n + 1) 5 +6n2 14n + 5 = 12n + 8 v D3bn = 12, D4bn = 0 nn theo nh l2.2.5 ta c ngay bn = 4

    (n0

    )+Da0

    (n1

    )+D2a0

    (n2

    )+D3a0

    (n3

    )hay

    bn = 4 5n+ 8(n

    2

    ) 12

    (n

    3

    )= 2n3 + 10n2 13n 4.

    Vy a0 = 3, an+1 = 2an 2n3 + 10n2 13n 4 vi mi n > 0. Vi dykiu ny, ta xt an = u.2

    n + an4 + bn3 + cn2 + dn+ e. T y d dng suyra an.

    V d 2.2.8. Cho dy (an) vi a0 = 5, a1 = 1 v an+1 = an + 6an1 6n2 + 26n 25 vi mi n > 1. Chng minh rng vi mi t nhin n u can 2.3n + n2(mod 2n).Bi gii: Vi dy kiu ny, trc tin xt a thc c trng x2 x 6 =(x 3)(x+ 2). Tip theo an = u3n + v(2)n + +an3 + bn2 + cn+ d v xt

    5 = a0 = u+ v + d

    1 = a1 = 3u 2v + a+ b+ c+ d34 = a2 = 9u+ 4v + 8a+ 4b+ 2c+ d

    39 = a3 = 27u 8v + 27a+ 9b+ 3c+ d226 = a4 = 81u+ 16v + 64a+ 16b+ 4c+ d

    415 = a5 = 243u 32v + 125a+ 25b+ 5c+ d.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 20

    Gii h c u = 2, v = 3, b = 1 v a = c = d = 0. Nh vy c cng thcan = 2.3

    n + 3.(2)n + n2 v an 2.3n + n2(mod 2n) vi mi n > 0.Ch 2.2.9. Nu c a thc g(x) tha mn an = g(n) th an+1 an =g(n+ 1) g(n) l mt a thc ca n vi bc nh i 1.

    2.3 Hm sinh thng v dy Fibonacci, dy Catalan

    Mt trong nhng ngun gc dn n khi nim hm sinh chnh l nh l

    khai trin nh thc Newton (1 + x)n =nk=0

    (nk

    )xk v khai trin thnh chui

    ly tha ca hm phn thc

    1

    1 x = 1 + x + x2 + + xn + . y lmt k thut gii tch vi nhiu ng dng trong t hp v nghin cu dy s.

    Hm sinh c phn ra lm hai loi: Hm sinh thng v Hm sinh m. Ta

    bt u vi khi nim hm sinh thng di y:

    nh ngha 2.3.1. Cho dy s {an}, hoc tng qut hn l dy hm {an =an(x)}. Chui lu tha hnh thc f(x) =

    n=0

    anxnc gi l hm sinh

    thng ca dy {an}.

    Kt qu chnh

    nh l sau y c chng minh trong Gii tch.

    nh l 2.3.2. Cho s thc dng . Nu chui lu tha hnh thci=0

    aixi

    hi t ti h(x) th cho mi x (, ) hm h(x) c h(x) =i=1

    iaixi1v

    h0

    f(t)dt =i=0

    aixi+1

    i+ 1.

    nh l 2.3.3. Dy s {an} c gi l dy xc nh kiu tuyn tnh nu dyc dng : a0 = 0, . . . , as1 = s1 v an+s = 1an+s1 + 2an+s2 + +san, n > 0. Khi hm sinh thng f(x) ca dy {an} l mt hm hut

    b0 + b1x+ + brxr1 + 1x+ + sxs , r < s, khi v ch khi {an} l dy xc nh kiutuyn tnh.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 21

    Chng minh: Gi thit a0 = 0, . . . , as1 = s1 v an+s = 1an+s1 +2an+s2 + + san, n 0. t f(x) = a0 + a1x+ a2x2 + a3x3 + . Sdng an+s = 1an+s1 + 2an+s2 + + san, n 0, ta c (1x+ 2x2 + +sxs)f(x) = p(x)+f(x), trong p(x) l a thc vi bc deg p(x) < s.t q(x) = 1x + 2x

    2 + + sxs. Ta c (q(x) 1)f(x) = p(x). Vyf(x) =

    p(x)

    q(x) 1 hay hm sinh thng f(x) ca dy l mt hm hu t.

    Ngc li, cho f(x) =b0 + b1x+ + brxr1 + 1x+ + sxs =

    p(x)

    q(x), r < s.V f(x)q(x) =

    p(x) nn khi so snh h s ca cc xn ta c hai ha0 = b0a01 a1 = b1...

    a0s1 + a1s2 + as1 = bs1 va0s + a1s1 + as = 0a1s + a2s1 + as+1 = 0a2s + a3s1 + as+2 = 0...

    Gii h u c nghim a0 = 0, . . . , as1 = s1. T h sau ta suy raan+s = 1an+s1 + 2an+s2 + + san, n 0. Do {an} l dy xcnh kiu tuyn tnh.

    nh l 2.3.4. Nu u(x) = xs + 1xs1 + + s = 0 c cc nghimr1, . . . , rt vi cc bi tng ng 1, . . . , t. Khi tn ti cc a thc p1(n),p2(n), . . . , pt(n) tha mn an = p1(n)r

    n1 + p2(n)r

    n2 + + pt(n)rnt v

    0 6 deg pi(n) 6 i 1 vi i = 1, 2, . . . , t.

    Mt vi v d

    V d 2.3.5. Dy s a0 = 5, a1 = 13, a2 = 35 v an+3 = 6an+211an+1+6anvi n > 0. Chng minh rng an 2n+1(mod 3n+1) v an 3n+1(mod 2n+1).Bi gii: a thc p(x) = x3 6x2 + 11x 6 = (x 1)(x 2)(x 3). Vyan = a2

    n + b3n + c. T iu kin ban u suy ra an = 2n+1 + 3n+1.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 22

    V d 2.3.6. Xt dy s a0 = 11, a1 = 6, a2 = 18, a3 = 104, a4 = 346 v

    an+5 = 6an+4 13an+3 + 14an+2 12an+1 + 8an, n > 0.Tm s nguyn dng ln nht m a2011 chia ht cho 2

    m.

    Bi gii: a thc p(x) = x5 6x4 + 13x3 14x2 + 12x 8 c vitthnh p(x) = (x 2)3(x i)(x + i). Vy an = p1(n)2n + ain + b(i)n.T iu kin ban u suy ra an = (n

    2 + n + 1)2n + 5in + 5(i)n. Vya2011 = (2011

    2 + 2011 + 1)22011. S m cn tm bng 2011.

    S dng khi nim hm sinh v chui lu tha hnh thc xt mt s

    dy s c bit.

    V d 2.3.7. Xt dy s Fibonacci a0 = 0, a1 = 1, an+1 = an + an1, n > 1.Cng thc ng cho hm sinh thng ca dy l f(x) =

    x

    1 x x2 . Tm

    an theo n v ch ran=0

    an4n+1

    =1

    11.

    Bi gii: t f(x) = a0+a1x+a2x2+a3x

    3+ .Khi (1xx2)f(x) =x hay ta c f(x) =

    x

    1 x x2 . Vi a =1 +

    5

    2v b =

    152

    , biu din

    f(x) qua chui ly tha f(x) =15

    ( 11 ax

    1

    1 bx). Vy c

    f(x) =15

    ((1 + ax+ a2x2 + ) (1 + bx+ b2x2 + )).So snh h s ca xn hai v c an =

    an bn5v cng thc ng f(x) =

    x

    1 x x2 . Vi x =1

    4ta nhn c

    n=0

    an4n+1

    =1

    11.

    T kt qu an =an bn

    5ta suy ra cc ng nht thc sau y:

    V d 2.3.8. Xt dy s Fibonacci a0 = 0, a1 = 1, an+1 = an + an1, n > 1.Khi ta c

    (i) [Phng trnh Biner] an =an bn

    5, Ln = a

    n + bn [S Lucas]. Do

    limn

    an+1an

    = a.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 23

    (ii) an =1

    2n1[n12 ]k=0

    (n

    2k+1

    )5k =

    [n12 ]k=0

    (nk1

    k

    ).

    (iii) a2n+1 = a2n + a

    2n+1, a3n = a

    3n + a

    3n+1 a3n1.(iv) an = aan + an1, bn = ban + an1.

    (v) a3n + (1)nan : a2n.(vi) Nu p > 5 l s nguyn t th ap : p v a2 + 1 = 2 : 2, a3 + 1 =

    3 : 3, a5 = 5 : 5.

    Bi gii: (i),(ii),(iii),(iv) v (v) u c suy ra t cng thc an =an bn

    5.

    Vi p > 5 l s nguyn t th t (ii) c ap =1

    2p1[p12 ]k=0

    (p

    2k+1

    )5k : p. Vi

    V d 2.3.9. Xt dy Catalan a0 = 1, an+1 = a0an+a1an1 + +an1a1 +ana0, n > 0. Cng thc ng cho hm sinh ca dy l f(x) =

    11 4x2x

    .

    Tm cng thc tnh an theo n.

    Bi gii: t f(x) = a0 + a1x+ a2x2 + a3x

    3 + . Khi f(x)f(x) = a20 + (a0a1 + a1a0)x+ (a0a2 + a1a1 + a2a0)x

    2 + = a1 + a2x+ a3x

    2 + a4x3 + = f(x) 1

    x.

    Vy x[f(x)]2 f(x) + 1 = 0. Gii phng trnh ny v do f(0) = 0 nn

    f(x) =11 4x

    2x=

    1

    2x 1

    2x(1 4x) 12 .

    Cng thc ng cho hm sinh f(x) l f(x) =11 4x

    2x. Biu din

    hm ny qua chui lu tha f(x) =1

    2x

    [2x +

    22

    2!x2 +

    1.3

    3!23x3 + +

    1.3.5...(2n 3)n!

    2nxx + ]. So snh h s c an = 1n+ 1

    (2n

    n

    )vi mi

    s nguyn n > 1.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 24

    V d 2.3.10. Dy s (an) c xc nh nh sau: a1 = 1 v an =1

    n!+

    a1(n 1)! +

    a2(n 2)! + +

    an11!vi n > 1. Xc nh cng thc ng ca

    f(x) v ch ra an =F (n)(0)

    n!, trong F (x) =

    1ex 2 vi mi n.

    Bi gii: t a0 = 1. Xt hm sinh f(x) =n=0

    anxn. Khi f(x)(ex1) =(

    a0+a1x+a2x2+ +anxn+

    )( 11!x+

    1

    2!x2+ + 1

    n!xn+ ) = f(x)1.Vy f(x) =

    1ex 2 . Da vo Cng thc khai trin Taylor-Maclaurin ta c

    an =F (n)(0)

    n!, trong F (x) =

    1ex 2 vi mi n.

    2.4 Hm sinh m v dy s Stirling

    Kt qu chnh

    Nh mt s tip tc, khi nim hm sinh m s c nh ngha di y.

    nh ngha 2.4.1. Cho dy s {an}. Chui lu tha hnh thc biu din trongdng f(x) =

    n=0

    ann!xn c gi l hm sinh m ca dy {an}.

    V d 2.4.2. Vi dy s ((mn

    )) hm sinh thng f(x) =

    n=0

    (mn

    )xn c vit

    thnh f(x) =n=0

    m!

    (m n)!n!xn =

    n=0

    Anmn!xn l hm sinh m ca dy (Anm).

    (m l s c nh cho trc )

    nh ngha 2.4.3. Cho mt tp hu hn S khc rng. Mt phn hoch caS thnh k phn, vi 1 6 k 6 n, l mt h cc tp con S1, . . . , Sk tha mnba iu kin sau y :

    ki=1

    Si = S

    Si 6= vi mi iSi Sj = vi mi i, j, i 6= j.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 25

    nh ngha 2.4.4. Cho tp hu hn S khc rng. S cc phn hoch ca tpS thnh k phn c k hiu l S(n, k) v c gi l s Stirling (loi 2).

    nh l 2.4.5. Vi hai s nguyn dng n, k tha mn 1 6 k 6 n ta lun c

    k!S(n, k) =ki=0

    (1)ki(k

    i

    )in.

    Chng minh: Xt tp S = {a1, a2, . . . , an} v R = {1, 2, . . . , k}. TheoBi tp 1.2.22, s cc ton nh t S ln R bng k!S(n, k). Mt khc, biu

    din nh x f : S R qua(

    a1 a2 . . . anf(a1) f(a2) . . . f(an)

    )ta c ngay

    {f(a1), f(a2), . . . , f(an)} = {1, 2, . . . , k}. Vit dy s f(a1) . . . f(an) nhmt chnh hp lp chp n ca k s. Nh vy, tng ng mi nh x f

    vi ng mt chnh hp lp chp n ca k s. S chnh hp lp ny ngbng kn. K hiu A l tp tt c cc nh x t S vo R v cho mi i k

    hiu Ai l tp con ca A gm tt c cc nh x t S vo R \ {i}. Ta c|A| = kn, |Ai| = (k 1)n v

    sj=1

    Aij = (k s)n. Tp tt c cc ton nh t

    S ln R ng bng A \ki=1

    Ai. Theo nh l 2.4.5, ta nhn c

    k!S(n, k) = |A| |ki=1

    Ai| = kn (k

    1

    )(k 1)n

    +

    (k

    2

    )(k 2)n + (1)k

    (k

    k

    )(k k)n.

    Vy k!S(n, k) =ki=0

    (1)i(ki)(k i)n = ki=0

    (1)ki(ki)in.H qu 2.4.6. Vi hai s nguyn dng n, k tha mn 1 6 k 6 n ta lun c

    kn =ki=0

    (k

    i

    )i!S(n, i).

    Chng minh: t ak = k!S(n, k) v bi = in. Theo nh l 2.4.5, ta c

    ak =ki=0

    (1)ki(ki)bi. t ck = (1)kak. Khi ck = ki=0

    (1)i(ki)bi. K

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 26

    hiu ng thc ny nh sau ck = (1 b)k v hiu l sau khi khai trin thay bibi bi.Vi k hiu hiu hnh thc, ng vi mi gi tr ca x, c th vit ngnht thc nh sau: (c+ x)k = (b+ 1 + x)k. Cho x = 1 ta c (1)kbk =(c 1)k hay bk = (1 c)k =

    ki=0

    (1)i(ki)ci. Vy kn = ki=0

    (ki

    )i!S(n, i).

    nh l 2.4.7. Hm sinh m ca dy s Stirling l f(x) =n=0

    S(n, k)xn

    n!c

    cng thc ng bng

    (ex 1)kk!

    .

    Chng minh: Theo nh l 2.4.5, f(x) =n=0

    1

    n!

    ( 1k!

    ki=0

    (1)ki(ki)in)xn.Do k!f(x) =

    ki=0

    (1)ki(ki) n=0

    (ix)n

    n!=

    ki=0

    (1)ki(ki)eix = (ex 1)khay f(x) =

    (ex 1)kk!

    .

    Mt vi v d

    V d 2.4.8. K hiu D(n) l s cc hon v ca n phn t khng c phn tc nh, chng hn: S cc php hon v pi Sn sao cho pi(k) 6= k vi mi k.D dng ch raD(n) = n!

    ( 10! 1

    1!+

    1

    2! + (1)

    n

    n!

    ). Hm sinh m ca dy

    (D(n)) l f(x) =n=0

    D(n)

    n!xn. Xc nh cng thc ng ca f(x) v chng

    minh D(n) = nD(n 1) + (1)n, D(n) = (n 1)(D(n 1) +D(n 2)).Bi gii: Do bi f(x) =

    n=0

    D(n)

    n!xn =

    n=0

    ( 10! 1

    1!+

    1

    2! + (1)

    n

    n!

    )xn

    nn f(x) =( k=0

    (1)kk!

    xk)(

    k=0

    xk)

    = ex.1

    1 x =1

    ex(1 x) .

    T f(x)(1x) = ex suy ra D(n)n!D(n 1)

    (n 1)! =(1)nn!v nh vyD(n) =

    nD(n 1) + (1)n. T{D(n) = nD(n 1) + (1)nD(n 1) = (n 1)D(n 2) + (1)n1 suyra D(n) + D(n 1) = nD(n 1) + (n 1)D(n 2) hay D(n) = (n 1)(D(n 1) +D(n 2)).

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 27

    V d 2.4.9. K hiu D(n) l s cc hon v ca n phn t khng c phn

    t c nh. Chng minh rng

    mn=0

    (mn

    )D(n) = m! vi mi s nguyn m > n.

    Bi gii: Do bi f(x) =n=0

    D(n)

    n!xn =

    1

    ex(1 x) nn f(x)ex =

    1

    1 x.

    Vy

    ( n=0

    D(n)

    n!xn)(

    n=0

    1

    n!xn)

    =n=0

    xn. So snh h s ca xm hai v ta

    c

    mn=0

    (mn

    )D(n) = m!.

    V d 2.4.10. Dy s Bell (Bn) c xc nh nh sau: Bn =nk=1

    S(n, k)

    vi n > 1 v B0 = 1. Xc nh cng thc ng ca f(x) =n=0

    Bnn!xn.

    Bi gii: D dng ch ra Bn+1 =nk=0

    (nk

    )Bk. t f(x) =

    n=0

    Bnn!xn. Vy

    f(x)ex =n=0

    1

    n!Bn+1x

    n =n=0

    (n + 1)Bn+1

    (n+ 1)!xn = f (x). T y suy ra f (x)

    f(x)dx =

    ex dx hay ln(f(x)) = ex + C. V f(0) = B0 = 1 nn

    C = 1 v nh th ln(f(x)) = ex 1. Do f(x) = eex1.

    2.5 Hm sinh ca dy cc a thc Bernoulli

    nh ngha 2.5.1. Cc a thc Bernoulli {Bn(x)} l nhng a thc tha mnba iu kin sau y:

    (i) B0(x) = 1

    (ii) Bn(x) = nBn1(x) vi n > 1

    (iii)

    10

    Bn(x)dx = 0 vi n > 1.

    nh ngha 2.5.2. S Bernoulli th n l Bn(0) v c k hiu qua Bn vin = 0, 1, 2, . . . .

    B 2.5.3. o hm cp s ca Bn(x) l B(s)n (x) = n(n 1) . . . (n s +

    1)Bns(x) v Bn(x) l a thc bc n.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 28

    Chng minh: B(s)n (x) = n(n 1) . . . (n s + 1)Bns(x) c suy ra tiu kin (ii). V B

    (n)n (x) = n!B0(x) = n! nn degBn(x) = n.

    nh l 2.5.4. Ta c ngay cc h thc sau y: Bn(x) =ns=0

    (ns

    )Bsx

    nsv

    B0 = 1,ns=0

    (n+1s

    )Bs = 0, Bn Q.

    Chng minh: Ta lun cBn(x) =ns=0

    B(s)n (0)xs

    s!. Theo B 2.5.3,Bn(x) =

    ns=0

    n!Bns(0)xs

    s!(n s)! =ns=0

    (ns

    )Bsx

    ns. Cho n 1, t iu kin10

    Bn(x)dx = 0

    ta suy ra h thc

    10

    ( ns=0

    (ns

    )Bsx

    ns)dx = 0 hay 1n+ 1

    ns=0

    (n+1s

    )Bs = 0. V

    B0 = 1,ns=0

    (n+1s

    )Bs = 0 nn Bn Q vi mi n (bng quy np).

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 29

    T kt qu ny, d dng nhn c mt s ng nht thc v a thc sau:

    B0 = 1

    2B1 +B0 = 0

    3B2 + 3B1 +B0 = 0

    4B3 + 6B2 + 4B1 +B0 = 0

    5B4 + 10B3 + 10B2 + 5B1 +B0 = 0

    6B5 + 15B4 + 20B3 + 15B2 + 6B1 +B0 = 0

    . . .ns=0

    (n+ 1

    s

    )Bs = 0.

    B0(x) = 1

    B1(x) = x 12

    B2(x) = x2 x+ 1

    6

    B3(x) = x3 3

    2x2 +

    1

    2x

    B4(x) = x4 2x3 + x2 1

    30

    B5(x) = x5 5

    2x4 +

    5

    3x3 1

    6x.

    H qu 2.5.5. Ta c Bn(x) = Bn(x+ 1)Bn(x) = nxn1.Chng minh: Ta lun c h thc di y:

    Bn(x+ 1) =ns=0

    B(s)n (1)xs

    s!=

    ns=0

    (n

    s

    )Bs(1)x

    ns.

    Hin nhin B0(1) = B0(0) = 1. Cho n > 2, t iu kin10

    Bm(x)dx = 0

    khi m > 1 suy ra 0 =10

    nBn1(x)dx =10

    Bn(x)dx = Bn(1) Bn(0). Dovy, khi xt b(x) = Bn(x+ 1)Bn(x), t nh l 2.5.4 ta c

    b(x) =ns=0

    (n

    s

    )[Bs(1)Bs(0)

    ]xns =

    (n

    1

    )[B1(1)B1(0)

    ]xn1.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 30

    V B1(1)B1(0) = 1 nn Bn(x) = Bn(x+ 1)Bn(x) = nxn1.

    V d 2.5.6. Vi s nguyn dng n, s cn1k=0

    ks =1

    s+ 1

    sk=0

    (s+1k

    )Bkn

    s+1k.

    Bi gii: Theo H qu 2.5.5 c

    n1k=0

    ks =1

    s+ 1

    n1k=0

    (Bs+1(k+1)Bs+1(k)

    ).

    Nh vy

    n1k=0

    ks =1

    s+ 1

    (Bs+1(n) Bs+1(0)

    )=

    1

    s+ 1

    sk=0

    (s+1k

    )Bkn

    s+1k

    theo nh l 2.5.4.

    V d 2.5.7. Tnh tng T =nk=0

    k4 theo n.

    Bi gii: Theo v d trn c

    nk=0

    k4 =1

    5

    (B5(n + 1) B5

    )v nh vy nhn

    c T =n5

    5+n4

    2+n3

    3 n

    30.

    H qu 2.5.8. Ta c Bn =(1)nn!

    det

    (20

    ) (21

    )0 ... 0(

    30

    ) (31

    ) (32

    )... 0

    ... ... ... ... ...(n0

    ) (n1

    )... ...

    (nn1)(

    n+10

    ) (n+11

    )... ...

    (n+1n1)

    .

    Chng minh: T B0 = 1,ni=0

    (n+1i

    )Bi = 0, ta c h phng trnh tuyn tnh

    vi cc n (B0, B1, . . . , Bn) :

    (10

    )B0 = 1(

    20

    )B0 +

    (21

    )B1 = 0(

    30

    )B0 +

    (31

    )B1 +

    (32

    )B2 = 0

    ...(n+10

    )B0 +

    (n+11

    )B1 + +

    (n+1n

    )Bn = 0.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 31

    H ny c nghim (B0, B1, . . . , Bn). Tnh Bn qua nh thc ta c

    Bn det

    (10

    )0 0 ... 0 0(

    20

    ) (21

    )0 ... 0 0(

    30

    ) (31

    ) (32

    )... 0 0

    ... ... ... ... ... ...(n0

    ) (n1

    )... ...

    (nn1)

    0(n+10

    ) (n+11

    )... ...

    (n+1n1) (

    n+1n

    )

    = det

    (10

    )0 0 ... 0 1(

    20

    ) (21

    )0 ... 0 0(

    30

    ) (31

    ) (32

    )... 0 0

    ... ... ... ... ... ...(n0

    ) (n1

    )... ...

    (nn1)

    0(n+10

    ) (n+11

    )... ...

    (n+1n1)

    0

    hay Bn =(1)nn!

    det

    (20

    ) (21

    )0 ... 0(

    30

    ) (31

    ) (32

    )... 0

    ... ... ... ... ...(n0

    ) (n1

    )... ...

    (nn1)(

    n+10

    ) (n+11

    )... ...

    (n+1n1)

    .

    Xt dy s Bernoulli {Bn} vi B0 = 1,ni=0

    (n+1i

    )Bi = 0, n > 1. Hm sinh

    m ca dy cc s Bernoulli {Bn} l B(x) =n=0

    Bnxn

    n!.

    nh l 2.5.9. Cng thc ng ca hm sinh m B(x) ca dy cc s

    Bernoulli l

    x

    ex 1 .

    Chng minh: V

    ns=0

    (n+1s

    )Bs = 0 nnBn+1 =

    n+1s=0

    (n+1s

    )Bs vi n = 1, 2, . . . .

    Th n + 1 qua n c Bn =ns=0

    (ns

    )Bs vi n = 2, 3, . . . . V B0 =

    (00

    )B0

    v B1 =(10

    )B0 +

    (11

    )B1 1 nn B(x) = x +

    n=0

    ( ns=0

    (ns

    )Bs)xnn!

    =

    x+n=0

    ns=0

    (Bsxss!

    )( xns(n s)!

    )= x+B(x)ex. Vy B(x) = x

    ex 1 .

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 32

    H qu 2.5.10. Cho n 6= 1 v n l c Bn = 0.

    Chng minh: V 1 +n=2

    Bnxn

    n!= B(x) B1x = x

    ex 1 +x

    2nn 1 +

    n=2

    Bnxn

    n!=x(ex + 1)

    2(ex 1) . Vx(ex + 1)

    2(ex 1) l hm chn nn Bn = 0 khi n 6= 1 vn l s l.

    nh l 2.5.11. [Euler] Ta c

    n=0

    Bn(x)

    n!zn =

    zexz

    ez 1 .

    Chng minh: V Bn(x) =ns=0

    (ns

    )Bsx

    nstheo nh l 2.5.4 nn ta nhn

    c biu din

    n=0

    Bn(x)

    n!zn =

    n=0

    ns=0

    (ns

    )Bsx

    ns

    n!zn

    =n=0

    ns=0

    Bsxns

    s!(n s)!zn =

    s=0

    Bszs

    s!

    r=0

    xrzr

    r!.

    Theo nh l 2.5.9 ta c

    n=0

    Bn(x)

    n!zn =

    z

    ez 1exz =

    zexz

    ez 1 .

    H qu 2.5.12. Ta lun c

    (i)

    n1s=0

    (ns

    )Bs(x) = nx

    n1vi mi n > 2.

    (ii) Bn(x+ y) =ns=0

    (ns

    )Bs(x)y

    ns.

    Chng minh: (i) Theo nh l 2.5.11, ta c biu din

    n=0

    Bn(x+ 1)

    n!zn =

    zexz

    ez 1ez =

    ( r=0

    Br(x)

    r!zr)(

    s=0

    zs

    s!

    ). So snh h s ca zn hai v, ta c

    Bn(x+1) =ns=0

    (ns

    )Bs(x) hayBn(x+1) = Bn(x)+

    n1s=0

    (ns

    )Bs(x).VBn(x+

    1)Bn(x) = nxn1 theo H qu 2.5.5 nnn1s=0

    (ns

    )Bs(x) = nx

    n1, n > 2.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 33

    (ii) T

    ze(x+y)z

    ez 1 =zexz

    ez 1eyzta suy ra s bng nhau gia hai chui

    n=0

    Bn(x+ y)

    n!zn =

    ( r=0

    Br(x)

    r!zr)(

    s=0

    yszs

    s!

    )v nh vy

    n=0

    Bn(x+ y)

    n!zn =

    r,s=0

    Bs(x)yr

    s!r!zs+r. So snh h t ca zn c

    Bn(x+ y) =ns=0

    (ns

    )Bs(x)y

    ns.

    V d 2.5.13.

    n=0

    Bn(mx)

    n!zn =

    1

    m

    m1k=0

    n=0

    mnzn

    n!Bn(x +

    k

    m) vi mi s

    nguyn m > 1.

    Bi gii: V

    1

    ez 1 =1 + ez + e2z + + e(m1)z

    emz 1 nn theo nh l 2.5.11,

    ta c biu din

    n=0

    Bn(mx)

    n!zn =

    zemxz

    ez 1 =1

    m

    mzemxz

    ez 1 hayn=0

    Bn(mx)

    n!zn =

    1

    m

    emxzmz(1 + ez + + e(m1)z)emz 1

    =1

    m

    m1k=0

    mzemz(x+

    k

    m)

    emx 1

    =1

    m

    m1k=0

    n=0

    mnzn

    n!Bn(x+

    k

    m).

    Vy

    n=0

    Bn(mx)

    n!zn =

    1

    m

    m1k=0

    n=0

    mnzn

    n!Bn(x+

    k

    m) vi mi m > 1.

    V d 2.5.14. Vi hai s nguyn m,n > 1 hy tm tt c cc a thc f(x)

    vi h t cao nht bng 1 tha mn mnf(mx) =1

    m

    m1k=0

    f(x+k

    m).

    Bi gii: T

    n=0

    Bn(mx)

    n!zn =

    1

    m

    m1k=0

    n=0

    mnzn

    n!Bn(x+

    k

    m) theo V d 2.5.13

    ta suy ra mnBn(mx) =1

    m

    m1k=0

    Bn(x+k

    m). Vy Bn(x) tha mn u bi.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 34

    Tnh duy nht: Gi s c hai a thc phn bit p(x) = xn + axn1 + vq(x) = xn+bxn1+ tha mn u bi. Khi hiu (x) = p(x)q(x) =cxd + vi c 6= 0 v d < n cng tha mn u bi. V mn(mx) =1

    m

    m1k=0

    (x +k

    m) nn ta c c = mdnc hay c = 0 : v l, do m > 1 v

    d < n.

    V d 2.5.15. Nu c

    x

    ex 1 = 1 +n=1

    unn!xn th cc un Q vi mi n.

    Bi gii: Gi s

    x

    ex 1 = 1 +n=1

    unn!xn. Khi , qua quy ng v gin c

    x, nhn c ng nht thc 1 =(1 +

    n=1

    1

    (n+ 1)!xn)(

    1 +n=1

    unn!xn). So

    snh h s ca xn hai v, cunn!1!

    +un1

    (n 1)!2! + +u1

    1!n!+

    1

    (n+ 1)!= 0

    vi mi n > 1. Biu din dng t hp qua vic nhn hai v vi (n+ 1)! :(n+ 1

    1

    )un +

    (n+ 1

    2

    )un1 + +

    (n+ 1

    n

    )u1 + 1 = 0, n > 1,

    hay vit theo kiu hnh thc (u+ 1)n+1 un+1 = 0 vi ch : Sau khi khaitrin xong phi vit uk thnh uk. T ng nht thc ny ta c h phng

    trnh tuyn tnh v hn di y:

    2u1 + 1 = 0

    3u2 + 3u1 + 1 = 0

    4u3 + 6u2 + 4u1 + 1 = 0

    5u4 + 10u3 + 10u2 + 5u1 + 1 = 0

    6u5 + 15u4 + 20u3 + 15u2 + 6u1 + 1 = 0

    . . . .

    Nh vy un = Bn Q vi mi n.

    2.6 Hm sinh Dirichlet v hm Zeta-Riemann

    nh ngha 2.6.1. Vi hm s hc f : N C, v s > 1, chui lu tha hnh

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 35

    thc F (s) =n=1

    f(n)

    nsc gi l chui Dirichlet tng ng f. Cho dy s

    {an}. Chui g(s) =n=1

    annscn c gi l hm sinh Dirichlet.

    Ta cng nhn hai nh l sau v tnh duy nht, tnh nhn ca chui Dirichlet:

    nh l 2.6.2. Cho hai chui Dirichlet F (s) =n=1

    f(n)

    nsv G(s) =

    n=1

    g(n)

    ns

    tng ng cc hm s hc f, g : N C. Nu c s R sao cho F (s) =G(s) vi mi s > th f(n) = g(n) cho mi n.

    nh l 2.6.3. Cho ba chui Dirichlet Fi(s) =n=1

    fi(n)

    nstng ng ba hm

    s hc fi : N C, i = 1, 2, 3. Nu f3(n) =

    u,v,uv=nf1(u)f2(v) vi mi

    n N th F3(s) = F1(s)F2(s).nh l 2.6.4. Cho s s > 1 v hai dy s {an}, {bn}. Xt hai hm sinhDirichlet g(s) =

    n=1

    annsv h(s) =

    n=1

    bnns. Gi thit hai chui

    n=1

    |an|nsv

    n=1

    |bn|nshi t trong khong (s0,). Khi g(s)h(s) cng l mt hm sinhDirichlet sinh ra bi dy {cn} vi cn =

    uv=n

    aubv trong khong (s0,).

    Chng minh: Theo php nhn cc chui ta c

    g(s)h(s) = (u=1

    auus

    )(v=1

    bvvs

    ) =u=1

    v=1

    aubv(uv)s

    =n=1

    uv=n

    aubv

    ns.

    Vy g(s)h(s) l mt hm sinh Dirichlet sinh ra bi dy {cn} vi cn =uv=n

    aubv.

    nh l 2.6.5. Nu f l mt hm nhn thn=1

    f(n)

    ns=p

    (i=0

    f(pi)

    pis), trong

    tch ly theo tt c cc s nguyn t p. Chuin=1

    f(n)

    nsc gi l hm

    sinh Dirichlet ca hm s hc f.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 36

    Chng minh: Khai trin tch v phi ca h thc trn ta cp

    (i=0

    f(pi)

    pis) =

    j=1

    (1 +

    i=1

    f(pij)

    pisj

    )= f(pj1j1 )f(pj2j2 ) . . . f(pjrjr )

    psj1j1

    psj2j2

    . . . psjrjr

    =

    f(p11 p22 . . . p

    rr ), v f l hm s nhn,

    =n=1

    f(n)

    ns, n = p

    j1j1pj2j2. . . p

    jrjr,

    trong pt l s nguyn t th t. Nh vy h thc trn l ng.

    Ch 2.6.6. Ta s dng tch hu hn Tk =ki=1

    ( j=1

    f(pji )

    pjsi

    ). Sau cho

    k .nh ngha 2.6.7. Cho s s > 1 v dy s {an}. Chui lu tha hnh thc(s) =

    n=1

    1

    nsc gi l hm zeta Riemann.

    nh l 2.6.8. Vi s > 1 ta c

    (i) 2(s) =n=1

    d(n)

    ns.

    (ii) (s) =j=1

    1

    1 psj.

    (iii)

    1

    (s)=n=1

    (n)

    ns.

    Chng minh: (i) Theo nh l 2.6.4, 2(s) =n=1

    u|n

    1.1

    ns=n=1

    d(n)

    ns.

    (ii) Theo nh l 2.6.5 vi f(n) = 1 c (s) =j=1

    (i=0

    1

    pisj) =

    j=1

    1

    1 psj.

    (iii) K hiu G(s) l hm sinh Dirichlet ca hm s hc . Khi

    G(s) =n=1

    (n)

    ns=j=1

    (i=0

    (pij)

    pisj) =

    j=1

    (1 psj ) =1

    (s).

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 37

    Nh vy

    1

    (s)=n=1

    (n)

    ns.

    nh l 2.6.9. Ta c (2) =pi2

    6.

    Chng minh: Cng thc khai trin Fourier ca hm f(x) trn [pi, pi] :

    f(x) =a02

    +n=1

    (an cosnx+ bn sinnx),

    an =

    1

    pi

    pipif(x) cosnx dx

    bn =1

    pi

    pipif(x) sinnx dx

    n > 1.

    Vi hm s chn f(x) = x2 c x2 =a02

    +n=1

    an cosnx, an =2

    pi

    pi0

    x2 cosnx dx

    cho mi n 0. Vy x2 = pi2

    3+ 4

    n=1

    (1)n cosnxn2

    . Cho x = pi ta c

    (2) =pi2

    6.

    2.7 Tch v hn

    nh ngha 2.7.1. Vi dy s (an) ta t tch a1a2 . . . an . . . =n=1

    an. Tch

    ny c gi l mt tch v hn. K hiuAk =k

    n=1an.Nu tn ti lim

    n+ An =

    A th A c gi l gi tr ca tch v hnn=1

    an v vit A =n=1

    an.

    Vn t ra: Khi no tn ti gi tr ca tch v hn

    n=1

    an i vi mt dy

    s cho trc (an).Ta c kt qu sau y ca G.M. Fichtenholz v tnh hi t ca mt tch qua

    hi t ca mt tng tng ng:

    nh l 2.7.2. [ Fichtenholz] Cho dy cc s dng (an) v dy cc s m(bn). Khi

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 38

    (i) Tch v hn

    i=1

    (1 + an) hi t khi v ch khi tng v hni=1

    an hi t.

    (ii) Tch v hn

    i=1

    (1 + bn) hi t khi v ch khi tng v hni=1

    bn hi t.

    Chng minh: (i) Hin nhin, nu tch v hn

    i=1

    (1 + an) hoc tng v hn

    i=1

    an hi t th limn+ an = 0. Khi limn+

    ln(1 + an)

    an= 1. Do bi tch v

    hn P =i=1

    (1 + an) hi t khi v ch khi tng v hn lnP =i=1

    ln(1 + an)

    hi t. Vy vic hi t hay phn k ca

    i=1

    ln(1 + an) vi=1

    an l tng

    ng. T y suy ra tch v hn

    i=1

    (1 + an) hi t khi v ch khi tng v

    hn

    i=1

    an hi t.

    V d 2.7.3. Gi s dy (an) c xc nh nh sau: a1 = 1 v an+1 =(n+ 1)3 1(n+ 1)3 + 1

    an vi mi n > 1. Tm limn+ an v tch v hn

    n=2

    (n3 1n3 + 1

    ).

    Bi gii: Hin nhin ak =k

    n=2

    (n3 1n3 + 1

    ). Do bi n + 1 = (n + 2) 1 v

    n2 + n + 1 = (n + 1)2 (n + 1) + 1 nn ak = 2(k2 + k + 1)

    3k(k + 1). Do

    limn+ an =

    2

    3v tch v hn

    n=2

    (n3 1n3 + 1

    )=

    2

    3.

    V d 2.7.4. t In =pi/20

    sinn x dx . Khi In+1 =n

    n+ 1In1 vi mi n > 1.T suy ra

    (i)

    pi/20

    sin2n x dx =(2n 1)(2n 3) . . . 3.1

    2n(2n 2) . . . 4.2pi

    2pi/20

    sin2n+1 x dx =2n(2n 2) . . . 4.2

    (2n+ 1)(2n 1) . . . 3.1 .

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 39

    (ii)

    [ (2n)!!(2n 1)!!

    ]2 12n+ 1

    2

    3.

    Bi gii: Bin i c T = 43 = 4xyz. V 1 = xy+yz+zx > 3 3

    (xyz)2

    nn T 6 4

    3

    9. Ta cn c P = 21 + 73 > 21. V (x + y + z)2 >

    3(x+ yz + zx) = 3 nn P > 2

    3.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 47

    V d 2.8.10. Chng minh rng nu a, b, c l ba s thc phn bit th c

    a3(b2 c2) + b3(c2 a2) + c3(a2 b2)a2(b c) + b2(c a) + c2(a b) < a

    2 + b2 + c2.

    Bi gii: D thy c t v mu u chia ht cho (a b)(b c)(c a). VyV T = ab+ bc+ ca < a2 + b2 + c2 v a, b, c phn bit.

    V d 2.8.11. Chng minh rng nu a, b, c l ba s thc phn bit th

    a2(a+ b)(a+ c)

    (a b)(a c) +b2(b+ c)(b+ a)

    (b c)(b a) +c2(c+ a)(c+ b)

    (c a)(c b) > 3(ab+ bc+ ca).

    Bi gii: Sau khi quy ng, c t v mu u chia ht cho (ab)(bc)(ca).Vy V T = (a+ b+ c)2 > 3(ab+ bc+ ca) v a, b, c phn bit.

    V d 2.8.12. Chng minh rng nu a, b, c, d R tha mn ab+ ac+ ad+bc+ bd+ cd = 0 th

    a3 + b3 + c3 + d3 3(bcd+ cda+ dab+ abc) = (a+ b+ c+ d)3.

    Bi gii: t

    1 = a+ b+ c+ d

    2 = ab+ ac+ ad+ bc+ bd+ cd

    3 = abc+ abd+ acd+ bcd

    4 = abcd

    Nt = at + bt + ct + dt, t = 1, 2, . . . , N0 = 4.

    Theo nh

    l 2.8.1 c N3 N21 + N12 33 = 0. Vy N3 33 = N21 N12 =31 312. V 2 = 0 nn a3 + b3 + c3 + d3 3

    (bcd+ cda+ dab+ abc

    )=

    (a+ b+ c+ d)3.

    V d 2.8.13. a thc T = 2(x7 + y7 + z7) 7xyz(x4 + y4 + z4) c nhnt l x+ y + z.

    Bi gii: t A = x + y + z, B = xy + yz + zx, C = xyz. t an =xn + yn + zn. Khi x, y, z l ba nghim ca t3 At2 + Bt C = 0v

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 48

    an+3 = Aan+2 Ban+1 + Can vi s nguyn n > 0 v a0 = 3. Ch a0 = 3

    a1 = A

    a2 = A2 2B

    a3 = Aa2 Ba1 + Ca0 = A3 3AB + 3C = Ak3 + 3Ca4 = Aa3 Ba2 + Ca1 = Ak4 + 2B2a5 = Ak5 5BCa6 = Ak6 B3 + 3C2a7 = Ak7 + 7B

    2C.

    Vy T = 2a7 7Ca4 = A(2k7 7k4C) c nhn t A = x+ y + z.

    2.9 Dy truy hi vi hm sinh

    V d 2.9.1. Dy s (an) xc nh bi:

    {a0 = 2, a1 = 4, a2 = 31

    an+3 = 4an+2 + 3an+1 18anvi mi n > 0. Chng minh rng a2010 1(mod 2011).Bi gii: t f(x) = a0 + a1x+ a2x

    2 + a3x3 + . Khi c quan h

    f(x)(4x+ 3x2 18x3) = f(x) 9x2 + 4x 2

    hay f(x) =9x2 4x+ 2

    18x3 3x2 4x+ 1 =1

    1 + 2x+

    1

    (1 3x)2 . T y suy ra

    f(x) =n=0

    ((2)n + (n + 1)3n)xn v c an = (2)n + (n + 1)3n vi mi

    n > 0. Nh vy a2010 1(mod 2011).V d 2.9.2. Dy (an) xc nh qua a1 = 1 v an = 1.2.an1 + 2.3.an2 + + (n 1).n.a1 vi mi s nguyn n > 2. Chng minh ng nht thcan+3 4an+2 an+1 = 2

    nk=1

    ak khi n > 2.

    Bi gii: Xt f(x) = a1x+ a2x2 + + anxn + . Khi ta c h thc

    f(x)(1.2.x+ 2.3.x2 + + n.(n+ 1).xn + ) = f(x) x.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 49

    T

    1

    1 x = 1 + x + x2 + x3 + ta suy ra 1x2 + 2x3 + = x

    2

    (x 1)2 .

    Ly o hm hai v c 1.2.x + 2.3.x2 + = 2x(x 1)3 . Vy f(x) = x +

    2x2x3 3x2 + 5x 1 . T f(x)(x

    33x2+5x1) = x43x3+3x2x ta nhn rav so snh h s ca xn, n > 4 hai v, nhn c an+3 = 5an+23an+1+anvi mi s nguyn n > 2. Biu din cc mi quan h trong bng h thc sau

    y:

    a1 = 1a2 + 5a1 = 3a3 + 5a2 3a1 = 3a4 + 5a3 3a2 + a1 = 1a5 + 5a4 3a3 + a2 = 0a6 + 5a5 3a4 + a3 = 0 = an + 5an1 3an2 + an3 = 0an+1 + 5an 3an1 + an2 = 0an+2 + 5an+1 3an + an1 = 0an+3 + 5an+2 3an+1 + an = 0.

    Cng v vi v c an+3 +

    4an+2 + an+1 + 2nk=1

    ak = 0. Nh vy an+3 4an+2 an+1 = 2nk=1

    ak.

    B 2.9.3. Gi s dy (an) c hm sinh thng f(x) =n=0

    anxntha mn

    f(s) c xc nh vi s = 0, 1, . . . , k v l cn nguyn thy bc k ca

    n v. Khi c

    n=0

    ank =f(1) + f(2) + + f(k1)

    k.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 50

    Bi gii: Vi hm sinh thng f(x) = a0 + a1x+ + anxn + c

    f(1) =n=0

    (ank + ank+1 + + a(n+1)k1

    )f() =

    n=0

    (ank + ank+1 + + a(n+1)k1k1

    )f(2) =

    n=0

    (ank + ank+1

    2 + + a(n+1)k12(k1))

    = f(k1) =

    n=0

    (ank + ank+1

    k1 + + a(n+1)k1(k1)(k1)).

    Bi v 1+s+2s+ +s(k1) = 0 vi s = 1, 2, . . . , k1, nn khi cng kng nht thc trn ta nhn c f(1)+f(2)+ +f(k1) = k

    n=0

    ank.

    V d 2.9.4. Vi s nguyn dng n, hy tnh tng an =nk=0

    (1)k( n3k). Xttnh tun hon ca dy (an) v ch ra an : 3

    [n/2]1.

    Bi gii: Xt hm sinh thng f(x) ca dy (bk = (1)k(nk

    )). Khi ta c

    h thc f(x) =nk=0

    (1)k(nk)xk = (1 x)n. Nh vy, vi = 12 + i

    3

    2c

    an =nk=0

    (1)k(n

    3k

    )=

    nk=0

    (1)3k(n

    3k

    )=

    1

    3

    (f(1) + f() + f(2)

    )

    hay an =(1 )n + (1 2)n

    3=

    (32 i

    3

    2

    )n+(3

    2+ i

    3

    2

    )n3

    . Tm li

    tng an =2(

    3)n

    3cos

    npi

    6=

    2.33k1(1)k khi n = 6k33k(1)k khi n = 6k + 133k(1)k khi n = 6k + 20 khi n = 6k + 3

    33k+1(1)k+1 khi n = 6k + 433k+2(1)k+1 khi n = 6k + 5.

    D dng

    suy ra (an) khng tun hon v an : 3[n/2]1.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 51

    V d 2.9.5. Vi mi s nguyn dng n, hy tnh tng an =nk=0

    (1)k(5n5k).Bi gii: Xt hm sinh thng f(x) ca dy (bk = (1)k

    (5nk

    )). Ta c h thc

    f(x) =nk=0

    (1)k(5nk )xk = (1x)5n. Nh vy, vi = cos 2pi5 + i sin 2pi5 can =

    5nk=0

    (1)k(

    5n

    5k

    )=

    5nk=0

    (1)5k(

    5n

    5k

    )=

    1

    5

    4k=0

    f(k)

    hay

    (1 )5n + (1 2)5n + (1 3)5n + (1 4)5n5

    .Vy nhn c tng

    a2m =210m+1(1)m

    5

    [sin10m

    pi

    5+ sin10m

    2pi

    5

    ]v a2m+1 = 0.

    V d 2.9.6. Dy (an) tha mn a1 = 12v an+1 =

    (n+11

    )an +

    (n+12

    )an1 +

    + (n+1n )a1 + 1 vi mi s nguyn n > 1. Chng minh rng a2011 nguynv chia ht cho 2011.

    Bi gii: D dng kim tra

    ( k=0

    xk

    (k + 1)!

    )(1 +

    n=1

    anxn

    n!

    )= 1. Nh vy

    1 +n=1

    anxn

    n!=

    x

    ex 1 =n=0

    Bnxn

    n!theo nh l 2.5.9. Do an = Bn

    vi mi n. c bit a2011 = B2011 = 0 theo H qu 2.5.10 v suy ra a2011nguyn v chia ht cho 2011.

    V d 2.9.7. Dy (an) xc nh qua a1 = 1 v an = 1.2.an1 2.3.an2 + + (1)n(n 1).n.a1 vi mi s nguyn n > 2. Chng minh rng, khin > 2 lun c an+3 + 2an+2 + 5an+1 + 6

    nk=1

    ak = 8.

    Bi gii: Xt f(x) = a1x+ a2x2 + + anxn + . Khi ta c h thc

    f(x)(1.2.x 2.3.x2 + + (1)n+1n.(n+ 1).xn + ) = f(x) x.

    T

    1

    1 + x= 1x+x2x3+ ta suy ra1+2x3x2+ = 1

    (x+ 1)2.

    Ly o hm hai v c 1.2.x2.3.x2+ = 2x(x+ 1)3v nh vy nhn c

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 52

    f(x) =x4 + 3x3 + 3x2 + x

    x3 + 3x2 + x+ 1. T f(x)(x3+3x2+x+1) = x4+3x3+3x2+x

    ta nhn ra v so snh h s ca xn, n > 4 hai v, c a1 = 1, a2 = 2,v a3 = 2, a4 + a3 + 3a2 = 0, an+3 + an+2 + 3an+1 + an = 0 vi mi snguyn n > 2. Biu din cc mi quan h trong bng h thc sau y:

    a1 = 1

    a2 + a1 = 3

    a3 + a2 + 3a1 = 3

    a4 + a3 + 3a2 + a1 = 1

    a5 + a4 + 3a3 + a2 = 0

    a6 + a5 + 3a4 + a3 = 0

    = an + an1 + 3an2 + an3 = 0an+1 + an + 3an1 + an2 = 0an+2 + an+1 + 3an + an1 = 0an+3 + an+2 + 3an+1 + an = 0.

    Cng v vi v c an+3 + 2an+2 + 5an+1 + 6nk=1

    ak = 8.

    V d 2.9.8. Dy (an) xc nh bi an =1.3.5 . . . (2n+ 1)

    2011n.n!vi mi s nguyn

    n > 0. Tnhn=0

    an.

    Bi gii: Hin nhin an+1 =2n+ 3

    2011(n+ 1)an vi mi n > 1. Khi n +

    th

    an+1an 2

    2011. Nh vy chui ly tha f(x) = a0 + a1x+ a2x

    2 + +anx

    n + lun lun hi t. T h thc 2011(n + 1)an+1 = 2nan + 3ansuy ra 2011(n + 1)an+1x

    n = 2x(nanxn1) + 3anxn. Cho n = 0, 1, 2, . . . v

    ly tng tt c c 2011( k=0

    ak+1xk+1)

    = 2x( k=0

    akxk)

    + 3( k=0

    akxk).

    Khi ta c h thc 2011(f(x) 1) = 2xff (x) + 3f(x) hay (2011

    2x)f (x) = 3f(x). T y suy ra

    f (x)f(x)

    =3

    2011 2x. Ly tch phn hai

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 53

    v c ln f(x) = 32

    ln(2011 2x) + a hay f(x) = (2011 2x)3/2.ea.V f(0) = 1 nn 1 = 20113/2.ea hay ea = 20113/2. Tm li ta c f(x) =

    20113/2.(2011 2x)3/2. Vi x = 1 c

    n=0an =

    (20112009

    )32 .

    V d 2.9.9. Dy (an) xc nh qua a1 = 1 v an = 1an1+2an2+ +(n1)a1 vi mi s nguyn n > 2.Chng minh a3 = 3a2 v an+23an+1+an = 0vi mi s nguyn n > 2 v xc nh an theo n. T suy ra a2k+1 chia htcho 3 khi k > 1.Bi gii: Xt f(x) = a1x+ a2x

    2 + + anxn + . Khi ta cf(x)(1x+ 2x2 + + nxn + ) = f(x) x.T

    1

    1 x = 1 + x + x2 + x3 + ta suy ra 1x + 2x2 + = x

    (x 1)2 .

    Vy f(x) = x +x2

    x2 3x+ 1 v c f(x)(x2 3x + 1) = x3 2x2 + x.Nhn ra v so snh h s ca xn, n > 1 hai v, nhn c a1 = 1, a2 = 1,a3 = 3a2, v an+2 3an+1 + an = 0 vi mi s nguyn n > 2. T d ccng thc xc nh an.

    V d 2.9.10. Dy (an) xc nh qua a1 = 1 v an+1 =2n+ 3

    4(n+ 1)an vi mi

    s nguyn n > 0. Tnh tng T =n=0

    an.

    Bi gii: Do 4(n+1)an+1 = 2nan+3an nn 4(n+1)an+1xn = 2xnanx

    n1+3anx

    nvi mi s nguyn n > 0. Cng tt c cc h thc ny ta nhn c

    4( n=0

    an+1xn+1)

    = 2x( n=0

    anxn)

    + 3n=0

    anxn.

    t f(x) =n=0

    anxn. Khi 4(f 1) = 2xf + 3f hay (4 2x)f = 3f v

    suy ra

    f

    f=

    3

    2

    1

    2 x. Nh vy (ln f) = 3

    2(ln(2x)). dng c f(x) =

    (2 x)3

    2ea. V f(0) = a0 = 1 nn ea = 2

    3

    2 . Tm li f(x) =(

    1 x2

    )32 .

    Vi x = 1 c T = f(1) = 2

    2.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 54

    V d 2.9.11. Dy (an) xc nh qua a1 = 1 v an+1 =2n+ 5

    3(n+ 2)an vi mi

    s nguyn n > 0. Chng minh rngk

    n=0an 0. Cng tt c cc h thcny ta nhn c

    3( n=0

    an+1xn+2)

    = 2x( n=0

    anxn+1)

    + 3n=0

    anxn+1.

    t f(x) =n=0

    anxn+1. Khi 3(f x) = 2xf + 3f hay (3 2x)f =

    3f + 3. t g(x) = f(x) + 1. Khi g

    g=

    3

    3 2x. Nh vy (ln g) =

    32

    (ln(3 2x)). dng c g(x) = (3 2x)3

    2ea. V g(0) = a0 = 1 nn

    ea = 3

    3

    2 . Tm li g(x) = 1 +n=0

    anxn+1 =

    (1 2x

    3

    )32 . Vi x = 1 c

    T = g(1) 1 = 33 1. Do vyk

    n=0an 0. Xc nh an theo n v chng minh

    n=0

    an+1n!

    = e.

    Bi gii: Xt hm sinh m ca dy (an) l f(x) =n=0

    ann!xn. Khi ta c

    f =n=0

    an+1n!

    xn =n=0

    nan 2n2 + 5n 3n!

    xn

    =n=0

    nann!

    xn n=0

    2n2 5n+ 3n!

    xn = xf (2x2 5x+ 3)ex.

    Nh vy f = (2x3)ex v suy ran=0

    an+1n!

    xn =n=0

    2n 3n!

    xn. Vy an+1 =

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 55

    2n 3 hay an = 2n 5 vi n > 1. Tn=0

    an+1n!

    xn = (2x 3)ex ta nhn

    c

    n=0

    an+1n!

    = e khi x = 1.

    V d 2.9.13. Chng minh rng

    nk=0

    (2kk

    )k + 1

    (2(nk)nk

    )n k + 1 =

    (2(n+1)n+1

    )n+ 2

    .

    Bi gii: Xt f(x) =k=0

    (2nn

    )n+ 1

    xn vi 0 < |x| < 14. Bi v 1+xf(x)2 f(x)

    theo V d 2.3.9 nn

    nk=0

    (2kk

    )k + 1

    (2(nk)nk

    )n k + 1 =

    (2(n+1)n+1

    )n+ 2qua vic so snh h s

    ca xn+1 hai v.

    V d 2.9.14. Xt dy s hu t a1 = 1, an = (an1

    1!+an2

    2!+ + a1

    (n 1)!)vi mi s nguyn n > 2. Tm tt c cc s nguyn dng n n!an+1 = 1.

    Bi gii: Ta c an = 2an +(an1

    1!+an2

    2!+ + a1

    (n 1)!)vi mi s

    nguyn n > 2. t f(x) = a1x+ a2x2 + a3x3 + . Khi

    f(x)(

    2 +x

    1!+x2

    2!+x3

    3!+

    )= 2a1x+ (2a2 +

    a11!

    )x2 + (2a3 +a21!

    +a12!

    )x3 + = 2a1x+ a2x

    2 + a3x3 + a4x

    4 + = f(x) + x.Vy f(x)(1 + ex) = f(x) + x hay f(x) = xex. T y suy ra ng nht

    a1x+ a2x2 + a3x

    3 + = x(

    1 x1!

    +x2

    2! x

    3

    3!+

    ).

    Do an+1 =(1)nn!vi mi s nguyn n > 1. n!an+1 = 1 cn v nl s chn.

    V d 2.9.15. Xt n > 3 s nguyn dng a1 6 a2 6 a3 6 6 an1 6 anvi tnh cht: Khng c ba s no l di ba cnh mt tam gic khng suy

    bin. Xc nh gi tr nh nht ca

    ana1m n c th t c.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 56

    Bi gii: Ta bit ba s 0 < a 6 b 6 c l di ba cnh tam gic khi vch khi c < a + b. Vy khng c ba s hng bt k ca dy ca dy l di ba cnh mt tam gic khng suy bin th ap > aq + ar vi mi p, q, r vp > q, r. V dy l dy khng gim nn ta ch cn xt ai + ai+1 6 ai+2 vii = 1, 2, . . . , 2009. Vi nh ngha

    (ab

    )>(cd

    )khi v ch khi a > c v

    b > d ta c bt ng thc(an+1an

    )>(

    1 11 0

    )(anan1

    )>(

    1 11 0

    )n1(a2a1

    ), n > 2.

    Gi s

    (1 11 0

    )n1=

    (a bc d

    ). Khi ta nhn c an > ca2 + da1 v

    suy ra an > (c+ d)a1. Do ana1> c+ d. Do an

    a1nh nht l bng c+ d

    khi dy l n s hng u ca dy Fibonacci v gi tr nh nht ca t s

    bng an =an bn

    5vi a =

    1 +

    5

    2v b =

    152

    .

    V d 2.9.16. Xt dy a1 = 1, an = 12an1 + 22an2 + + (n 1)2a1 vimi s nguyn n > 2. Khi

    {a2 = 4a1 3, a3 = 4a2 2a1 + 3an+3 = 4an+2 2an+1 + an, n > 2.Bi gii: t f(x) = a1x+ a2x

    2 + a3x3 + . Khi tch hai chui

    f(x)(

    12x+ 22x2 + 32x3 + )

    = 12a1x2 + (12a2 + 2

    2a1)x3 + (12a3 + 2

    2a2 + 32a1)x

    4 + = a2x

    2 + a3x3 + a4x

    4 + a5x5 + = f(x) x.

    T

    1

    1 x = 1 + x+ x2 + x3 + x4 + x5 + ta suy ra chui ly tha sau:

    1

    (1 x)2 = 1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 + . Do nhn c

    x

    (1 x)2 = 1x+ 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + v c biu din

    x(1 + x)

    (1 x)3 = 12x+ 22x2 + 32x3 + 42x4 + 52x5 + 62x6 + . Nh th

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 57

    f(x)(x(1 + x)

    (1 x)3)

    = f(x)x hay f(x)[x32x2+4x1

    ]= x43x3+3x2x.T ng nht

    [a1x+a2x

    2+a3x3+

    ][x32x2+4x1

    ]= x43x3+3x2xsuy ra a3 = 4a2 2a1 + 3, an+3 = 4an+2 2an+1 + an vi mi n > 2.V d 2.9.17. Xt dy a1 = 1, an = 1an1+2an2 +(1)n1(n1)a1vi mi s nguyn n > 2. Khi ta c

    (i) a2 = 1, a3 + 3a2 = 0, an+2 + 3an+1 + an = 0, n > 2.(ii) Tm d ca php chia an cho 3.

    Bi gii: (i) t f(x) = a1x+ a2x2 + a3x

    3 + . Tch hai chui ly tha

    F (x) = f(x)( 1x+ 2x2 3x3 +

    )= 1a1x2 + (1a2 + 2a1)x3 + (1a3 + 2a2 3a1)x4 + = a2x

    2 + a3x3 + a4x

    4 + a5x5 + = f(x) x.

    T

    1

    1 + x= 1 x+ x2 x3 + x4 x5 + suy ra chui ly tha sau y:

    1(1 + x)2

    = 1 + 2x 3x2 + 4x3 5x4 + 6x5 . Do nhn cx

    (1 + x)2= 1x+ 2x2 3x3 + 4x4 5x5 + 6x6 . Th vo F (x) c

    f(x)( x

    (1 + x)2

    )= f(x) x hay f(x)

    [x2 + 3x + 1

    ]= x3 + 2x2 + x. T

    ng nht

    [a1x+ a2x

    2 + a3x3 +

    ][x2 + 3x+ 1

    ]= x3 + 2x2 + x s suy

    ra ngay a1 = 1, a2 + 3a1 = 2, a3 + 3a2 = 0, an+2 + 3an+1 + an = 0, n > 2.(ii) Ta c a3 0(mod 3).V an+2+3an+1+an = 0 nn an+2+an 0(mod 3)

    khi n > 2. Do , khi s nguyn k > 1 c

    a2k+1 0(mod 3)a4k+2 a2 2(mod 3)a4k 1(mod 3).

    V d 2.9.18. Xt dy (an), trong an =1.3.5.7 . . . (2n+ 1)

    4n.n!vi mi s

    nguyn n > 0. t f(x) =k=0

    akxk. Tm cng thc ng v tnh f(1).

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 58

    Bi gii: V an+1 =2n+ 3

    4(n+ 1)an vi mi n nn

    an+1an 1

    2< 1. Vy f(x)

    hi t. D dng ch ra

    (f(x)a0

    )= 2xf (x)+3f(x). Vy

    f (x)f(x)

    =3

    2

    1

    2 x

    hay f(x) =(2 x)32ec. Bi v f(0) = a0 = 1 nn ec = 23/2. Tm li

    f(x) =(2 x

    2

    )32v f(1) = 23/2.

    Mt s v d tham kho

    V d 2.9.19. [VMO-1997] Cho dy s nguyn (an) ,n N c xc nhnh sau: a0 = 1, a1 = 45 v an+2 = 45an+1 7an vi mi n = 0, 1, 2, . . . .Khi hy

    (i) Tnh s c dng ca a2n+1 anan+2 theo n.(ii) Chng minh rng 1997a2n + 7

    n+1.4 l s chnh phng vi mi n.

    V d 2.9.20. [VMO-1998-A] Cho dy s nguyn (an) ,n N c xcnh nh sau: a0 = 20, a1 = 100 v an+2 = 4an+1 + 5an + 20 vi min = 0, 1, 2, . . . . Khi hy

    (i) Tm s nguyn dng h nh nht c tnh cht an+h an chia ht cho1998.

    (ii) Tm s hng tng qut ca dy.

    V d 2.9.21. [VMO-2011] Cho dy s nguyn (an) ,n N c xc nhnh sau: a0 = 1, a1 = 1 v an = 6an1 + 5an2 vi mi n = 2, 3, 4 . . . .Khi hy

    (i) Chng minh rng a2012 2010 chia ht cho 2011.(ii) Tm s hng tng qut ca dy .

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Kt lun ca lun vn

    Trong lun vn tc gi trnh by c cc ni dung chnh sau y:

    (1) Vnh, c ca khng, min nguyn, ng cu, trng, vnh a thc v

    nghim.

    (2) Vnh cc chui ly tha hnh thc, khi nim hm sinh m v hm sinh

    thng cng mt vi dy s lin quan.

    (3) Nghin cu mt s dy s Fibonacci, dy Catalan, dy Stirling v dy

    cc a thc Bernoulli, Hm sinh Dirichlet v hm Zeta-Riemann, tch

    v hn.

    (4) Tnh c mt s cng thc ng ca mt s dy v chng minh ng

    nht thc Newton.

    Do thi gian v dung lng nn lun vn mi ch dng li mc tm hiu v

    gii thiu v "Vnh cc chui lu tha hnh thc" v mt s "Hm sinh" c

    bn v dy s. Trong thi gian ti, nu iu kin cho php, tc gi s nghin

    cu, tm hiu k hn c th a ra mt s kt qu c tnh ng dng thc

    tin hn phc v qu trnh hc tp v ging dy.

    Trong qu trnh thc hin lun vn chc chn khng trnh khi thiu st.

    Tc gi rt mong nhn c nhng kin ng gp ca thy c v bn b

    hon thin lun vn tt hn.

    Tc gi xin chn thnh cm n.

    59

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Ti liu tham kho

    [1] H.X. Snh, i s i cng, NXB Gio dc, 2001.

    [2] N.V. Hi, N.K. Minh v H.Q. Vinh, Cc bi thi Olympic Ton THPT

    Vit Nam (1990-2006), NXB Gio dc, 2007.

    [3] R. Merris, Combinatorics, PWS publishing company 20 Park Plaza,

    Boston, MA 02116-4324.

    [4] K.H. Wehrahn, Combinatorics-An Introduction, Carslaw Publications

    1992.

    60

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn