Chuong 1 Fourier

Embed Size (px)

Citation preview

  • Chng 1: Gii tch Fourier

    3

    GII TCH FOURIER

    Cui th k 18 nh ton hc, nh vt l ng thi l k s ngi Php tn Jean Baptiste Joseph Fourier c khm ph k l. Trong mt kt qu nghin cu ca mnh v phng trnh o hm ring m t s truyn nhit ca vt th, Fourier khng nh rng mi hm s u c th biu din di dng tng ca chui v hn cc hm lng gic.

    Ban u khng nh ca Fourier khng c cc nh ton hc cng thi tin tng v ch n. Tuy nhin khng lu sau cc nh khoa hc nh gi cao kh nng ng dng v lnh vc ng dng rng ln ca tng ny. Pht hin ny ca Fourier c xp hng top ten v thnh tu ton hc trong mi thi i, trong danh sch ny cn c khm ph ca Newton v php tnh vi tch phn, ca Riemann v hnh hc vi phn, v 70 nm sau c l thuyt tng i ca Einstein. Gii tch Fourier l mt thnh phn khng th thiu ca ton hc ng dng hin i, n c ng dng rng ri trong ton l thuyt, vt l, k thut. Chng hn, x l tn hiu hin i bao gm audio, ting ni, hnh nh, video, d liu a chn, truyn sng v tuyn, v.v u c t c s trn gii tch Fourier v nhng dng khc ca n. Nhiu cng ngh tin tin hin i bao gm truyn hnh, CD v DVD m nhc, phim video, ha my tnh, x l nh, phn tch v lu tr du vn tay theo cch ny hay cch khc u c s dng nhng dng khc nhau ca l thuyt Fourier.

    V mt l thuyt ngi ta c th phn tch cc tn hiu m thanh pht ra t cc nhc c nh: piano, violin, kn trumpet, kn oboe, trng . thnh chui Fourier tm ra cc tn s c bn (tone, overtone, ). V mt ng dng, l thuyt Fourier cn l mt cng c hiu qu ca m nhc in t hin i; mt nhc c in t c th c thit k sao cho c th t hp cc tng sin v cosin thun ty pht ra cc m thanh k diu ca nhc c. Nh vy, c hai cch t nhin v nhn to m nhc in t u da vo cc nguyn l tng qut ca Fourier.

    tng ban u ca Fourier phn tch mt hm s tun hon thnh tng ca mt chui cc hm lng gic c m rng thnh biu din mt vc t ca khng gian Hilbert theo h trc chun y . V vy nu c mt h trc chun th ta c mt cch khai trin Fourier.

    Trong chng ny ta xt nhng vn chnh ca gii tch Fourier

    Khng gian Hilbert Chui Fourier v php bin i Fourier hu hn Php bin i Fourier Php bin i Fourier ri rc v php bin i Fourier nhanh. Php bin i Fourier hu hn c pht trin trn tng ca khai trin hm s tun

    hon thnh chui Fourier, trong mi hm s hon ton c xc nh bi cc h s Fourier ca n v ngc li. C ba dng ca chui Fourier: dng cu phng (cng thc 1.24, 1.28),

  • Chng 1: Gii tch Fourier

    4

    dng cc (cng thc 1.36) v dng phc (cng thc 1.37, 1.41, 1.42). Phn 1 ca mc ny s trnh by ba dng ca chui Fourier, cc cng thc lin h gia chng v km theo li nhn xt nn s dng dng no trong mi trng hp c th. Trng hp hm khng tun hon php bin i Fourier ri rc c thay bng php bin i Fourier, php bin i ngc duy nht c xy dng da vo cng thc tch phn Fourier.

    Khi cc hm s biu din cho cc tn hiu th bin i Fourier ca chng c gi l biu din ph. Tn hiu tun hon s c ph ri rc, cn tn hiu khng tun hon s c ph lin tc. i s ca hm tn hiu l thi gian cn i s ca bin i Fourier ca n l tn s, v vy php bin i Fourier cn c gi l php bin i bin min thi gian v min tn s.

    Trong thc t ta thng phi tnh ton gi tr s ca cc tn hiu c ri rc ho bng cch chn mu ti mt s hu hn cc thi im, khi ph tng ng cng nhn c ti mt s hu hn cc tn s bng php bin i Fourier ri rc. Ngoi ra thc hin nhanh php bin i Fourier ri rc, ngi ta s dng cc thut ton bin i Fourier nhanh.

    Hng ng dng vo vin thng: Phn tch ph, phn tch truyn dn tn hiu, ghp knh v tuyn, ghp knh quang, nh gi cht lng WDM...

    1.1. KHNG GIAN HILBERT

    Khi nim khng gian Hilbert l s m rng ca khi nim khng gian Euclide, l khng gian vc t hu hn chiu vi tch v hng. Khng gian Euclide c trang b trong chng trnh ton i cng bc i hc.

    1.1.1. Tch v hng

    Khi nim tch v hng ca hai vc t ca khng gian vc t bt k c khi qut t

    tch v hng cos( ; )uv u v u v=GG G G JG G . Trong khng gian vc t tch v hng ca hai vc t n

    1 2( , ,..., )nx x x x= , 1 2( , ,..., )ny y y y= c nh ngha nh sau:

    1 1 2 2, n nx y x y x y x y= + + +" . (1.1) Tch v hng gi mt vai tr rt quan trng, v l mt khi nim c ng dng rng ri trong ton hc, c hc, vt l Bit tch v hng ca mi cp vc t th c th suy ra di ca vc t (bnh phng di ca vc t bng tch v hng ca vc t y vi chnh n) v gc gia hai vc t (cosin ca gc ny bng tch v hng ca hai vc t chia cho tch ca hai di ca chng). Thnh th trong khi nim tch v hng bao hm kh nng o di, o gc, v t i n nhng khi nim quan trng khc nh tnh trc giao, hnh chiu thng

    Khi nim tch v hng c m rng i vi khng gian vc t bt k nh sau:

  • Chng 1: Gii tch Fourier

    5

    Mt dng song tuyn tnh i xng xc nh dng ca khng gian vc t c gi l mt tch v hng ca khng gian vc t .

    Nh vy tch v hng ,u v ca hai vc t u , v trong khng gian vc t H c cc tnh cht ct yu sau:

    1) , ,u v v u= 2) 1 2 1 2, ,u u v u v u v+ = + , 3) ,u v u v = , vi mi s thc 4) ,u u > 0 nu u v 0 ,u u 0= nu u = 0 . Nu H l khng gian vc t trn trng s phc th iu kin 1) c thay bng

    , ,u v v u= , trong ,v u l s phc lin hp ca s phc ,v u . Mt khng gian vc t vi tch v hng c gi l khng gian tin Hilbert.

    Vi mi vc t ta nh ngha v k hiu chun hay mun ca vc t v H v qua biu thc

    ,v v= v . (1.2) Nu 1v = th v c gi l vc t n v. C th kim chng c

    1) 0v v 0v = khi v ch khi v = 0 . 2) Vi mi : | |v v = . 3) u v u v+ + .

    nh ngha 1.1: Dy cc vc t { } 1n nu = hi t v vc t nu u lim 0nn u u = , ta k hiu , vy lim nn

    u u =

    lim 0, : ;nnu u N n N u u = > < n (1.3)

    Dy cc vc t { } c gi l dy c bn nu 1n nu = ,lim 0n mn m u u = , vy { } 1n nu = l dy c bn khi v ch khi 0, : , ; n mN n m N u u > < .

    C th chng minh c rng mi dy hi t l dy c bn,tuy nhin iu ngc li cha chc ng.

  • Chng 1: Gii tch Fourier

    6

    Khng gian tin Hilbert tha mn iu kin mi dy c bn u hi t c gi l khng gian Hilbert (y l tnh cht y ca khng gian Hilbert).

    V d 1.1: Ngi ta chng minh c khng gian cc dy bnh phng hi t

    20

    0( ) : | |n n n

    nl

    ==

    2 = < (1.4) vi tch v hng xc nh nh sau

    0( ); ( )n n n

    n

    =n = (1.5)

    l mt khng gian Hilbert.

    Khng gian cc hm bnh phng kh tch trn on [ ];a b (theo ngha tch phn Lebesgue)

    [ ] [ ]{ }2 ; ;( ) : | ( ) |a b a bL x t x t dt2= < (1.6) vi tch v hng xc nh nh sau

    [ ];( ); ( ) ( ) ( )a bx t y t x t y t= (1.7) cng l mt khng gian Hilbert.

    Ch rng i vi cc hm lin tc hoc lin tc tng khc th tch phn Lebesgue trng vi tch phn theo ngha thng thng.

    Hi t trong khng gian v (cng thc 1.7) c gi l hi t bnh phng

    trung bnh.

    2l [ ]2 ;a bL

    1.1.2. Bt ng thc Cauchy-Schwarz

    nh l 1.1: Bt ng thc Cauchy-Schwarz

    Vi mi , lun c ,u v H

    ,u v u v (1.8) ng thc xy ra khi v ch khi ph thuc tuyn tnh. ,u v

    Chng minh: Nu mt trong hai vc t bng th c hai v ca bt ng thc trn u bng , do bt ng thc nghim ng.

    0 0

    Gi s , vi mi ta c: v 0 t , 0u tv u tv+ + .

  • Chng 1: Gii tch Fourier

    7

    Mt khc 22( ) , 2 , 2F t u tv u tv t v t v u u= + + = + + l mt tam thc bc hai i vi v lun lun khng m. V vy t 2 2 2' ,F v u v u 0 = . T suy ra bt ng thc Cauchy-Schwarz.

    Khi ph thuc th u (hoc v,u v kv= ku= ): 2, ,u v kv v k v kv v u v= = = = .

    Ngc li nu ,u v u v= th ' 0F = . Do tn ti sao cho 0t 0 0, 0u t v u t v u t v0+ + = = . nh l c chng minh.

    p dng bt ng thc Cauchy-Schwarz vo khng gian vi tch v hng (1.1) ta c bt ng thc Bunnhiacopsky:

    n

    ( ) ( )( )2 2 2 21 1 1 1... ... ...n n n n2x y x y x x y y+ + + + + + (1.9) ng thc xy ra khi v ch khi 1 1, ..., n nx ty x ty= = .

    H qu:

    1) Nu dy cc vc t { } hi t v vc t th 1n nu = u lim , ,nn u v u v = ng vi mi . v2) Nu dy { } 1n nu = hi t v u v { } 1n nv = hi t v th v ,lim , ,n mn m u v u v = .

    Chng minh: 1) 0 , , ,n n nu v u v u u v u u v = 0 khi n .

    2) Hai dy { } 1n nu = v { } hi t do chn, v vy tn ti sao cho 1n nv = C nu C , nv C vi mi n .

    0 , , , , , ,n m n m m n m mu v u v u u v u v v u u v u v v = + +

    ( ) 0n m m n mu u v u v v C u u v v + + khi , . n m 1.1.3. H trc chun, trc chun ho Gram-Schmidt

    nh ngha 1.2: Hai vc t gi l trc giao nhau, k hiu u,u v H v , nu , 0u v = . H cc vc t { }1,..., ,...nS v v= ca H c gi l h trc giao nu hai vc t bt k ca

    h u trc giao nhau. S

  • Chng 1: Gii tch Fourier

    8

    H trc giao cc vc t n v c gi l h trc chun.

    Vy h cc vc t { }1,..., ,...nS e e= l h trc chun khi tha mn iu kin ,i j ije e = trong 10ij

    i ji j= =

    nu

    nu l k hiu Kronecker (1.10)

    V d 1.2: Trong khng gian vc t [20;2L ] cc hm bnh phng kh tch vi tch v hng xc nh bi cng thc (1.7), h cc hm s sau l mt h trc giao

    { }1, cos ; sin ; 1, 2, ...nt nt n = (1.11) Tht vy

    2 2

    0 0

    cos sin 0 ;ntdt ntdt n

    = = (1.12) 2

    0

    cos sin 0 ; ,nt mtdt n m

    = (1.13) 2 2

    0 0

    cos cos sin sin 0 ;nt mtdt nt mtdt n m

    = =

    (1.14)

    2 22 2

    0 0

    cos sin ; 0ntdt ntdt n

    = = (1.15) nh l 1.2: Mi h trc chun l h c lp tuyn tnh.

    Chng minh: Gi s h { }1,..., ,...nS v v= trc chun, khi nu 1 1 ... m mv v + + = 0 th 1 1 ... , 0i m mv v v = + + =i m vi mi 1,...,i = . Do c lp tuyn tnh. S

    nh l c chng minh.

    nh l 1.3: Gi s { }1,..., ,...nS u u= l mt h cc vc t c lp tuyn tnh ca khng gian Hilbert H . Khi ta c th tm c h trc chun { }1' ,..., ,...nS e e= sao cho

    { } { }1 1span ,..., span ,..., ;k ke e u u= vi mi 1,2,...k = . Chng minh: Ta xy dng h trc chun 'S theo cc bc quy np sau y m c gi l qu trnh trc chun ho Gram-Schmidt.

    ) : V h c lp nn 1k = S 1u 0 . t 111

    ueu

    = .

  • Chng 1: Gii tch Fourier

    9

    ) : Xt 2k = 2 2 1 1,e u e e= + 2u , ta c 2e 0 (v nu 2e = 0 th , iu ny

    tri vi gi thit h c lp). t

    2u ke= 1S 22

    2

    eee

    = , h { }1 2,e e trc chun v

    { } { }1 2 1 2span , span ,e e u u= . ) Gi s xy dng c n 1k . Ngha l tn ti { }1,..., ke e 1 trc chun sao cho { } { }1 1 1span ,..., span ,...,ke e u u = 1k . Tng t trn ta xt

    1

    1,

    k

    k k i ii

    e u e e

    =ku= + (1.16)

    ta cng c ke 0 ( v nu ke = 0 th l t hp tuyn tnh ca , do l t hp tuyn tnh ca , iu ny mu thun vi gi thit h c lp). t

    ku 1,..., ke e 111,..., ku u S

    kkk

    eee

    = (1.17)

    th . Vy h ; 1,..., 1k ie e i k = { }1,..., ke e trc chun v { } { } { }1 1 1 1span ,..., span ,..., , span ,..., ,k k ke e e e e u u u= = 1k k .

    V d 1.3: Trong xt h 3 vc t c lp: 3 1 (1,1,1)u = , 2 ( 1,1,1)u = , . Hy trc chun ho h

    3 (1,2,1)u ={ }1 2 3, ,S u u u=

    Bc 1: 1 3u = 111

    1 1 1, ,3 3 3

    ueu

    = = .

    Bc 2: 2 2 1 1 21 1 1 1 4 2 2, , , ( 1,1,1) , ,

    3 3 33 3 3 3e u e e u = + = + =

    22 ( 2,1,1)3

    e = 2 2 1 1, ,6 6 6e = .

    Bc 3: 3 3 1 1 3 2 2, ,e u e e u e e= + 3u

    4 1 1 1 1 2 1 1 1 1, , , , (1, 2,1) 0, ,2 23 3 3 3 6 6 6 6

    = + =

    31 (0,1, 1)2

    e = 3 1 10, ,2 2e = .

    { }1 2 3, ,e e e l h vc t trc chun ho ca h { }1 2 3, ,u u u .

  • Chng 1: Gii tch Fourier

    10

    V d 1.4: Xt h gm ba hm s , , ca khng gian c th cho trong

    hnh 1.1 1( )s t 2( )s t 3( )s t [20;TL ]

    3( )s t

    t / 3T 0 T

    1

    t0 / 3T

    1

    1( )s t

    0 2 / 3T

    1

    2 ( )s t

    t

    Hnh 1.1: th ba hm , , 1( )s t 2( )s t 3( )s t

    Ba hm s , , c lp tuyn tnh, trc chun ha Gram-Schmidt ba hm s

    ny ta c ba hm , , xc nh nh sau: 1( )s t 2( )s t 3( )s t

    1( )e t 2( )e t 3( )e t

    ( )21 1 10

    ( ), ( ) ( )3

    T Ts t s t s t dt= = 1 13 3 / 0 / 3( ) ( ) 0 T te t s tT = =

    nu

    nu n

    Tgc li

    2 1 2 10

    ( ), ( ) ( ) ( )3

    T Ts t e t s t e t dt= =

    2 2 11 / 3 2

    ( ) ( ) ( )03

    T t TTe t s t e t = =

    nu

    nu ngc li/ 3

    Vy 23 / / 3 2 / 3( )0

    T T t Te t =

    nu

    nu ngc li

    Tng t 33 / / 3( )0

    T T te t T =

    nu 2

    nu ngc li

    H trc chun , , c th 1( )e t 2( )e t 3( )e t

    3 / T

    3( )e t

    t 23T 0 T

    3 / T

    0

    2( )e t

    t 3T 2

    3T

    t

    1( )e t

    0 3T

    3 / T

    Hnh 1.2: th h trc chun e t , e , e t 1( ) 2 ( )t 3( )

  • Chng 1: Gii tch Fourier

    11

    1.1.4. H trc chun y , chui Fourier

    nh l 1.4: Gi s l mt h trc chun ca khng gian Hilbert , vi mi { } 1n ne = H u H ta c:

    1) Nu th 1

    n nn

    u e

    == ,n nu e = .

    Ta gi ,n u e = n l h s Fourier ca i vi v chui gi l chui

    Fourier ca theo h { } . u ne

    1n n

    ne

    =

    u 1n ne=

    2) 221| |n

    nu

    = (bt ng thc Bessel).

    3) Chui hi t v 1

    n nn

    e

    =

    1n n n

    nu e

    =

    e vi mi . n

    Chng minh: 1) 1 1 1

    , , lim , lim ,n n

    m n n m k k m k k mn nn k ku e e e e e e e

    = = =

    m= = = = . 2) Vi mi : n 2

    1 1 1 1, ,

    n n n n

    k k k k k k k kk k k k

    u u u e u e e u e= = = =

    = = + +

    1 1 1 1, ,

    n n n n

    k k k k k k k kk k k k

    e e e u e= = = =

    = +

    1 1 1 1, ,

    n n n n

    k k k k k k k kk k k k

    u e e u e u e= = = =

    + + 2

    1 1 1 1 1, ,

    n n n n n

    k k k k k k k k kk k k k k

    e e u e u e= = = = =

    = + | | . Vy 22

    1| |n

    nu

    = .

    3) T 1) v 2) ta c : vi mi , vi mi : n m n 2, 0m m m

    k k k k kk n k n k n

    e e= = = = khi

    , v v khng gian Hilbert y nn chui Fourier n 1

    n nn

    e

    = hi t.

    Vi mi : n1 1

    , , , , , limm

    n k k n n k k n n k kmk ke u e e u e e e u e e

    = =

    = = 1

    ,k=

    1

    , lim , ,m

    n n k k nm ke u e e =

    = = 0n = . nh l c chng minh.

  • Chng 1: Gii tch Fourier

    12

    nh ngha 1.3: H trc chun { } 1n ne = ca khng gian Hilbert H c gi l h trc chun y khi ch c vc t 0 mi trc giao vi tt c cc phn t ca h, ngha l:

    , nu e = 0 vi mi 1, 2,...n = th u = 0 (1.18) V d 1.5:

    1) H cc hm

    1 1 1, cos ; sin ; 1, 2, ...2

    nt nt n = (1.19)

    l mt h trc chun y ca khng gian Hilbert [ ]20;2L . 2) H cc vc t 2ne l , 1, 2, ...n =

    { } , trong 1n ne = 1 (1,0,0,....)e = , 2 (0,1,0,....)e = , (1.20) l mt h trc chun y ca khng gian Hilbert . 2l

    nh l 1.5: Gi s { } 1n ne = l mt h trc chun ca khng gian Hilbert , H ,n u e = n l h s Fourier u i vi . Cc mnh sau y tng ng: H ne

    1) l mt h trc chun y { } 1n ne =2) Vi mi : u H

    1n n

    nu e

    ==

    3) Vi mi : ,u v H1

    , n nn

    u v

    == trong ,n v e = n l h s Fourier ca i

    vi .

    v

    ne

    4) Vi mi : u H 221

    nn

    u

    == .

    Chng minh: 1) 2): Theo kt qu 3) ca nh l 1.4 ta c 1

    n n nn

    u e

    =

    e vi mi , vy

    theo nh ngha ca h trc chun y (cng thc 1.17): .

    n

    1 1n n n n

    n nu e u

    = = = = 0 e

    2) 3): 1 1 1 1

    , , lim , limn n

    k k m m k k m mn nk m k mu v e e e e

    = = = =

    = =

  • Chng 1: Gii tch Fourier

    13

    1 1 1 1

    lim , limn n k

    k k m m k k k kn nk m k ke e

    = = = =

    = = = .

    3) 4): Cho u ta c v= 221

    , nn

    u u u

    == = .

    4) 1): Gi s ,n nu e = = 0 vi mi 1, 2,...n = th 221

    0nn

    u

    == = , do . Vy h

    y .

    u = 0

    { } 1n ne =nh l c chng minh.

    nh l 1.6: (RieszFischer). Cho { } 1n ne = l mt h trc chun y ca khng gian Hilbert H . Nu dy s { } tha mn iu kin 1n n=

    2

    1n

    n

    = < (1.21)

    Th s c mt vc t duy nht u nhn cc s H n lm h s Fourier v

    1n n

    nu e

    == , 22

    1n

    nu

    == (1.22)

    Chng minh: Vi mi : m n 2,m m m

    k k k k kk n k n k n

    e e= = = = , iu kin (1.19) ko theo

    2 0m

    kk n=

    khi n , v v khng gian Hilbert y nn chui 1

    n nn

    e

    = hi t.

    t , ta c 1

    n nn

    u

    == e

    1 1 1, , lim , lim ,

    m m

    n k k n k k n k k nm mk k ku e e e e e e e

    = = =

    = = = = n , vy nhn lm h s Fourier v v h u n { } 1n ne = y nn ta cng c (1.21). Ngoi ra nu c vc

    t nhn cc s lm h s Fourier th v n , n n nu v e 0 = = vi mi , do n u v = 0 . Vy vc t u nhn cc s lm h s Fourier l duy nht. H n

    nh l c chng minh.

  • Chng 1: Gii tch Fourier

    14

    1.2 CHUI FOURIER

    1.2.1 Khai trin Fourier ca hm tun hon chu k 2 Trong khng gian cc hm bnh phng kh tch trn on [20;2L ] [ ]0, 2 tch v hng

    xc nh theo cng thc (1.7) v h trc chun (1.19) ta c chui Fourier ca hm ( )x t l mt chui lng gic v hn c dng

    (01

    ( ) cos sin2 n nn

    a )x t a nt b=

    + + nt (1.23) trong

    2 2 2

    00 0 0

    1 1( ) ; ( ) cos ; ( )sin ; 1, 2, ...n na x t dt a x t ntdt b x t ntdt n

    = = = = (1.24) H s 1

    2 ca s hng th nht xut pht t s thun li trong vic tnh ton sau ny.

    Theo nh l 1.5 chui Fourier (01

    cos sin2 n nn

    a a nt b n

    =+ + )t ca hm ( )x t vi cc h s

    tha mn (1.23) hi t v ( )x t theo ngha bnh phng trung bnh (1.3). Tuy nhin cha chc hi t theo im, chnh v vy ngi ta dng k hiu thay cho du =. Cc cu hi c t ra mt cch t nhin:

    (i) Khi no chui lng gic v hn (1.23) hi t?

    (ii) Loi hm ( )x t no c th biu din thnh tng ca chui Fourier? Ngha l c th thay du = thay cho du .

    nh l 1.7(nh l Dirichlet): Nu hm ( )x t tun hon chu k 2 , n iu tng khc v b chn (gi l iu kin Dirichlet), th chui Fourier hi t v du trong cng thc (1.23) c thay bng du = .

    Ti cc im gin on ta k hiu

    ( 0) ( 0)( )2

    x t x tx t + + = (1.25)

    trong ln lt l gii hn phi v gii hn tri ca ( 0), ( 0)x t x t+ ( )x t ti t . V d 1.6: Xt hm s ( )x t t= , ; tun hon chu k t < < 2 . V ( )x t l hm l nn cc h s Fourier c th tnh nh sau

    01 0a tdt

    = = , 1 cos 0na t ntdt

    = = ,

  • Chng 1: Gii tch Fourier

    15

    12

    00

    1 2 2 cos sin 2sin sin ( 1)nnt nt ntb t ntdt t ntdt

    n nn

    +

    = = = + = . Do chui Fourier tng ng

    1

    1

    sin sin 2 sin 3 sin 42 ( 1) 2 sin2 3 4

    n

    n

    nt t t tt tn

    +=

    = + "+ (1.26) p dng nh l 1.7 ta c

    1

    1

    sin2 ( 1)0

    n

    n

    t tnttn

    +=

    < < = = nu

    nu

    Thay 2

    t = v chia hai v cho 2 ta c

    1 1 1 114 3 5 7 9 = + + "

    V d 1.7: Xt hm s ( )x t t= , ; tun hon chu k t < < 2 . V ( )x t l hm chn nn cc h s Fourier c th tnh nh sau

    1 sin 0nb t ntdt

    = = ; 0 0

    1 2a t dt tdt

    = = = ,

    20 20

    0 22 2 sin coscos 4 2 1n t

    n kt nt nta t ntdt

    n kn nn

    =

    = = = + = 0

    = +

    nu

    nu.

    Do chui Fourier tng ng

    21

    4 cos 4 cos3 cos5 cos 7cos2 2 9 25 49n

    nt t t tt tn

    = = + + + "+ (1.27)

    Thay ta c 0t =2

    20

    1 1 1 118 9 25 49 (2 1)n n

    = = + + + + = +" .

    V d 1.8: Xt hm bc nhy tun hon chu k 2 xc nh nh sau 1 0

    ( )0 0

    tt

    t< < = <

  • Chng 1: Gii tch Fourier

    16

    0

    2 2 11 1( )sin sin0 2

    nn k

    b t ntdt ntdt nn k

    = += = = = nu

    nu.

    Chui Fourier tng ng 1 2 sin 3 sin 5 sin 7( ) sin2 3 5 7

    t t tt t + + + + + "

    Hnh 1.3: th ca hm bc nhy tun hon

    p dng nh l 1.7 ta c cng thc

    0 (2 1)1 2 sin 3 sin 5 sin 7sin 1 2 (2 1)2 3 5 7

    1/ 2

    k tt t tt k

    t k

    2kt k

    + < < + + + + + = < < + = "

    nu

    nu

    nu

    Cc th sau tng ng l th ca tng ring ln lt c 3, 5 v 10 s hng ca chui Fourier ca hm bc nhy tun hon.

    Hnh 1.4: th cc tng ring ca chui Fourier ca hm bc nhy tun

    T cc th trn ta nhn thy rng mc d hm gc gin on nhng cc tng ring ca chui Fourier tng ng l cc hm lin tc hi t, mc d chm chp. Tuy nhin gn v tr gin on ca hm th th ca cc tng ring Fourier vt qu v tr khong 9%. Vng vt qu v tr ny cng nh khi s cc s hng ca tng ring Fourier tng ln, nhng ln ca n khng thay i. iu ny gii thch tnh cht khng hi t u ca chui Fourier. Hin tng ny ln

  • Chng 1: Gii tch Fourier

    17

    u tin c nh vt l Josiah Gibbs (ngi M) pht hin v ngy nay ngi ta gi l hin tng Gibbs.

    1.2.2 Khai trin Fourier ca hm tun hon chu k lT 20 = Trng hp hm tun hon vi chu k bt k, ta c th i bin a v chu k 2 v

    p dng cc kt qu mc trn.

    Gi s ( )x t l mt hm tun hon chu k . t 2l ( ) ly t x t= th tun hon chu k . Nu

    ( )y t

    2 ( )x t tha mn iu kin Dirichlet th cng tha mn iu kin Dirichlet, do c th khai trin thnh chui Fourier.

    ( )y t

    ( )01

    ( ) cos sin2 n nn

    ay t a nt b nt

    == + +

    trong v tri ca ng thc trn c quy c nh (1.25). ( )y t

    Thay bin s ta c

    01

    ( ) cos sin2 n nn

    a n nx t y t a t b tl l

    = = = + + l

    (1.28)

    Cc h s Fourier c tnh theo cng thc sau:

    2 2 2

    00 0 0

    1 1 1( ) ; ( ) cos ; ( )sin ; 1, 2, ...l l l

    n nn na x t dt a x t tdt b x t tdt n

    l l l l l = = = = (1.29)

    V d 1.9: Xt hm s ( )x t t= , ; tun hon chu k . V 1 t <

  • Chng 1: Gii tch Fourier

    18

    2 2

    01 1( ) ; ( ) cos ;

    l c l c

    nc c

    na x t dt a x t tdtll l

    + + = = 21 ( )sin ; 1, 2, ...

    l c

    nc

    nb x t tdt nl l

    + c= = cng thc c tnh i xng ngi ta thng chn c l= :

    01 1( ) ; ( ) cos ;

    l l

    nl l

    na x t dt a x t tdtll l

    = = 1 ( )sin ; 1, 2, ...l

    nl

    nt tdt nl l

    = =b x (1.30) 2. Nu l hm l tun hon chu k th )(tx 2l ( ) cos nx t

    lt l hm l v ( )sin nx t

    l t l hm

    chn, do cc h s Fourier (1.24) tha mn

    00

    20; ( )sin ; 1, 2, ...l

    n nna a b x t tdt n

    l l= = = = (1.31)

    3. Nu l hm chn tun hon chu k th )(tx 2l ( ) cos nx tl

    t l hm chn v ( )sin nx t tl l

    hm l, do cc h s Fourier (1.29) tha mn

    00 0

    2 20; ( ) ; ( ) cos ; 1, 2, ...l l

    n nnb a x t dt a x t tdt n

    l l l= = = = (1.32)

    4. Nu l hm xc nh, b chn v n iu tng khc trong khong . Ta c th m rng thnh hm tun hon chu k

    )(tx ( , )a b2l b a= . Do c th khai trin thnh chui

    Fourier, cc h s Fourier c tnh nh sau )(tx

    02 2( ) ; ( ) cos ;

    b b

    na a

    na x t dt a x tb a b a b a

    = = 2 tdt

    2 2( )sin ; 1, 2, ...b

    na

    nb x t tdt nb a b a

    = =)

    (1.33)

    5. Nu l hm xc nh, b chn v n iu tng khc trong khong . Khi ta c

    th m rng thnh hm chn hoc hm l tun hon chu k . Nu m rng thnh hm chn th cc h s Fourier c tnh theo cng thc (1.32) v nu m rng thnh hm l th cc h s Fourier c tnh theo cng thc (1.31).

    )(tx (0, l2l

    1.2.3 Dng cc ca chui Fourier (Polar Fourier Series)

    T cng thc (1.28) nu ta t

    2 200 ;2 n naA A a nb= = + (1.34)

    v gc xc nh bi , 0 2n n <

  • Chng 1: Gii tch Fourier

    19

    n ncos , sinn nn n

    a bA A

    = = (1.35)

    th cng thc (1.28) c th vit li

    00

    1 1( ) cos sin cos

    2 n n nn n

    a n n nx t a t b t A A tl l l

    = = = + + = + n (1.36)

    Cng thc (1.28) c gi l chui Fourier dng cu phng (Quadrature Fourier Series). Cng thc (1.36) c gi l chui Fourier dng cc ca . )(tx

    1.2.4 Dng phc ca chui Fourier (Complex Fourier Series)

    Thay cng thc Euler

    cos2

    i ie e + = , sin2

    i ie ei

    =

    vo (1.23) ta c

    ( ) nt nt nt nt0 01 1

    ( ) cos sin2 2 2

    i i i i

    n n n nn n

    a a e e e ex t a nt b nt a bi

    = =

    + = + + = + + 2

    nt nt012 2 2

    i in n n n

    n

    a a ib a ibe e =

    + = + + Vy ta c th vit chui Fourier di dng phc

    nt 2 22 1 0 1 2( )

    i it it itn

    nx t c e c e c e c c e c e

    == = + + + + + " "it +

    2/ 2

    (1.37)

    trong cc h s Fourier phc xc nh nh sau nc

    hoc 0 0 / 2

    ( ) /( )

    n n n

    n n n

    c ac a ibc a ib

    == = +

    0 02

    ( )n n n

    n n n

    a ca c cb i c c

    == +=

    (1.38)

    Mt khc, tng t (1.7) ta c tch v hng cc hm phc

    2

    0

    ; ( ) ( )x y x t y t

    = dt Vi tch v hng ny h cc hm { }mti

    me

    = l mt h trc giao, ngha l tha mn

    2

    nt

    0

    20

    i imt n me e dtn m

    == nu

    nu (1.39)

  • Chng 1: Gii tch Fourier

    20

    V vy cc h s Fourier phc (1.38) c th tnh trc tip

    nt1 ( )2

    inc x t e

    = dt hoc

    2nt1 ( ) ,

    2

    ci

    nc

    c x t e dt+

    c= (1.40) V d 1.10: Xt hm bc nhy tun hon v d 1.8

    nt nt

    0

    1 021 1( ) 0 0

    2 21

    i in

    n

    c t e dt e dt n n

    nin

    == = =

    nu

    nu chn

    nu l

    Vy, hm bc nhy n v c khai trin Fourier

    (2 1)1( )2 2

    m it

    m

    i etm

    +

    =

    1 + . V d 1.11: Tm khai trin Fourier ca hm m tun hon ( ) atx t e= .

    ( )nt ( )

    0

    1 12 2 2 (

    a in tat i a in t

    nt

    ec e e dt e dta in

    ) =

    = = = ( ) ( ) ( )

    2 2( )sh( 1) ( 1)

    2 ( ) 2 ( ) 2 ( ) ( )

    a in t a in a in a an n

    t

    e e e e e a ina in a in a in a n

    =

    += = = +a .

    Vy hm c chui Fourier tng ng

    nt2 2

    sh ( 1) ( )nat in

    a a ine ea n

    = +

    + . Hm tun hon chu k c khai trin Fourier dng phc 0 2T = l

    ( )ni tl

    nn

    x t c e

    = , 21 ( ) ,2

    nc l i tl

    nc

    c x t e dtl

    + c= (1.41)

    Nu k hiu 00

    1fT

    = l tn s c bn ca hm tun hon chu k th cng thc (1.41) c biu din

    0T

    , 02( ) i n f tnn

    x t c e

    = 02 21 ( ) ,2

    c li n f t

    nc

    c x t e dtl

    + c= (1.42) Nhn xt 1.2: Cng thc (1.34)-(1.38) cho thy dng cc, dng phc v dng cu phng ca chui Fourier l hon ton tng ng, ngha l t dng ny ta c th biu din duy nht qua dng kia v ngc li. Vy th dng no c ng dng tt nht. Cu tr li ph thuc vo tng

  • Chng 1: Gii tch Fourier

    21

    trng hp c th. Nu bi ton thin v gii tch th s dng dng phc s thun li hn v vic tnh cc h s d hn. Tuy nhin khi o cc hm dng sng c thc hin trong phng th

    nghim th dng cc s thun tin hn, v cc thit b o lng nh vn k, my phn tch ph s c c bin v pha. Dng cc kt qu th nghim o c cc nh k thut c th v cc

    vch ph mt pha l cc on thng ng vi mi gi tr bin ti tn s

    nc

    nA 00

    nnf nf

    T= = .

    1.2.5 ng thc Parseval

    nh l 1.8: i vi mi hm ( )x t tun hon chu k 0 2T l= tho mn iu kin Dirichlet s xy ra ng thc Parseval

    0

    22

    0

    1 ( )c T

    nnc

    x t dt cT

    +

    == (1.43)

    Chng minh:

    0 0 0

    2

    0 0 0

    1 1 1( ) ( ) ( )m nc T c T c T i t i tl l

    m nm nc c c

    x t dt x t x t dt c e c e dtT T T

    + + +

    = =

    = =

    0

    2

    0 ,

    1m nc T i t i tl l

    m n nm n nc

    c c e dt cT

    +

    = == = .

    1.2.6 o hm v tch phn ca chui Fourier

    i vi chui hm hi t, mt vn t nhin t ra l: khi ly o hm hoc ly tch phn ca tng s hng ca chui ta c chui mi, chui mi ny c hi t v o hm hoc tch phn ca hm tng ca chui ban u khng? Trng hp chui ly tha th cu tr li l khng nh. Vi tng ny ngi ta thng tm nghim ca phng trnh vi phn di dng chui ly tha nu nghim ca phng trnh khng phi l hm s cp.

    S hi t ca chui Fourier tinh t hn v vy i hi phi thn trng khi p dng phng php ly o hm hoc tch phn theo cc s hng. Tuy nhin, trong nhiu tnh hung c hai php ton ny em li nhng kt qu th v v cung cp mt cng c hu ch xy dng chui Fourier ca cc hm tng i phc tp.

    1.2.6.1 Tch phn ca chui Fourier

    Ta thy rng nguyn hm lun mn hn hm gc, v vy c th tin on rng s khng gp kh khn g khi ly tch phn ca chui Fourier. Tuy nhin c mt tr ngi l nguyn hm ca mt hm tun hon cha chc l hm tun hon. Chng hn hm hng 1 l mt hm tun hon nhng c nguyn hm, c th x , khng tun hon. V nguyn hm ca hm sin , hm l hm v hm , do nguyn hm ca tt c cc hm tun hon khc trong chui

    coscos sin

  • Chng 1: Gii tch Fourier

    22

    Fourier cng l hm tun hon. V vy ch c s hng hng 02a c th gy nn kh khn khi ly

    tch phn ca chui Fourier.

    B 1.1: Gi s ( )x t l hm tun hon chu k 2 , khi tch phn l hm

    tun hon chu k 2 khi v ch khi

    0

    ( ) ( )t

    y t x u du= ( ) 0x t dt

    = (c gi tr trung bnh bng 0).

    nh l 1.9: Nu ( )x t l hm lin tc tng khc, tun hon chu k 2 v c gi tr trung bnh bng 0 th c th ly tch phn tng s hng ca chui Fourier ca ( )x t nhn c chui Fourier ca nguyn hm

    10

    ( ) ( ) cos sint

    n n

    n

    b ay t x u du m nt ntn n

    = = + + ,

    1 ( )2

    m y t

    = dt (1.44)

    V d 1.12: Hm l tun hon chu k 2 v ( )x t t= , do c gi tr trung bnh bng 0. Theo v d 1.6 ta c chui Fourier

    1

    1

    sin2 ( 1)nn

    nttn

    =

    Ly tch phn tng s hng ca chui Fourier ta c

    2 2 1 2

    21

    ( 1) cos 2 cos3 cos 42 cos 2 cos2 6 6 4 9 16

    n

    n

    t tnt tn

    = = + "

    t t +

    V 2 21

    2 2 6t dx

    = .

    Nu ( )x t c gi tr trung bnh khc 0, chui Fourier tng ng c s hng 0 0a

    ( )01

    ( ) cos sin2 n nn

    ax t a nt b

    =+ + nt

    Trong trng hp ny kt qu ca ly tch phn s l

    0

    10

    ( ) ( ) cos sin2

    tn n

    n

    a b ay t x u du t m nt ntn n

    = = + + + ;

    1 ( )2

    m y t

    = dt (1.45)

    Ch rng v phi ca chui (1.45) khng phi l chui Fourier. Ta c th vit li di dng khai trin chui Fourier ca hm tun hon chu k 2 nh sau

  • Chng 1: Gii tch Fourier

    23

    0

    1( ) cos sin

    2n n

    n

    a b ay t t m nt ntn n

    = + + (1.46)

    1.2.6.2 o hm ca chui Fourier

    Php tnh o hm ngc vi php ly tch phn. o hm c th lm cho hm xu hn. V vy khi s dng phng php ly o hm ca chui Fourier ( )x t chng ta cn phi ch n s tha mn iu kin Dirichlet ca '( )x t . i hi ny c tha mn nu ( )x t kh vi lin tc tng khc n cp 2.

    nh l 1.10: Nu ( )x t l hm tun hon chu k 2 v kh vi lin tc tng khc n cp 2 th c th ly o hm tng s hng ca chui Fourier ca ( )x t nhn c chui Fourier ca o hm

    (1.47) [1

    ( ) '( ) cos sinn nn

    t x t nb nt na nt

    = = ]

    V d 1.13: Nu o hm chui Fourier ca hm ( )x t t= (v d 1.7) ta c 4 sin 3 sin 5 sin 7'( ) sin

    3 5 7t t tx t t + + + + " .

    Mt khc o hm ca ( )x t = t ta c hm du 1 0

    sign1 0

    td tt

    tdt>= =

  • Chng 1: Gii tch Fourier

    24

    K s ngi Anh Oliver Heaviside l ngi u tin s dng hm delta trong cc ng dng thc t ca mnh, mc d cc nh ton hc l thuyt cng thi cho rng l ngh in r. Ba mi nm sau, nh Vt l l thuyt ni ting Paul Dirac s dng hm delta trong l thuyt c hc lng t ca mnh, nh cui cng cc nh l thuyt chp nhn hm delta. Nm 1944 nh ton hc Php Laurent Schwartz cui cng xy dng c l thuyt phn b kt hp vi hm suy rng iu ny gii thch c s tn ti ca hm delta.

    C hai cch khc nhau xy dng hm delta:

    Cch th nht xem hm delta l gii hn ca dy hm trn theo ngha bnh thng. Cch th hai xem hm delta nh l mt phim hm tuyn tnh ca khng gian hm thch

    hp.

    C hai u quan trng v ng quan tm. Tuy nhin cch th nht s d dng tip thu hn, v vy ta ch xt phng php ny.

    Phng php gii hn xem hm delta 0( )t t l gii hn ca dy hm kh vi c gi

    tr ngy cng tp trung ti v c tch phn lun bng 1.

    ( )ng t

    0t t=

    Chng hn xt dy hm 2 2( ) (1 )nng tn t

    = + tha mn hai iu kin

    0 0lim ( )

    0nnt

    g tt= =

    nu

    nu (1.50)

    1( ) arctan 1n tg t dt n t

    =

    = = (1.51)

    Hnh 1.5: th cc hm ( )ng t

  • Chng 1: Gii tch Fourier

    25

    V vy, mt cch hnh thc ta ng nht gii hn ca dy hm l hm delta tp trung ti

    gc .

    ( )ng t0t =

    0lim ( ) ( ) ( )nng t t t = = . (1.52)

    Hnh 1.5 cho thy cc hm c gi tr ngy cng tp trung ti gc ( )ng t 0t = . Cn ch rng c nhiu cch chn cc hm c gii hn l hm delta. ( )ng t

    Trng hp hm delta c gi tr tp trung ti bt k c th nhn c t hm

    bng cch tnh tin 0( )t t 0t

    ( )t

    0 0( ) ( )t t t t = . (1.53) V vy, c th xem l gii hn ca dy hm

    0( )t t

    l ( )0 2 0( ) ( ) 1 ( )nn ng t g t t n t t= = + 2 (1.54) o hm v tch phn ca hm delta

    T cng thc (1.48)-(1.49) ta c

    Vi mi hm lin tc ( )x t :

    0

    ( ) 0( ) ( )

    0

    l

    vx v v

    t x t dtl< = =

  • Chng 1: Gii tch Fourier

    26

    1 0lim ( ) ( ) 1/ 2 0

    0 0nn

    tf t t t

    t

    >= = =

  • Chng 1: Gii tch Fourier

    27

    Cng thc o hm (1.57) tng ng

    6'( ) '( ) ( 1)5

    x t y t t= + , 1 1

    ( ) 2 15

    ty t

    t t

    nu

    nu

    th hm ( )x t th hm '( )x t

    Hnh 1.7: th ca ( )x t v o hm '( )x t

    V d 1.15: Xt hm s 20

    ( ) 1 0 1

    2 1t

    t t

    x t t t

    e t

  • Chng 1: Gii tch Fourier

    28

    Tch phn ca hm bc nhy 0(t t ) gin on l hm dc lin tc 0( )t t

    0 0( ) ( )t t t t = ; 0 0 0 000

    ( ) ( ) ( )0

    t

    t ta

    t t t t at dt u t u t t

    a t t > > = = = < =

  • Chng 1: Gii tch Fourier

    29

    Hm phn b c xc nh t hm khi lng xc sut theo cng thc

    { }( ) ( )k

    X X kx x

    F x P X x p x

    = = th ca hm phn b ( ) l c dng bc thang lin tc phi ti cc bc nhy. XF x

    S dng cng thc (1.55) v (1.59) ta c th vit li

    ( ) ( ) ( ) ( )k k

    x

    X X k X kx x x

    F x p x p x t x dt

    = = k V vy ta c th xem hm mt ca bin ngu nhin ri rc l

    ( ) ( ) ( )k

    X X k kx

    f x p x x x= . Khai trin Fourier ca hm delta

    p dng cng thc (1.56) tnh h s Fourier ta c

    -

    1 1 1( ) cos cos 0na t ntdt n

    = = = , -

    1 1( )sin sin 0 0nb t ntdt n

    = = = (1.62)

    Vy hm delta c khai trin Fourier

    (1 1( ) cos cos 2 cos32

    t t t + + + + )t " (1.63)

    Thay ik ik

    cos2

    t te ekt+= (cng thc Euler) vo (1.63) ta c

    ( )ik 2 21 1( ) 12 2t it it it ikt e e e e e =

    = + + + + + " t +" (1.64) Cng c th nhn c cng thc khai trin trn bng cch tnh trc tip cc h s theo cng thc (1.40)

    ik 0

    -

    1 1( )2 2

    t ikkc t e dt e

    = = = 12 .

    Tng ring ca chui Fourier

    ik12

    nt

    nk n

    s e=

    = l tng ca s hng ca cp s nhn c s hng u tin l v cng bi , do : 2 1n + in te ite

  • Chng 1: Gii tch Fourier

    30

    1 1(2 1) ( 1) in 2 2

    in/ 2 / 2

    1sin1 1 1 1 1 2

    12 2 2 21 1 sin2

    i n t i n ti n t i n t t

    tn it it it it

    n te e e e es e

    e e e e t

    + + + +

    + = = = =

    Hnh 1.10: th cc tng ring ca chui Fourier hm Delta

    1.3 PHP BIN I FOURIER HU HN

    Mi hm tun hon c xc nh duy nht bi cc h s Fourier ca n v ngc li (cng thc 1.23, 1.24, 1.28, 1.29), iu ny c suy ra t tnh cht trc giao ca h 1.11, 1.39.

    Tng t ta c th chng minh c h cc hm phc tun hon { }2i nf ne = l mt h trc chun trn on [ ] 0, 1

    12 2

    0

    10

    i nf i mf n mn m

    e e df ==

    nu

    nu. (1.65)

    Da vo h trc chun ny ta nh ngha php bin i Fourier hu hn ca cc tn hiu ri rc nh sau.

    1.3.1 nh ngha php bin i Fourier hu hn

    nh ngha 1.4: Bin i Fourier hu hn ca dy tn hiu ri rc { } =nnx )( l

  • Chng 1: Gii tch Fourier

    31

    l { } 2( ) ( ) ( ) i nfn

    X f x n x n e =

    = = F (1.66) nu chui v phi hi t.

    Cng thc bin i ngc

    l{ } l110

    ( ) ( ) ( ) i nf2x n X f X f e= = F df (1.67) V d 1.17: Tm bin i Fourier hu hn ca tn hiu ri rc )(rect)( nnx N= , N l 1 s t nhin.

    =

    li ngcnunu

    01

    )(rect10 Nn

    nN

    Gii: l21

    2 22

    0

    1( ) ( )1

    i NfNi nf i nf

    i fn n

    eX f x n e ee

    = =

    = = =

    ( 1)sinsin

    i Nf i Nf i Nfi N f

    i f i f i fe e e Ne f

    fe e e

    = = .

    Nhn xt 1.3:

    1. Trong cng thc bin i Fourier 1.66, 1.67 i s c k hiu cho tn s. C ti liu khng biu din bin i Fourier qua min tn s m qua min tn s gc nh sau

    ff

    l { }( ) ( ) ( ) i nn

    X x n x n e =

    = = F , l{ } l210

    1( ) ( ) ( )2

    i nx n X X e d = = F (1.68)

    Hai cch biu din ny tng ng vi nhau qua php i bin s 2 f = . 2. Mt iu kin tn hiu ri rc { } =nnx )( tn ti bin i Fourier hu hn l

  • Chng 1: Gii tch Fourier

    32

    1.3.2 Cc tnh cht ca php bin i Fourier hu hn

    Tng t php bin i Laplace, php bin i Fourier hu hn c cc tnh cht sau:

    1. Tuyn tnh:

    { } { } { }( ) ( ) ( ) ( )x n y n x n y n + = +F F F (1.69) Chng minh: { } ( ) 2( ) ( ) ( ) ( ) i nf

    nx n y n x n y n e

    =

    + = +F

    { } {2 2( ) ( ) ( ) ( )i nf i nfn n

    }x n e y n e x n y n = =

    = + = + F F . 2. Tr:

    l { } { } l020( ) ( ) ( ) ( )i n fX f x n x n n e X = =F F f( )

    x n

    . (1.70)

    Chng minh: { } 0 02 220 0 0( ) ( ) ( )i n f i n n fi nfn n

    x n n x n n e e x n n e = =

    = = F

    . { }0 02 22( ) ( )i n f i n fi nfn

    e x n e e =

    = = F3. Dch chuyn nh:

    l { } { } l02 0( ) ( ) ( ) ( )i nfX f x n e x n X f f= =F F . (1.71) 4. iu ch:

    { } l l0 02 2 00 ( ) (( )cos(2 ) ( ) 2 2i nf i nf

    0)X f f X f fe ex n nf x n + ++ = =

    F F . (1.72)

    5. Lin hp phc: l { } 2( ) ( ) ( ) i nfn

    X f x n x n e =

    = = F

    { } l2 2( ) ( ) ( ) ( )i nf i nfn n

    x n x n e x n e X = =

    = = = F f (1.73) Do nu thc th )(nx l l( ) ( )X f X f= .

    6. Bin s o: l { } 2( ) ( ) ( ) i nfn

    X f x n x n e =

    = = F

  • Chng 1: Gii tch Fourier

    33

    { } l2 2 ( )( )( ) ( ) ( ) (i nf i n fn n

    )x n x n e x n e X = =

    = = = F f (1.74) 7. Tch chp:

    { } { } { }( ) ( ) ( ) ( )x n y n x n y n = F F F (1.75) Chng minh: Ta c ( ) ( ) ( ) ( ) ( )

    kz n x n y n x k y n k

    == =

    l 2 2( ) ( ) ( ) ( ) ( )i nf i kf i n k fn k n k

    Z f x k y n k e x k e y n k e = = = =

    = = 2 ( )

    )

    l l2 ( ) 2( ) ( ) ( ) (i n k f i kfk n

    y n k e x k e X f Y f = =

    = = 8. Tch chp nh:

    { } { } { }( ) ( ) ( ) ( )x n y n x n y n = F F F (1.76) Chng minh: { } 2( ) ( ) ( ) ( ) i nf

    nx n y n x n y n e

    =

    = F . Theo 2.71 ta c: 1

    2 2 ( )

    0

    ( ) ( ) ( ) ( )i nf i m n u i nfn n m

    x n y n e x m e du y n e = = =

    = 2

    12 ( ) 2

    0

    ( ) ( )i m n u i nfn m

    x m e y n e du = =

    = l l1 2 2 ( )

    0

    ( ) ( ) ( ) ( )i mu i n f um n

    x m e y n e du X f Y f = =

    = = . 9. Bin i ca hm tng quan

    = =m

    yx nmymxnr )()()(, { } l l, ( ) ( ) ( )x yr n X f Y f=F (1.77) nh l Weiner-Khinchin: { } l 2, ( ) ( )x xr n X f=F . (1.78) Nu thc, )(),( nynx =

    =myx nmymxnr )()()(, { } l l, ( ) ( ) ( )x yr n X f Y f= F .

  • Chng 1: Gii tch Fourier

    34

    Chng minh: , ( ) ( ) ( ) ( ) ( )x ym

    r n x m y m n x n y n

    == = { } l l, ( ) ( ) ( )x yr n X f Y f=F .

    Hoc ta c th chng minh trc tip nh sau:

    { } 2, ( ) ( ) ( ) i nfx yn m

    r n x m y m n e = =

    = F 2 ( ) 2( ) ( ) i n m f i mf

    m nx m y m n e e

    = =

    =

    l l2 ( ) 2( ) ( ) ( ) ( )i m n f i mfm n

    x m y m n e e X f Y = =

    = = f . 10. o hm nh:

    l { } { } l( )( ) ( ) ( )2i d X fX f x n nx n

    df= = F F (1.79)

    Chng minh: { } l22 1 (( ) ( ) ( )2 2

    i nfi nf

    n n

    de i d X fnx n nx n e x ni df

    = =

    = = = F )df 11. ng thc Parseval:

    l l1

    0

    ( ) ( ) ( ) ( )n

    x n y n X f Y f df

    == ; l

    1 22

    0

    ( ) ( )n

    x n X f

    == df . (1.80)

    Chng minh:

    l l1 12 20 0

    ( ) ( ) ( ) ( ) ( ) ( )i nf i nfn n n

    x n y n y n X f e df X f y n e df = = =

    = =

    l l l1 1

    2 ( )

    0 0

    ( ) ( ) ( ) ( )i n fn

    X f y n e df X f Y f df =

    = = .

    Ta c th tng kt trong bng sau.

    Tnh cht Tn hiu ri rc { } =nnx )( Bin i Fourier l { }( ) ( )X f x= F nTuyn tnh ( ) ( )x n y n + l l( ) ( )X f Y f + Tr 0( )x n n l02 ( )i n fe X f

  • Chng 1: Gii tch Fourier

    35

    Dch chuyn nh 02 ( )i nfe x n l 0( )X f f

    iu ch 0( )cos(2 )x n nf l l

    0 0( ) (2

    X f f X f f + + )

    Lin hp phc ( )x n l( )X f Bin s o ( )x n l( )X f Tch chp ( ) ( )x n y n l l( ) ( )X f Y f Tch chp nh ( ) ( )x n y n l l( ) ( )X f Y f

    Hm tng quan , ( ) ( ) ( )x ym

    r n x m y m n

    == l l( ) ( )X f Y f

    o hm nh ( )nx n l( )

    2i d X f

    df

    1.4 PHP BIN I FOURIER

    Khi u chui Fourier c xy dng vi mc ch gii quyt cc bi ton tng ng vi cc hm s xc nh trong min b chn hoc hm tun hon. gii quyt cc bi ton c cc hm s xc nh trn ton b tp s thc t < < ngi ta m rng mt cch t nhin phng php chui Fourier, iu ny a n php bin i Fourier. Php bin i Fourier l mt cng c mnh m v ng vai tr ct yu trong nhiu min ng dng nh: Gii phng trnh vi phn, phng trnh o hm ring, x l tn hiu, l thuyt iu khin v trong nhiu lnh vc khc ca ton l thuyt cng nh ton ng dng. i vi cc nh ton hc php bin i Fourier l c bn hn php bin i Laplace.

    C s ca php bin i Fourier l cng thc tch phn Fourier, cng thc ny c c bng cch xt chui Fourier trong khong kh ln ty , sau cho khong ny tin n v cng.

    1.4.1 Cng thc tch phn Fourier

    nh l 1.11: Nu hm kh tch tuyt i trn ton b trc thc ()(tx

  • Chng 1: Gii tch Fourier

    36

    Chng minh: V hm tha mn iu kin Dirichlet trn ton b trc thc nn vi mi ta c th khai trin thnh chui Fourier trong khong

    )(tx0>l );( ll (xem nhn xt v cng thc

    1.28).

    0

    1( ) cos sin

    2 n nn

    a n nx t a t bl l

    =t = + +

    Cc h s Fourier c tnh theo cng thc sau:

    01 1 1( ) ; ( )cos ; ( )sin ; 1, 2, ...

    l l l

    n nl l l

    n na x u du a x u udu b x u udu nl l l l l

    = = = =

    1

    1 1( ) ( ) ( ) cos cos sin sin2

    l l

    nl l

    n n n nx t x u du x u u t u tl l l l l l

    = du = + +

    1

    1 1( ) ( ) ( )cos ( )2

    l l

    nl l

    nx t x u du x u u tl l l

    = = + du (1.82)

    V nn khi cho

  • Chng 1: Gii tch Fourier

    37

    V hm cosin l hm chn v sin l hm l nn t cng thc (1.81) ta cng c:

    1 1( ) ( )cos ( ) ( )cos ( )

    2 2x t d x u u t du d x u t u

    = = du

    ( ) ( )1 1( ) cos ( ) sin ( ) ( )2 2

    i t ud x u t u i t u du d x u e du

    = + = Vy

    1( ) ( )

    2i u i tx t x u e du

    = e d (1.86) (1.86) c gi l cng thc tch phn Fourier phc.

    Nhn xt 2.4:

    1. Cc cng thc trn s dng quy c (1.25) ti nhng im khng lin tc.

    2. Nu l hm chn th cng thc (1.86) tr thnh )(tx

    0 0

    2( ) cos ( )cosx t td x u udu

    = . (1.87) 3. Nu l hm l th )(tx

    0 0

    2( ) sin ( )sinx t td x u udu

    = . (1.88) 4. Cc cng thc tch phn Fourier, nh l 1.11 c pht biu v chng minh cho trng hp l hm thc. Tuy nhin do tnh cht tuyn tnh ca tch phn nn cc kt qu trn

    vn cn ng cho trng hp hm phc bin thc kh tch tuyt i c phn thc, phn o tha mn iu kin Dirichlet.

    )(tx)(tx

    5. i bin 2 2f d = = df v thay vo cng thc (1.88) ta c

    2 ( ) 2 2( ) ( ) ( )i f u t i fu i ftx t df x u e du x u e du e df

    = = (1.89) 1.4.2 Php bin i Fourier

    nh ngha 1.5: Bin i Fourier (vit tt l FT) ca hm kh tch tuyt i trn trc thc v tha mn iu kin Dirichlet l

    )(tx

  • Chng 1: Gii tch Fourier

    38

    l { } 2( ) ( ) ( ) ,i ftX f x t x t e dt f

    = = F (1.90) Trong k thut, nu l hm dng sng (waveform) theo thi gian )(tx t th c

    gi l ph hai pha ca (two - sided spectrum), cn tham s ch tn s, c n v l Hz.

    l( )X f)(tx f

    T cng thc tch phn Fourier (1.89) ta c cng thc bin i ngc

    l{ } l1 2( ) ( ) ( ) i ftx t X f X f e df

    = = F (1.91) Hm nh qua php bin i Fourier c th vit di dng cc l( )X f

    l l ( )( ) ( ) i fX f X f e = (1.92) trong

    l l l( ) ( ) ( )X f X f X f= , l( ) ( )f X f = (1.93) c gi dng bin - pha ca php bin i.

    Cp l( ), ( )x t X f c gi l cp bin i Fourier. 1.4.3 Tnh cht php bin i Fourier

    Tng t cc tnh cht (1.69)-(1.80) ca php bin i Fourier hu hn, php bin i Fourier c cc tnh cht c tng kt trong bng sau:

    Tnh cht Hm )(tx Bin i Fourier l( )X f1. Tuyn tnh 1 2( ) ( )x t x t + l l1 2( ) ( )X f X f +

    2. ng dng )(atx l ( )1 /| |

    X f aa

    3. Lin hp )(tx l( )X f 4. i ngu l( )X t )( fx 5. Tr )( dTtx l2 ( )di Te X f 6. ng dng tnh

    tin ( )x at b+ l

    2

    | |

    bi fae fX

    a a

  • Chng 1: Gii tch Fourier

    39

    7. Dch chuyn nh 02 ( )i f te x t l 0( )X f f

    8. iu ch 0( )cos 2x t f t l l0 01 1( ) (2 2X f f X f f + + )

    9. o hm nn

    dttxd )(

    ( ) l2 (ni f X f )

    10. Tch phn

    t

    duux )( l l1 1( ) (0) ( )2 2

    X f X fi f

    +

    11. o hm nh )(txt n l( )

    2

    n n

    ni d X f

    df

    12. Tch chp 1 2 1 2( ) ( ) ( ) ( )x t x t x u x t u du

    = l l1 2( ) ( )X f X f

    13. Tch )()( 21 txtx l l1 2( ) ( )X f X f

    Hm trong tnh cht 10. l hm delta Dirac (xem mc 1.2.7). T nh ngha bin i Fourier (1.90) ta nhn thy rng nu l hm thc chn th bin

    i Fourier ca n cng l hm thc chn. Kt hp vi tnh cht i ngu 4. ta c th chuyn i

    vai tr ca v cho nhau, ngha l

    )(tx

    )(tx l( )X fl { } l{ }( ) ( ) ( ) ( )X f x t X t x f= =F F (1.94)

    1.4.3 nh l Parseval v nh l nng lng Rayleigh

    Nu l hai hm bnh phng kh tch (gi l hm kiu nng lng) th ta c

    ng thc Parseval )(),( 21 txtx

    l l1 21 2( ) ( ) ( ) ( )x t x t dt X f X f df

    = (1.95)

    Khi )()()( 21 txtxtx == ta c nh l nng lng Rayleigh

    l 22 1( ) ( )x t dt X f df

    = (1.96)

    Nh vy c th chuyn tnh nng lng trong min thi gian bng tnh nng lng trong min tn s.

  • Chng 1: Gii tch Fourier

    40

    Cng thc (1.96) c th chng minh bng cch s dng cng thc tch phn Fourier nh sau:

    l 221 2 1( ) ( ) ( ) ( ) i ftx t x t dt x t X f e df dt

    =

    l 22 1( ) ( ) i ftX f x t e dt df

    =

    l l1 2( ) ( )X f X f df

    = .

    1.4.4 Bin i Fourier ca cc hm c bit

    V d 1.18: Bin i Fourier ca xung ch nht hay hnh hp c di 2a

    (1.97) 1 | |

    ( )0 | | ,a

    t at

    t a a >

    nu

    nu 0

    l 22

    2

    0

    0

    1

    ( ) i ft

    i f

    a ai fta

    aa

    e

    f

    ff e dt

    =

    = =

    nu

    nu

    0

    sin(2 ) 0

    1 fa f ff

    =

    =

    nu

    nu

    t

    0

    sin( ) 0

    1sinc( )

    tt t

    tt

    =

    =

    nu

    nu (1.98)

    Ta c

    { }( ) 2 sinc(2 )a t a af =F . (1.99) Php bin i Fourier ngc cho php khi phc li gi tr ca xung ch nht (xem

    cng thc (1.91))

    ( )a t

  • Chng 1: Gii tch Fourier

    41

    2| |

    sin(2 ) | || |

    11/ 20

    i ftt a

    a f t af

    t ae df

    =

    nu

    nu

    nu

    (1.100)

    Tch phn thc v phn o (1.100) ta c:

    0

    | |cos (2 )sin(2 ) | |

    | |

    / 2/ 4

    0

    t aft a f t a

    ft a

    df

    =

    nu

    nu

    nu

    ;

    sin (2 )sin(2 ) 0ft a ff

    df

    = .

    Khi ta c xung hnh vung: 1a =1 | |

    ( )0 | |

    tt

    t11

    nu

    nu v { }( ) 2sinc(2 )t f =F .

    p dng cng thc (1.94) ta cng c

    { }2sinc(2 ) ( )t f= F .

    Hnh 1.11: th ca ( )t v l( )f

    Cng thc (1.100) khi phc gi tr ca ( )t da vo tch phn v hn ca l( )f

    l{ } l1 2( ) ( ) ( ) i ftt f f e df

    = = F Tuy nhin khi tnh ton s ngi ta ch tnh tch phn trong khong hu hn.

    Hai th sau y tng ng l th ca v . l25

    2

    25

    ( )i fte f

    df dfl50

    2

    50

    ( )i fte f

  • Chng 1: Gii tch Fourier

    42

    Hnh 1.12

    V d 1.19: Xung tam gic n v

    (1.101) = >

    = < >nu

    nu. (1.104)

    C bin i Fourier

  • Chng 1: Gii tch Fourier

    43

    l ( 2 )20 0

    1( )2 2

    i f tt i ft

    rt

    eX f e e dti f i f

    + =

    = = = + + S dng cng thc bin i Fourier ngc ta c

    2 01/ 2 0

    20 0

    ti ft e te df ti f

    t

    >= = + nu

    nu 0 (1.105)

    C bin i Fourier

    l00 ( 2 )

    2 1( )2 2

    i f tt i ft

    lt

    eX f e e dti f i f

    =

    = = = . Xung dng m chn, hai pha

    ( ) ; 0tex t e= > (1.106)

    R rng ( ) ( ) ( )e l rx t x t x t= + , do bin i Fourier s l l l l

    2 21 1 2( ) ( ) ( )2 2 4

    e l rX f X f X fi f i f 2f

    = + = + = + + (1.107)

    p dng bin i Fourier ngc ta c cng thc tnh tch phn

    2

    2 2 2 2 2 22 2 cos

    4 4

    i ftt e fe df

    f f

    = = + + 2 t df . Xung dng m l ( ) (sgn ) tox t t e

    = 0

    ( ) ( ) ( )0 ; 0

    t

    o r l t

    e tx t x t x t

    e t

    >= = < >nu

    nu (1.108)

    l l l2 2

    1 1 4( ) ( ) ( )2 2 4

    o r lfX f X f X f i

    i f i f 2f= = = + + (1.109)

    S dng cng thc bin i Fourier ngc ta c

  • Chng 1: Gii tch Fourier

    44

    2

    2 2 2 2 2 2sin 2(sgn ) 4 4

    4 4

    i ftt fe f ftt e i df df

    f f

    = = + + (1.110) C th nghim li c

    ( )1( ) (sgn ) t eodx tx t t e

    dt= = ,

    do l l 2 21 4( ) ( 2 ) ( )

    4o e

    fX f i f X f i 2f= = + .

    Mt khc, v hm xung dng m l gin on ti 0t = vi bc nhy bng 2, do o hm ca n cha hm delta v tha mn

    ( ) 2 ( ) ( ) 2 ( )to edx t e t x t

    dt= + = + t

    Cng thc ny cng thng nht vi kt qu ca bin i Fourier

    l l2 2 22 2 2 2 2 28 2( 2 ) ( ) 2 2 ( ) ( )

    4 4o e

    fi f X f f X ff f

    = = = + + .

    V d 1.21: Xt hm hu t

    2 21( )x t

    t c= + , 0c >

    p dng cng thc (1.96) v (1.106)-(1.107) ta c

    2 2 22 , 04

    fet

    = > + F .

    2 2

    2 2 2 2 2 22

    4 2 ( / 2 )

    i ft i ftf e ee dt

    t t

    = = + + dt l 2 2

    2 2( )i ft

    c feX f dt ect c

    = =+ Vy

    22 2

    1 ,c fe cct c

    0= > + F (1.111)

    V d 1.22: Bin i Fourier ca Hm delta Dirac ( )t tp trung gi tr ti . 0t =T cng thc (1.48)-(1.49) ta c

  • Chng 1: Gii tch Fourier

    45

    00

    0( )

    tt

    t

    = =

    vi

    vi v ( ) 1t dt

    = (1.112)

    1. ( ) ( ) (0)x t t dt x

    = vi mi hm ( )x t lin tc ti 0.

    2. . (1.113) { } { }2 1( ) ( ) 1 ( ) 1i ft i ftt t e dt t e

    = = = = F F 2 df

    df

    3. Nu gi thit l hm chn th ( )t

    2( ) ( ) i ftt t e

    = = . (1.114) 4. p dng tnh ng dng ca bin i Fourier ta c

    1( ) ( )at ta

    = . (1.115)

    5. i bin s ly tch phn ta c

    0 0 0( ) ( ) ( ) ( ) ( )0x t t x t t t dt x t

    = = (1.116)

    vi mi hm ( )x t lin tc ti . 0t

    Mt kt qu th v nhn c t xung dng m chn (1.106) l nu ly gii hn khi ta nhn c hm hng ng nht bng 1. 0

    Mt khc ly gii hn ca bin i Fourier (1.107) ca xung dng m chn ta c

    2 2 20

    0 02lim04

    fff = = +

    nu

    nu (1.117)

    Gii hn ny gip ta nh n nh ngha ca hm delta

    2 2 2 20( ) lim lim

    (1 ) ( )nntn t t

    = = + + , trong 1n = .

    V d 1.23: Hm bc nhy

    (1.118) 00

    1( ) ( )

    0

    ttt

    t

    >