50
INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA DINÂMICA DE OCORRÊNCIA DE Aedes aegypti e Aedes albopictus EM RESIDÊNCIAS URBANAS DE MANAUS, BRASIL SAMAEL DAVID PADILLA TORRES Manaus, Amazonas Maio, 2012

DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

  • Upload
    hatuyen

  • View
    225

  • Download
    1

Embed Size (px)

Citation preview

Page 1: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA

PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA

DINÂMICA DE OCORRÊNCIA DE Aedes aegypti e Aedes albopictus

EM RESIDÊNCIAS URBANAS DE MANAUS, BRASIL

SAMAEL DAVID PADILLA TORRES

Manaus, Amazonas

Maio, 2012

Page 2: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

SAMAEL DAVID PADILLA TORRES

DINÂMICA DE OCORRÊNCIA DE Aedes aegypti e Aedes albopictus

EM RESIDÊNCIAS URBANAS DE MANAUS, BRASIL

ORIENTADOR: Dr. FERNANDO ABAD-FRANCH

CO-ORIENTADOR: Dr. Gonçalo Ferraz

Manaus, Amazonas

Maio, 2012

Dissertação apresentada ao Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para a obtenção do título de Mestre em Biologia (Ecologia)

Page 3: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

II

BANCA EXAMINDORA DO TRABALHO ESCRITO:

Nome (instituição) Parecer

Steven A. Juliano (Illinois State University) Aprovado

Larissa Bailey (Colorado State University) Aprovado

Ricardo E. Gürtler (Universidad de Buenos Aires) Aprovado

BANCA EXAMINDORA DA DEFESA PÚBLICA DA DISSERTAÇÃO:

Nome (instituição) Parecer

Elizabeth Franklin Chilson (INPA) Aprovado

Paulo E. D. Bobrowiec (INPA) Aprovado

Ricardo A. dos Passos (FVS/AM) Aprovado

Page 4: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

III

P123 Padilla Torres, Samael David Dinâmica de ocorrência de Aedes aegypti e Aedes albopictus em residências urbanas de Manaus, Brasil /Samael David Padilla Torres.--- Manaus : [s.n.], 2012. vii, 44 f. : il. color. Dissertação (mestrado) --- INPA, Manaus, 2012 Orientador : Fernando Abad-Franch Co-orientador : Gonçalo Ferraz Área de concentração : Ecologia

1. Ecologia de populações. 2. Controle biológico. 3. Vetor. 4. Vigilância entomológica. 5. Dengue – Manaus (AM). I. Título. CDD 19. ed. 595.7

Sinopse:

Modelou-se a dinâmica de ocorrência dos mosquitos vetores da dengue para quantificar os efeitos das intervenções oficiais de controle sobre estas espécies em um bairro da cidade de Manaus, Amazonas.

Palavras-chave: Ecologia, população, vetor, vigilância entomológica.

Page 5: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

IV

AGRADECIMENTOS

Ao Instituto Nacional de Pesquisas da Amazônia por fornecer apoio para a realização da

minha dissertação.

Ao Programa de Pós-Graduação em Ecologia do INPA pela ajuda prestada ao longo do

mestrado.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela concessão

da bolsa de mestrado através do seu programa de cooperação internacional PEC-PG, processo

190023/10-4.

Ao Instituto Leônidas e Marie Deane (ILMD – Fiocruz Amazônia) por fornecer apoio e

logística para a realização da minha dissertação através do Programa de Pesquisa em Ecologia

de Doenças Transmissíveis na Amazônia (PP-EDTA).

Aos moradores do bairro Tancredo Neves que sempre foram tão prestativos e pacientes ao

longo do monitoramento.

A Ricardo Mota, Diego Leite e Alexis Barbosa pela ajuda em campo e por compartilhar seus

conhecimentos práticos.

À Elvira Zamora-Perea pela imensa ajuda prestada na identificação e processamento do

material no laboratório e por facilitar a minha pesquisa com a sua paixão pelo trabalho bem

feito.

A Roberto Sena, Claudia Ríos-Velásquez, Felipe Pessoa, Sérgio Luz e Sylvain Desmoulière

pelas críticas construtivas e informação facilitada para a elaboração desta dissertação.

Ao Gonçalo Ferraz pelas suas críticas e sua ajuda com os modelos, que melhoraram

significativamente a qualidade da dissertação.

Ao Fernando Abad-Franch por aceitar-me como orientado, por compartir generosamente sua

experiência e conhecimentos, pelas estimulantes conversas sobre pesquisa após o expediente e

pela sua dedicação e esforço.

À Luciana pelo seu apoio incondicional, sua alegria, sua criatividade e carinho.

Page 6: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

V

RESUMO

Aedes aegypti e Ae. albopictus são os vetores da dengue; ambos estão adaptados a ambientes antropizados e encontram-se distribuídos pela faixa tropical-subtropical, constituindo um grave problema de saúde pública. Em ausência de tratamentos ou vacinas, a prevenção da dengue baseia-se no controle do vetor. Isto requer um conhecimento detalhado da ecologia populacional destas duas espécies. Porém, os estudos realizados até o presente pressupõem que estes vetores podem ser detectados de forma perfeita; esta suposição é, muito provavelmente, errada. Neste trabalho foram quantificados, usando uma abordagem que considera explicitamente a detecção imperfeita, os efeitos das intervenções de controle executadas pelas agências locais de saúde pública sobre a dinâmica de ocorrência dos vetores da dengue. Os dados incluíram 38 meses de monitoramento entomológico, executado em parceria com o Instituto Leônidas e Marie Deane desde o ano 2008, no bairro Tancredo Neves da cidade de Manaus. Covariáveis meteorológicas e relativas às residências também foram consideradas. As estimativas da infestação domiciliar por Ae. aegypti (~0.9) superaram em uma ordem de grandeza o índice de infestação predial reportado pelo sistema de vigilância de rotina; o monitoramento com ovitrampas foi mais confiável (infestação domiciliar observada ~0.7). As probabilidades de ocorrência dos vetores flutuaram sazonalmente, principalmente devido aos efeitos negativos das altas temperaturas entre junho e setembro. As intervenções de controle coordenadas pela Prefeitura somente tiveram um pequeno efeito negativo, não distinguível de zero, sobre as taxas de infestação domiciliar por vetores de dengue. Os resultados mostraram que tanto a vigilância entomológica de rotina quanto os sistemas de controle de vetores da dengue devem ser melhorados. A gestão dos programas de controle vetorial precisa de alternativas mais efetivas, incluindo métodos que permitam uma avaliação fiável das taxas de infestação domiciliar. A abordagem utilizada neste trabalho, combinando ovitrampas com modelos que incorporam detecção imperfeita, poderia contribuir para o desenvolvimento de tais alternativas.

Page 7: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

VI

Dynamics of site-occupancy by Aedes aegypti and Aedes albopictus in urban residences of Manaus, Brazil

ABSTRACT

Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important arboviral disease of humans. Dengue prevention heavily relies upon vector control, and this requires detailed knowledge of the population ecology of these species. Yet, all reports on Aedes ecology published to date assume that the vectors are truly absent from sites where they are not detected; since no perfect detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/control parameters, including site-occupancy (infestation) rates and control intervention effects. Here, we used a modeling approach that explicitly accounts for imperfect detection to model the effects of regular (municipal) Aedes control interventions on site-occupancy dynamics. The data, collected in partnership with the Leônidas and Marie Deane Institute, encompass 38 months of vector monitoring at 55 sites in the Tancredo Neves neighborhood, Manaus. Meteorological and dwelling-level covariates were also considered. Ae. aegypti site-occupancy was estimated as ~0.9, one order of magnitude higher than the house infestation index reported by routine surveillance (based on ‘rapid larval surveys’) and moderately higher than ascertained with simple oviposition traps (~0.7). Regular vector control interventions, based on breeding-site destruction, had small negative effects, indistinguishable from zero, on the probabilities of dwelling infestation by dengue vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high temperatures in June-September. Rainfall and dwelling-level covariates were poor predictors of infestation. Our results show that regular dengue vector surveillance/control municipal systems perform surprisingly poorly. Both the results of ‘rapid larval surveys’ and the ineffectiveness of control campaigns suggest that Aedes breeding sites are often overlooked by vector control agents. Better alternatives are urgently needed, particularly for the reliable assessment of infestation rates in the context of control program management. The approach we present here, combining oviposition traps and site-occupancy models, could greatly contribute to the development and testing of such alternatives.

Page 8: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

VII

SUMÁRIO

RESUMO V

ABSTRACT VI

INTRODUÇÃO 1

OBJETIVOS 3

Capítulo 1 – Artigo: Modeling dengue vector dynamics under imperfect

detection: Aedes aegypti and Aedes albopictus site-occupancy over three years

of monitoring in urban Amazonia.

4

CONCLUSÕES 33

REFERÊNCIAS BIBLIOGRÁFICAS 34

APÊNDICE 37

ANEXOS 39

Page 9: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

1

INTRODUCÃO

A dengue é a doença viral transmitida por vetores mais comum em humanos (WHO,

2006; 2012; Guzmán et al., 2010). Aproximadamente 50 milhões de pessoas contraem dengue

cada ano, e 22000 infectados morrem por formas graves da doença (Guzmán e Istúriz, 2010;

WHO, 2012). O vírus da dengue é transmitido por mosquitos do gênero Aedes,

particularmente Aedes aegypti e Ae. albopictus (Gubler, 1998). Devido à ausência de

tratamento etiológico ou vacinas, a prevenção da dengue e de suas formas graves baseia-se

quase que exclusivamente sobre o controle das populações do vetor. Porém, apesar de um

grande investimento e alguns resultados alentadores, nem as populações dos vetores nem a

transmissão da dengue estão sob controle; de fato, ambas estão expandindo-se rapidamente no

mundo (Heintze et al., 2007; Kyle e Harris, 2008; Ballenger-Browning e Elder, 2009; Esu et

al., 2010; Gürtler et al., 2009; WHO, 2012). Dados da América do Sul mostram um

incremento de 4,6 vezes na incidência de casos de dengue reportada nos últimos 30 anos (San

Martín et al., 2010).

Aedes aegypti adaptou-se com sucesso a ambientes urbanos e prefere ovipôr em

criadouros artificiais (onde seus ovos desidratados podem permanecer viáveis por meses),

descansar dentro das casas e se alimentar de sangue humano (Reiter, 2007). Estas

características favoreceram a sua dispersão acidental por humanos nos trópicos (Gubler,

2002a; Gonçalves da Silva et al., 2012) e, junto com a sua capacidade para transmitir

efetivamente o vírus da dengue, transformaram o Ae. aegypti em uma ameaça para a saúde

pública (Gubler, 2002b). Aedes albopictus é mais eclético: encontra-se em habitats urbanos e

rurais do trópico e sub-trópico, pode ovipôr em criadouros artificiais ou naturais e alimenta-se

de sangue humano ou de outros vertebrados (Gratz, 2004). Apesar de ser o principal vetor no

sudeste asiático, Ae. albopictus é considerado um mosquito menos eficiente que Ae. aegypti

na transmissão do vírus (Lambrechts et al., 2010).

Manaus, capital do estado do Amazonas, foi re-infestada por Ae. aegypti no final da

década de 1990 (Figueiredo et al., 2004) e colonizada mais tarde por Ae. albopictus (Fé et al.,

2003); atualmente, ambas as espécies estão amplamente distribuídas (Rios-Velásquez et al.,

2007) e a transmissão da dengue é endêmica na cidade, com epidemias recorrentes e a

presença dos quatro sorotipos conhecidos do vírus (Figueiredo et al., 2008).

Como na maioria de áreas infestadas (Heintze et al., 2007; Ballenger-Browning e

Elder, 2009; Esu et al., 2010), o controle dos vetores da dengue em Manaus baseia-se em

visitas às residências por parte de agentes municipais ou estaduais, que eliminam criadouros

Page 10: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

2

manualmente ou usando larvicidas; a borrifação ambiental de adulticidas é utilizada quando

são detectados surtos de dengue (FUNASA, 2001). Os agentes de controle vetorial também

realizam monitoramentos periódicos de infestação predial em uma amostra aleatória de

residências de cada bairro (Ministério da Saúde, 2005). Os resultados destes “Levantamentos

do Índice Rápido de Infestação por Aedes aegypti” (LIRAa) são utilizados para estabelecer

prioridades e tomar decisões sobre as intervenções de controle, enviando equipes de controle

vetorial a um bairro quando o índice de infestação ultrapassa 2%. Oficialmente, a diretiva do

Programa Nacional de Controle da Dengue é manter os índices de infestação abaixo de 1%

(FUNASA, 2002).

O desenho, a implementação e a avaliação destas estratégias de vigilância e controle

requerem, obviamente, um conhecimento detalhado da ecologia das populações locais dos

vetores; por sua vez, este conhecimento depende criticamente da avaliação das taxas de

infestação de residências. Em geral, as intervenções de controle devem ter um efeito negativo

sobre a ocorrência de Ae. aegypti e Ae. albopictus na escala local. A medida desse efeito

requer métodos confiáveis de detecção de infestações; contudo, e como para a maioria das

espécies animais (MacKenzie, 2005), a detecção de insetos vetores nunca é, provavelmente,

perfeita (Abad-Franch et al., 2010). Neste estudo, foi utilizada uma abordagem de modelagem

ecológica para analisar a dinâmica de ocorrência de Ae. aegypti e Ae. albopictus em

residências do bairro Tancredo Neves, Manaus. Levando em conta as falhas na detecção dos

vetores, foram testados os efeitos das intervenções oficiais de controle vetorial da Prefeitura e

de variáveis ambientais selecionadas sobre o principal indicador utilizado nos programas de

controle vetorial: os índices de infestação predial.

Page 11: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

3

OBJETIVOS

Objetivo geral

Examinar, utilizando modelos que incorporam a detecção imperfeita de forma

explícita, a dinâmica de ocupação de residências por Aedes aegypti e Ae. albopictus em um

bairro de Manaus, Brasil.

Objetivos específicos

• Estimar os efeitos das intervenções rotineiras de controle vetorial sobre a

dinâmica de ocorrência de ambas as espécies.

• Estimar os efeitos de variáveis meteorológicas selecionadas (pluviosidade e

temperatura) sobre a dinâmica de ocorrência de ambas as espécies.

• Estimar os efeitos de variáveis residenciais selecionadas (estado de casas e

áreas peridomésticas) sobre a dinâmica de ocorrência das espécies.

• Derivar recomendações para a melhora dos sistemas de vigilância e controle

dos vetores da dengue.

Page 12: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

Capítulo 1

Padilla-Torres, S.; Ferraz, G.; Luz, S.L.B.; Zamora-Perea,

E.; Abad-Franch, F. Modeling dengue vector dynamics

under imperfect detection: Aedes aegypti and Aedes

albopictus site-occupancy over three years of

monitoring in urban Amazonia. Manuscrito em

preparação para PLoS Neglected Tropical Diseases

Page 13: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

7

Modeling dengue vector dynamics under imperfect detection: Aedes aegypti and Aedes 1

albopictus site-occupancy over three years of monitoring in urban Amazonia 2

3

Samael D Padilla-Torres1, Gonçalo Ferraz1,2, Sérgio LB Luz3, Elvira Zamora-Perea3, 4

Fernando Abad-Franch3* 5

6

1 Graduate Program in Ecology, Instituto Nacional de Pesquisas da Amazônia, Manaus, 7

Amazonas, Brazil 8

2 Biological Dynamics of Forest Fragments Project, Smithsonian Tropical Research Institute / 9

Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil 10

3 Instituto Leônidas e Maria Deane – Fiocruz Amazônia, Manaus, Amazonas, Brazil 11

12

*E-mail: [email protected] 13

14

Funding. PTSP-Dengue Program (Fiocruz-CNPq), Instituto Leônidas e Maria Deane, 15

Fiocruz-Fapeam agreement, Brazilian National Research Council (CNPq) 16

17

18

Page 14: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

8

Abstract 19

Background: Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important 20

arboviral disease of humans. Dengue prevention heavily relies upon vector control, and this 21

requires detailed knowledge of the population ecology of these species. To date, however, 22

Aedes ecology studies have assumed that the vectors are truly absent from sites where they are 23

not detected; since no perfect detection method exists, this assumption is questionable. 24

Imperfect detection may bias estimates of key vector surveillance/control parameters, 25

including site-occupancy (infestation) rates and control intervention effects. 26

Methodology/Principal Findings: We used a modeling approach that explicitly accounts for 27

imperfect detection and a 38-month, 55-site presence/absence dataset to measure the effects of 28

regular (municipal) Aedes control interventions on site-occupancy dynamics, considering also 29

meteorological and dwelling-level covariates. Ae. aegypti site-occupancy was estimated as 30

~0.9, one order of magnitude higher than reported by routine surveillance (based on ‘rapid 31

larval surveys’) and moderately higher than ascertained with simple oviposition traps (~0.7). 32

Regular vector control interventions, based on breeding-site elimination, had small negative 33

effects, indistinguishable from zero, on the probabilities of dwelling infestation by dengue 34

vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high 35

maximum (Ae. aegypti) and minimum (Ae. albopictus) summer temperatures (June-October). 36

Rainfall and dwelling-level covariates were poor predictors of infestation. 37

Conclusions/Significance: Our results show that regular dengue vector surveillance/control 38

systems perform surprisingly poorly. Both the results of ‘rapid larval surveys’ and the 39

ineffectiveness of control campaigns suggest that Aedes breeding sites are often overlooked 40

by vector control agents. Better alternatives are urgently needed, particularly for the reliable 41

assessment of infestation rates in the context of control program management. The approach 42

we present here, combining oviposition traps and site-occupancy models, could greatly 43

contribute to the development and testing of such alternatives. 44

45

46

47

48

49

50

51

52

Page 15: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

9

Author summary 53

Dengue is a mosquito-transmitted viral disease that affects 50-100 million people annually. 54

Dengue prevention depends on the control of its two main vectors, Aedes aegypti and Ae. 55

albopictus. This requires identifying infested dwellings and eliminating mosquito breeding 56

sites, which is expected to reduce vector populations and, consequently, dwelling infestation 57

rates. We investigated the effects of regular control interventions on Ae. aegypti and Ae. 58

albopictus populations in a central Amazon city (Manaus, Brazil) over three years. Our 59

analyses take into account the fact that, since no vector surveillance system works perfectly, 60

mosquitoes may go undetected in an infested site. Dwelling infestation rates were about 25 61

times higher than reported by control agents, and decreased only slightly in the hottest months 62

of the year. Our analyses provide no evidence that vector control interventions reduced 63

dwelling infestation rates significantly. These results suggest that, in their current form, 64

surveillance-control systems grossly underestimate infestation rates and have no discernible 65

effects on dengue vector populations. Better alternatives are urgently needed to help contain 66

dengue epidemics, and we provide methodological guidance that can foster their 67

development. 68

69

70

Page 16: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

10

Introduction 71

Dengue is the most common arboviral disease of humans [1–3]. About 50 million people 72

contract dengue annually, and an estimated 22,000 die from severe forms of the disease [3,4]. 73

Dengue virus is transmitted by mosquitoes of the genus Aedes, particularly Aedes aegypti and 74

Ae. albopictus [5]. In the absence of effective drugs or vaccines, prevention of dengue 75

infections and severe dengue forms heavily relies upon vector control. However, despite 76

massive spending and some encouraging results (e.g., [6–9]), neither vector populations nor, 77

consequently, dengue transmission are currently under control; on the contrary, they are both 78

overtly expanding [2,10]. In South America, dengue cases per 100,000 population increased 79

from ~16 in the 1980s to ~72 in 2000-2007 [11]. 80

Aedes aegypti, a species native to Africa, has successfully adapted to urban environments and 81

preferentially breeds in artificial containers (where desiccated eggs can remain viable for 82

months), rests within houses, and feeds on human blood [12,13]. These traits have favored its 83

man-mediated dispersal throughout the tropics [14,15], and, together with its capacity to 84

transmit dengue virus, have transformed Ae. aegypti in a major public health concern [16]. Ae. 85

albopictus is more eclectic: it exploits both urban and rural tropical-subtropical habitats, 86

makes use of natural and artificial breeding sites, and feeds on either humans or non-human 87

vertebrates [17,18]. Although it is the main dengue vector in South-East Asia and other 88

discrete locations, Ae. albopictus is overall less efficient than Ae. aegypti at transmitting the 89

virus [18]. 90

Dengue vector control is largely based on a combination of strategies aimed at eliminating 91

artificial breeding sites (either physically or by means of larvicides) and reducing adult 92

mosquito populations (through environmental insecticide application) [6–9]. The design, 93

implementation, and assessment of such strategies require detailed knowledge of vector 94

population ecology, including the estimation of dwelling infestation rates [19,20]. In general, 95

vector control interventions are expected to have a negative effect on infestation by Ae. 96

aegypti and Ae. albopictus at the local scale. Measuring such an effect requires reliable 97

methods for ascertaining infestation; yet, detection of most animal species, including disease 98

vectors, is rarely, if ever, perfect [21,22]. Here, we treat infestation as the probability that a 99

dwelling is occupied by vectors (i.e. site-occupancy) and use a robust modeling approach to 100

analyze the dynamics of site-occupancy by Ae. aegypti and Ae. albopictus. Our analysis is 101

based on three-years of oviposition trap data from a central-Amazon urban setting. Taking 102

imperfect detection into account, we quantify the effects of routine control interventions and 103

Page 17: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

11

selected environmental variables on the main indicator used in vector control program 104

management – dwelling infestation rates. 105

Materials and methods 106

Study setting. With a population of about 1.8 million, Manaus (3°6’S, 60°1’W) is the largest 107

urban center of the Amazon basin (Fig. 1). The city lies on the north bank of the Negro river 108

and is surrounded by rainforest. The climate is tropical, warm and humid, with a relatively 109

strong seasonality of rainfall and, to a lesser extent, temperature (Fig. 2). After being declared 110

eradicated from Brazil in the 1950s [15], Ae. aegypti reinfested Manaus in the late 1990s [23] 111

and is currently widespread across all its neighborhoods [24]. Ae. albopictus was first 112

recorded in 2002 [25], and is now also widespread [24]. Dengue transmission is endemic in 113

the city, with recurrent epidemics and records of all known dengue virus serotypes [26]. As in 114

other settings, dengue control in Manaus relies on dwelling visits by municipal or state agents, 115

who physically eliminate breeding sites or treat them with larvicides; in “emergency” 116

situations (in practice, when dengue cases begin to soar), environmental insecticide spraying 117

aimed at reducing adult mosquito density is also used [27]. Vector control agents also conduct 118

regular infestation surveys on a random sample of dwellings in each neighborhood (see details 119

in ref. [28]). The results of these ‘rapid larval surveys’ are used to set priorities and make 120

decisions about control interventions, with control teams usually deployed to a neighborhood 121

when infestation rises above 2%; officially, the Brazilian control program aims to keep 122

infestation rates below 1% [20]. 123

Sampling strategy. We selected an area of ~250,000 m2 within the Manaus neighborhood of 124

Tancredo Neves for long-term monitoring (Fig. 1). This neighborhood is frequently infested 125

by both target mosquito species and has been reported as a common location of dengue cases 126

(refs. [24,29,30], and unpublished Municipal Health Department data). The typical Tancredo 127

Neves dwelling – our unit of occupancy analysis – consists of a brick-walled house with a 128

courtyard in a ~10x20m plot. In 2008, we randomly selected 50 dwellings for monthly 129

sampling, and in 2010 we added five more dwellings, which were also sampled on a monthly 130

basis. During the first 25 months, we used a combination of 2-4 ovitraps and 0-2 Adultraps® 131

[31]; afterwards, only the more sensitive ovitraps (3 per dwelling and month) were used. 132

Traps were baited with hay infusion [32] and operated for six days/month. In total, our 133

analyses make use of data from nearly 5800 trap-weeks. Each month, mosquito larvae were 134

identified to species, with the result of each individual trap recorded separately. Thus, for each 135

dwelling and month between September 2008 and October 2011, we have a ‘detection 136

Page 18: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

12

history’ consisting of a series of binary results (present = 1 and absent = 0) for each trap and 137

mosquito species. 138

Covariates. In order to model the relation between environmental variables and infestation 139

we obtained daily data on total rainfall, as well as on maximum, mean, and minimum 140

temperature from the Brazilian National Meteorological Institute (INMET). We chose these 141

environmental metrics, or covariates, because we considered them potentially relevant for the 142

spatial-temporal distribution of our two target species [33–36]. Because we had no prior 143

information on possible time lags between meteorological changes and their effects on local 144

mosquito populations, we decided to relate meteorological information and each month’s 145

occupancy in three different ways: (i) looking at meteorological covariates measured, for each 146

month, during the six sampling days and the previous week (denoted 0-lag below); (ii) 147

looking at covariates measured during sampling days and the previous two weeks (0.5-lag); 148

and (iii) looking at covariates measured during the month before sampling (1-lag). All 149

meteorological measurements were standardized to mean zero and standard deviation one 150

before entering the analyses. 151

Apart from rainfall and temperature, we also registered dwelling-level traits throughout the 152

last 13 months of monitoring. Following criteria from Tun-lin et al. [36] adapted to our 153

setting, we separately assessed houses and courtyards; for each of these, we defined a 154

covariate with values of 1 (poor overall maintenance, garbage accumulation, and, for 155

courtyards, overgrown vegetation) or 0 (well-maintained houses and courtyards). Finally, we 156

noted whether routine control interventions were or were not performed in our study area in 157

each of the last 13 months of monitoring. These interventions were carried out by 158

municipal/state agents and military staff, and involved breeding-site elimination – physically 159

or with larvicides. We did not record any environmental insecticide spraying against adult 160

vectors during the period of our surveys. 161

Data analyses. Analyses are based on detection/non-detection data for the two target species. 162

Our analytical approach involved two main steps. First, we used descriptive statistics, tables, 163

and graphs to explore the data [37], and calculated naïve infestation rates (i.e., rates that 164

assume perfect detection of vectors) for later comparison with model-derived estimates (see 165

below). Second, we implemented a set of hierarchical models of occupancy dynamics. These 166

models explicitly account for imperfect detection, providing estimates of detection 167

probability, conditioned on occurrence (denoted p), and treat temporal changes in occupancy 168

(denoted ψ) as a first-order Markov process [38–40]. Models were fit by likelihood 169

maximization, and ranked according to the Akaike information criterion corrected for small 170

Page 19: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

13

sample size (AICc) [41]. Model fitting and ranking were carried out with the freely-available 171

software PRESENCE 4.0 [42]. To avoid repetition, further details on model specification, 172

comparison, and selection are presented in the Results section, Tables, and Supporting Table 173

S1. 174

We fit occupancy dynamic models separately to (i) the 13-month subset of data for which we 175

recorded vector control interventions and house/courtyard covariates, and (ii) the full 38-176

month dataset. This resulted in a two-stage analysis. On the first stage, we focused on 177

modeling the effects of control interventions, both in the same month and one month later 178

(lagged effect), on site-occupancy probabilities (ψ). These models also consider 179

meteorological and dwelling conditions. Since two teams were involved in vector monitoring 180

during this period, we modeled detection probability (p) as a function of the observer team to 181

account for possible differences in performance [39,40]. 182

On the second stage, we set aside control interventions and focused on estimating time-183

dependent occupancy for the whole 38-month dataset, along with local (dwelling-level) 184

extinction probabilities and a probability of local recolonization. This second set of models 185

also considered the effects of meteorological covariates on occupancy, albeit with a larger 186

amount of data. Since we used two trapping devices during the first phase of monitoring, 187

detection probabilities were modeled as a function of trap type, and, once again, as a function 188

of the observer team. We also assessed the amount of bias present in naïve vs. model-derived 189

infestation rate estimates (bias = 1 − [naïve / model-derived values]). 190

Results 191

Descriptive results: observed infestation. Both vector species were detected in a high 192

proportion of dwellings throughout the study period (Fig. 2), with harmonic mean values of 193

0.68 for Ae. aegypti (range, 0.50-0.91) and 0.61 for Ae. albopictus (range, 0.28-0.86). There 194

was an apparent relationship with weather seasonal patterns. The particularly hot and dry 195

period of June-September 2009 coincided with a sharp decrease of Ae. albopictus infestation: 196

observed values fell from ~0.70-0.80 to ~0.30-0.50. A less marked decline was also apparent 197

for Ae. aegypti. Both species, however, quickly recovered with the onset of the rainy season. 198

Infestation index values reported by routine surveillance for our study neighborhood, based on 199

13 ‘rapid larval surveys’ [28] carried out between October 2008 and October 2011 (Figs. 3 200

and 4), yielded a harmonic mean of just 0.033 (range, 0.015-0.089). These results are broadly 201

suggestive of a relationship between dwelling infestation and weather, and of an absence of 202

any such relationship with control interventions. However, they rely on the assumption that 203

vectors were absent from those sites at which they were not observed; since no perfect vector-204

Page 20: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

14

detection method is available, this assumption is questionable. The modeling results 205

summarized in the next section deal with this key limitation. 206

Modeling results: effects of control interventions. On the first stage of our analysis we 207

modeled the effects of vector control interventions carried out by local health authorities on 208

site-occupancy by Ae. aegypti and Ae. albopictus. These models use data from 55 dwellings 209

monitored from October 2010 to October 2011 with up to three ovitraps per dwelling and 210

month. Overall, the data encompass results from 1907 ovitraps, of which 849 detected Ae. 211

aegypti and 828 detected Ae. albopictus. 212

Aedes aegypti detection/non-detection data are best explained by a model with just one 213

covariate on ψ, the average of maximum daily temperatures measured with 0.5-lag (tmax-0.5-214

lag), which had a negative effect on site-occupancy (Table 1). The second-ranking model is 215

also substantially supported by the data (∆AICc = 0.73); it includes the additive effects of tmax-216

0.5-lag and control interventions carried out during the same month (cont0-lag) on ψ. The effect 217

of temperature was again negative; this model resulted in a negative point estimate of the 218

effect of control on site-occupancy, but uncertainty about this estimate is large and the 95% 219

confidence interval overlaps zero (Table 1). Among candidate models including dwelling 220

covariates, the one with the lowest AICc estimates a weak, positive effect of poor house 221

condition on infestation, but, again, the estimate of this effect is too uncertain to draw any 222

strong conclusions (Table 1). 223

The best-ranking model for Ae. albopictus estimates a negative effect of 0-lag minimum 224

temperatures (tmin-0-lag) on infestation; in addition, the model suggests that houses in poor 225

condition had higher infestation probability, albeit the estimated effect is uncertain and its 226

95% confidence interval includes zero (Table 1). Adding control interventions carried out the 227

month before (cont1-lag) resulted in a model that fits reasonably well (∆AICc < 1). For this 228

second model, the negative effect of cont1-lag on ψ is nevertheless small and imprecise, with 229

confidence intervals including zero (Table 1). Finally, a model with tmin-0-lag, house condition, 230

and cont0-lag as covariates also performed reasonably well; it estimates a small positive effect, 231

again not different from zero, of control interventions (Table 1). The model without any 232

covariates and those models exploring the effects of courtyard covariates all had ∆AICc ≥ 3 233

(see Supporting Table S1). 234

Modeling results: long-term site-occupancy dynamics. The results in the previous section 235

show that modeling time-specific occupancy as a function of control interventions or 236

dwelling-level covariates did not improve the fit of the models. Therefore, we felt justified to 237

Page 21: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

15

extend modeling to the full dataset, including periods for which we had no information on 238

vector control activities – and hence without accounting for the effect of such activities. More 239

specifically, we fit one set of occupancy-dynamic models for each Aedes species in order to 240

examine the effects of meteorological covariates on site-occupancy. These models make use 241

of the full 38-month dataset including individual results of 5799 trap-weeks, which detected 242

Ae. aegypti on 2641 occasions and Ae. albopictus on 2538 occasions. Due to numerical 243

convergence problems, local recolonization probability (denoted γ) was constrained to be 244

constant across months, while monthly local (dwelling-level) extinction probabilities (ε), of 245

primary interest in the context of vector control, were derived from ψ and γ estimates as 246

described in MacKenzie et al. [39,40]. 247

Ae. aegypti data were best explained by a model including the 0.5-lag average of daily 248

maximum temperatures (tmax-0.5-lag), which had a negative effect on site-occupancy 249

probabilities (Table 2). The model with an effect of tmax-0-lag on ψ also fitted the data well and 250

estimated a similar effect to that of tmax-0.5-lag (Table 2). The remaining models that we 251

examined, including a null model without any covariates, performed substantially worse than 252

these two top-ranking models (see Supporting Table S1). Among models that included rainfall 253

covariates, the best-performing one had a ∆AICc = 6.29 and estimated a positive effect of 254

total rainfall (r0-lag) on ψ (Table 2). 255

Figure 3A shows monthly site-occupancy estimates for Ae. aegypti derived from the lowest-256

AICc model. With few exceptions, point estimates were consistently >90% (harmonic mean 257

0.91; range, 0.79-0.97), and showed a weak seasonal pattern apparently independent of 258

routine control interventions (arrows in Fig. 3A). Model-based infestation estimates are about 259

30% higher than observed values (median bias, 0.29) (Fig. 4). The estimated average 260

sensitivity of ovitraps at detecting infestation by Ae. aegypti varied from p = 0.48 (SE = 261

0.015) to p = 0.65 (SE = 0.01), depending on which field team performed monitoring (details 262

not shown). Local extinction probability estimates were overall very low (harmonic mean ε = 263

0.04; range, 0.01-0.18), reaching higher values in hotter months (Fig. 5A); mean site-264

recolonization probabilities were estimated as γ = 0.66 (SE = 0.06) over the study period. 265

The best-ranking Ae. albopictus model included only one site-occupancy covariate, tmin-0-lag, 266

which had a negative effect on ψ (Table 2). The remaining models performed substantially 267

worse (∆AICc > 20), but several of the candidate specifications we tested had convergence 268

problems. The only model with a rain covariate estimates a positive effect of 1-lag rainfall on 269

site-occupancy by Ae. albopictus (Table 2). Site-occupancy estimates derived from the best-270

Page 22: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

16

ranking model are presented in Fig. 3B. As with Ae. aegypti, monthly ψ values were always 271

high (harmonic mean 0.83; range, 0.66-0.94), with minimum ψ = 0.66 (SE 0.03) in October 272

2011. Monthly Ae. albopictus ψ estimates were more unstable than those of Ae. aegypti, with 273

relatively strong fluctuations after the dry-hot summer of 2009 (Fig. 3B). Observed infestation 274

rates were also biased downwards (by ~26%) in our Ae. albopictus data (Fig. 4); again, 275

ovitraps were fairly sensitive at detecting Ae. albopictus (p = 0.63, SE = 0.01). Monthly local 276

extinction probabilities were low: harmonic mean ε = 0.07, range 0.02-0.32, with the 277

maximum value estimated for October 2011 (Fig. 5B). Mean dwelling recolonization 278

probability was estimated as γ = 0.59 (SE = 0.04). 279

Discussion 280

Reliable dwelling infestation estimates are critical for decision-making in the context of 281

dengue vector surveillance and control. The definition of programmatic goals, the 282

management of resources, and the assessment of interventions all rely heavily upon such 283

estimates. Using a large dataset and a modern analytical approach we have shown that routine 284

vector surveillance and control both can perform disturbingly poorly: at least in our study 285

setting, surveillance missed most instances of dwelling infestation and control had an overall 286

negligible effect on dwelling infestation rates. Our results suggest that combining ovitrap-287

based surveillance [e.g., 43–45] with analytical methods that account for imperfect detection 288

[e.g., 21,22,38–40] would help objectively assess, and likely enhance, dengue control 289

programs. We also suspect that, by applying this approach in other settings, many situations 290

similar to the one we describe here, with grossly underestimated dwelling infestation rates, 291

would be revealed. Given this negative bias in infestation rate estimates, which can reach one 292

order of magnitude for the ‘rapid larval surveys’ used in routine surveillance, our results even 293

suggest that the apparent effectiveness of some Aedes control campaigns might be just a 294

sampling artifact. 295

Before discussing our findings any further, we identify several study limitations to keep in 296

mind when interpreting the results. Importantly, we simplified our analyses in several ways. 297

Thus, we used detection/non-detection data, ignoring variations in vector abundance (but see, 298

e.g., ref. [46]), and measured only, and coarsely, a small number of covariates known to be 299

important for our target species; e.g. [33–36,47]. Our ‘control’ covariate included control 300

interventions in just three out of 13 months of assessment, and this clearly lowered the 301

precision of effect-size estimates: it seems possible that with more interventions we might be 302

able to detect a small but more significant effect. (i.e. one where the 95% confidence intervals 303

Page 23: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

17

exclude zero). Yet, since ~70-90% of dwellings remained infested despite control 304

interventions, ‘statistical significance’ would in this case be of no practical importance. 305

Acknowledging these caveats, we feel nonetheless confident that our models adequately 306

estimate infestation rates as well as some of the major determinants of those rates in our study 307

area. The main difference between our approach and previous attempts to assess infestation 308

by dengue vectors is that we go beyond measuring indirect indexes of infestation to produce 309

statistical estimates of the probability that our study units (i.e. the dwellings) are occupied by 310

the target vector species. 311

We found little evidence that dwelling infestation rates decreased measurably as a result of 312

the vector control campaigns carried out by local health authorities in our study 313

neighborhood. These campaigns involved the elimination/treatment of thousands of artificial 314

breeding containers [29,30], and were therefore supposed to have larger effects on Ae. 315

aegypti, which unlike Ae. albopictus rarely breeds in natural water collections [5,17]. Our 316

results show, indeed, a larger effect of control interventions on Ae. aegypti than on Ae. 317

albopictus (Table 1); however, females of both species consistently continued to lay eggs, and 318

probably forage, in most of the dwellings we surveyed, irrespective of whether control 319

interventions had or had not taken place in the neighborhood. In addition, we found no 320

evidence suggesting that the weak effects of interventions persisted beyond a few weeks; Ae. 321

aegypti models assessing one-month-lagged control effects estimate a positive coefficient, but 322

the SE could not be computed. Our models suggest that this lack of effect could be related to 323

the fact that interventions are usually planned to coincide with the wet-cool season, which is 324

when local extinction probabilities drop to their lowest values (Fig. 5). Summer interventions 325

could perhaps be more effective [48], since they could work in synergy with the negative 326

effects of high temperatures on Ae. albopictus and Ae. aegypti detected by our models and in 327

previous studies (e.g., [47–50]). 328

One clear, practical implication of our findings is that Aedes breeding sites are often 329

overlooked by vector control agents, both during active surveillance and in control 330

campaigns. This suggests a key drawback to be addressed in the development of novel Aedes 331

control strategies, which should not heavily depend on the ability of control agents to detect 332

breeding sites while inspecting premises. Two major candidate strategies address this problem 333

from very different, but complementary, perspectives: (i) the use of adult mosquitoes to 334

transfer potent larvicidal particles from contaminated ‘dissemination stations’ to clean 335

breeding sites [51], and (ii) the release of mosquitoes carrying transgenes [52,53] or specific 336

Page 24: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

18

Wolbachia strains [54] that impair reproduction and/or reduce competence to transmit dengue 337

virus. 338

Conclusions. Dengue vector surveillance is in urgent need of improvement [55], and our 339

results suggest two promising ways forward. First, simple hay infusion-baited ovitraps should 340

be preferred to ‘larval surveys’ for vector surveillance, particularly when a measure of 341

infestation is required (see also, e.g., refs. [43–45,56]); second, the repeated-sampling 342

approach we present considerably improves infestation rate estimates by explicitly taking 343

imperfect detection into account. Enhanced entomological surveillance systems and data 344

analyses that explicitly account for the detection process would, in turn, allow for reliably 345

assessing the effects of control interventions, irrespective of the specific tactics they employ. 346

Without such an assessment, the grounds on which massive public spending is directed 347

towards dengue vector control (e.g., [57]) remain questionable. 348

Finally, our results on dwelling infestation ascertainment bias also suggest that the findings of 349

most dengue vector ecology studies must be interpreted with caution. Even ovitraps, which 350

perform relatively well, yield naïve infestation rates that are consistently biased downwards. 351

The methods we used here incorporate this sampling-process uncertainty, and could therefore 352

substantially contribute to this field of inquiry. In dengue and in other areas of disease vector 353

research, the uncritical use of observed occurrence data as if they were obtained through 354

perfect-detection methods should perhaps be regarded, paraphrasing Breiman [58], as quite a 355

scandal. 356

357

Acknowledgments 358

We thank RM Mota, DLN Leite, and AC Barbosa for field assistance. RS Rocha and the 359

Manaus Municipal Health Department provided data on routine control-surveillance 360

activities. We particularly thank the residents who participated in the study – and patiently let 361

us keep running our long-term vector monitoring system. SA Juliano, LL Bailey, RE Gürtler, 362

and BW Nelson provided insightful comments on earlier versions of this manuscript. This 363

work is contribution number 17 of the Research Program on Infectious Disease Ecology in the 364

Amazon (RP-IDEA) of the Instituto Leônidas e Maria Deane – Fiocruz Amazônia. 365

366

Supporting Information 367

Table S1. The complete sets of site-occupancy dynamic models. 368

369

370

Page 25: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

19

References 371

1. WHO (2006) Scientific Working Group Report on Dengue. Available: 372

http://www.who.int/tdr/publications/documents/swg_dengue_2.pdf. Accessed 2012 Feb 373

14. 374

2. WHO (2012) Global Alert and Response: Impact of Dengue. Available: 375

http://www.who.int/csr/disease/dengue/impact/en/. Accessed 2012 Feb 14. 376

3. Guzmán MG, Halstead SB, Artsob H, Buchy P, Farrar J, et al. (2010) Dengue: a 377

continuing global threat. Nat Rev Microbiol 8(12 Suppl.): S7–S16. 378

4. Guzmán A, Istúriz RE (2010) Update on the global spread of dengue. Int J Antimicrob 379

Agents 36(Suppl. 1): S40–S42. 380

5. Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11(3): 381

480–496. 382

6. Heintze C, Garrido MV, Kroeger A (2007) What do community-based dengue control 383

programmes achieve? A systematic review of published evaluations. Trans R Soc Trop 384

Med Hyg 101(4): 317–325. 385

7. Ballenger-Browning KK, Elder JP (2009) Multi-modal Aedes aegypti mosquito reduction 386

interventions and dengue fever prevention. Trop Med Int Health 14(12): 1542–1551. 387

8. Gürtler RE, Garelli FM, Coto HD (2009) Effects of a five-year citywide intervention 388

program to control Aedes aegypti and prevent dengue outbreaks in northern Argentina. 389

PLoS Negl Trop Dis 3(4): e427. 390

9. Esu E, Lenhart A, Smith L, Horstick O (2010) Effectiveness of peridomestic space 391

spraying with insecticide on dengue transmission; systematic review. Trop Med Int 392

Health 15(5): 619–631. 393

10. Kyle JL, Harris E (2008) Global spread and persistence of dengue. Annu Rev Microbiol 394

62: 71–92. 395

11. San Martín JL, Brathwaite O, Zambrano B, Solórzano JO, Bouckenooghe A, et al. (2010) 396

The epidemiology of dengue in the Americas over the last three decades: a worrisome 397

reality. Am J Trop Med Hyg 82(1): 128–135. 398

12. Gubler DJ (1988) Dengue. In: Monath TP, editor. Epidemiology of Arthropod-Borne 399

Viral Diseases. Boca Raton: CRC Press, Inc. pp. 223–260. 400

13. Reiter P (2007) Oviposition, dispersal, and survival in Aedes aegypti: implications for the 401

efficacy of control strategies. Vector Borne Zoonotic Dis 7(2): 261–273. 402

14. Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social 403

and economic problem in the 21st century. Trends Microbiol 10(2): 100–103. 404

Page 26: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

20

15. Gonçalves da Silva A, Cunha ICL, Santos WS, Luz SLB, Ribolla PEM, et al. (2012) 405

Gene flow networks among American Aedes aegypti populations. Evol Appl In press. 406

doi:10.1111/j.1752-4571.2012.00244.x. 407

16. Gubler DJ (2002) The global emergence/resurgence of arboviral diseases as public health 408

problems. Arch Med Res 33(4): 330–342. 409

17. Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet 410

Entomol 18(3): 215–227. 411

18. Lambrechts L, Scott TW, Gubler DJ (2010) Consequences of the expanding global 412

distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 4(5): 413

e646. 414

19. Reiter P, Gubler DJ (1997) Surveillance and control of urban dengue vectors. In: Gubler 415

DJ, Kuno G, editors. Dengue and Dengue Hemorrhagic Fever. London: CAB 416

International. pp. 425–462. 417

20. FUNASA (2002) Programa Nacional de Controle da Dengue. Brasília: Ministério da 418

Saúde/Fundação Nacional de Saúde. 419

21. Mackenzie DI (2005) Was it there? Dealing with imperfect detection for species 420

presence/absence data. Aust NZ J Stat 47(1): 65–74. 421

22. Abad-Franch F, Ferraz G, Campos C, Palomeque FS, Grijalva MJ, et al. (2010) Modeling 422

disease vector occurrence when detection is imperfect: infestation of Amazonian palm 423

trees by triatomine bugs at three spatial scales. PLoS Negl Trop Dis 4(3): e620. 424

23. Figueiredo RMP, Thatcher BD, Lima ML, Almeida TC, Alecrim WD, et al. (2004) 425

Doenças exantemáticas e primeira epidemia de dengue ocorrida em Manaus, Amazonas, 426

no período de 1998-1999. Rev Soc Bras Med Trop 37(6): 476–479. 427

24. Ríos-Velásquez CM, Codeço CT, Honório NA, Sabroza PS, Moresco M, et al. (2007) 428

Distribution of dengue vectors in neighborhoods with different urbanization types of 429

Manaus, state of Amazonas, Brazil. Mem Inst Oswaldo Cruz 102(5): 617–623. 430

25. Fé NF, Barbosa MGV, Alecrim WD, Guerra MVF (2003) Registro da ocorrência de 431

Aedes albopictus em área urbana do município de Manaus, Amazonas. Rev Saude 432

Publica 37(5): 674–675. 433

26. Figueiredo RMP, Naveca FG, Souza MB, Melo M, Viana SS, et al. (2008) Dengue virus 434

type 4, Manaus, Brazil. Emerg Infect Dis 14(4): 667–669. 435

27. FUNASA (2001) Dengue: Instruções para Pessoal de Combate ao Vetor. Manual de 436

Normas Técnicas, 3a ed. Brasília: Ministério da Saúde/Fundação Nacional de Saúde. 437

Page 27: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

21

28. Ministério da Saúde (2005) Diagnóstico Rápido nos Municípios para Vigilância 438

Entomológica do Aedes aegypti no Brasil – LIRAa. Metodologia para Avaliação dos 439

Índices Breteau e Predial. Brasília: Ministério da Saúde. 440

29. Fundação de Vigilância em Saúde do Estado do Amazonas (2008) Relatório Final: 441

Operação Impacto – Controle da Dengue. Manaus: Fundação de Vigilância em Saúde do 442

Estado do Amazonas. 443

30. Fundação de Vigilância em Saúde do Estado do Amazonas (2009) Relatório Final: 444

Operação Impacto II – Controle da Dengue. Manaus: Fundação de Vigilância em Saúde 445

do Estado do Amazonas. 446

31. Donatti JE, Gomes AC (2007) Adultrap: descrição de armadilha para adultos de Aedes 447

aegypti (Diptera, Culicidae). Rev Bras Entomol 51(2): 255–256. 448

32. Reiter P, Amador MA, Colon N (1991) Enhancement of the CDC ovitrap with hay 449

infusions for daily monitoring of Aedes aegypti populations. J Am Mosquito Contr Assoc 450

7(1): 52–55. 451

33. Scott TW, Morrison AC, Lorenz LH, Clark GG, Strickman D, et al. (2000) Longitudinal 452

studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population 453

dynamics. J Med Entomol 37(1): 77–88. 454

34. Alto BW, Juliano SA (2001) Temperature effects on the dynamics of Aedes albopictus 455

(Diptera: Culicidae) populations in the laboratory. J Med Entomol 38(4): 548–556. 456

35. Favier C, Degallier N, Vilarinhos PDTR, de Carvalho MDSL, Yoshizawa MAC, et al. 457

(2006) Effects of climate and different management strategies on Aedes aegypti breeding 458

sites: a longitudinal survey in Brasília (DF, Brazil). Trop Med Int Health 11(7): 1104–459

1118. 460

36. Tun-Lin W, Kay BH, Barnes A (1995) The premise condition index: a tool for 461

streamlining surveys of Aedes aegypti. Am J Trop Med Hyg 53(6): 591–594. 462

37. Tukey JW (1977) Exploratory Data Analysis. Reading: Addison-Wesley. 463

38. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, et al. (2002) Estimating 464

site occupancy rates when detection probabilities are less than one. Ecology 83(8): 2248–465

2255. 466

39. MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site 467

occupancy, colonization, and local extinction when a species is detected imperfectly. 468

Ecology 84(8): 2200–2207. 469

Page 28: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

22

40. MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, et al. (2006) Occupancy 470

Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. San 471

Diego: Elsevier Academic Press. 472

41. Burnham KP, Anderson DR (2001) Kullback-Leibler information as a basis for strong 473

inference in ecological studies. Wildlife Res 28(2): 111–119. 474

42. Hines JE (2006) PRESENCE 4.0 Software to estimate patch occupancy and related 475

parameters. USGS-PWRC. http://www.mbr-pwrc.usgs.gov/software/presence.shtml 476

43. Furlow BM, Young WW (1970) Larval surveys compared to ovitrap surveys for 477

detecting Aedes aegypti and Aedes triseriatus. Mosq News 30(3): 468–470. 478

44. Chadee DD (1986) A comparison of three Aedes aegypti sampling methods in Trinidad, 479

West-Indies. Cah ORSTOM Ser Ent Med Parasitol 24(3): 199–205. 480

45. Lourenço-de-Oliveira R, Lima JBP, Peres R, Alves FDC, Eiras AE, et al. (2008) 481

Comparison of different uses of adult traps and ovitraps for assessing dengue vector 482

infestation in endemic areas. J Am Mosquito Contr Assoc 24(3): 387–392. 483

46. Mogi M, Choochote W, Khamboonruang C, Suwanpanit P (1990) Applicability of 484

presence-absence and sequential sampling for ovitrap surveillance of Aedes (Diptera: 485

Culicidae) in Chiang Mai, Northern Thailand. J Med Entomol 27(4): 509–514. 486

47. Barrera R, Amador M, Mackay A J (2011) Population dynamics of Aedes aegypti and 487

dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS 488

Negl Trop Dis 5(12): e1378. 489

48. Chadee DD (2009) Impact of pre-seasonal focal treatment on population densities of the 490

mosquito Aedes aegypti in Trinidad, West Indies: A preliminary study. Acta Trop 109(3): 491

236–240. 492

49. Juliano SA, O’Meara GF, Morrill JR, Cutwa MM (2002) Desiccation and thermal 493

tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 130(3): 458–494

469. 495

50. Leisnham PT, Juliano SA (2009) Spatial and temporal patterns of coexistence between 496

competing Aedes mosquitoes in urban Florida. Oecologia 160(2): 343–352. 497

51. Devine GJ, Zamora Perea E, Killeen GF, Stancil JD, Clark SJ, et al. (2009) Using adult 498

mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc Natl Acad Sci 499

USA 106(28): 11530–11534. 500

52. Wise de Valdez MR, Nimmo D, Betz J, Gong HF, James AA, et al. (2011) Genetic 501

elimination of dengue vector mosquitoes. Proc Natl Acad Sci USA 108(12): 4772–4775. 502

Page 29: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

23

53. Harris AF, Nimmo D, McKemey AR, Kelly N, Scaife S, et al. (2011) Field performance 503

of engineered male mosquitoes. Nat Biotechnol 29(11): 1034–1037. 504

54. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, et al. 505

(2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue 506

transmission. Nature 476(7361): 454–457. 507

55. Morrison AC, Zielinski-Gutierrez E, Scott TW, Rosenberg R (2008) Defining challenges 508

and proposing solutions for control of the virus vector Aedes aegypti. PLoS Med 5(3): 509

e68. 510

56. Pilger D, Lenhart A, Manrique-Saide P, Siqueira JB, Rocha WT, et al. (2011) Is routine 511

dengue vector surveillance in central Brazil able to accurately monitor the Aedes aegypti 512

population? Results from a pupal productivity survey. Trop Med Int Health 16(9): 1143–513

1150. 514

57. Taliberti H, Zucchi P (2010) Custos diretos do programa de prevenção e controle da 515

dengue no Município de São Paulo em 2005. Rev Panam Salud Publica 27(3): 175–180. 516

58. Breiman L (1992) The little bootstrap and other methods for dimensionality selection in 517

regression: X-fixed prediction error. J Am Stat Assoc 87(479): 738–754. 518

519

520

Page 30: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

24

Figure legends 521

522

Figure 1. Study area. Manaus, state of Amazonas, Brazil (A) and Tancredo Neves 523

neighborhood (B) 524

525

Figure 2. Observed dwelling infestation and meteorological variables during the study 526

period. Dwelling infestation (%; left y axis) by Aedes aegypti and Ae. albopictus; total 527

monthly rainfall (mm; right y axis); and monthly averages of daily mean, minimum, and 528

maximum temperatures (°C; left y axis) 529

530

Figure 3. Observed and model-estimated dwelling infestation by Aedes aegypti (A) and 531

Ae. albopictus (B). Monthly model-derived site-occupancy estimates (solid circles, with 95% 532

confidence intervals); monthly observed infestation (empty circles); and Ae. aegypti 533

infestation indices derived from 13 ‘rapid larval surveys’ [28] (red circles in panel A). On the 534

x axis, grey boxes highlight the periods in which city-wide, massive Aedes control campaigns, 535

called Operação Impacto [29,30], took place. Arrows indicate months in which control 536

activities were performed in our study neighborhood (red arrows, interventions included as 537

model covariates) 538

539

Figure 4. Bias in Aedes aegypti (left) and Ae. albopictus (right) observed infestation. 540

Model-derived point estimates (“Model”) correspond to the top-ranking, 38-month dynamic 541

model for each species; observed dwelling infestation recorded during our surveys 542

(“Observed”) and infestation indices for Ae. aegypti reported by the regular vector 543

surveillance system, derived from ‘rapid larval surveys’ [28] (“RLS”). Monthly values (empty 544

circles) and quartiles 50% (horizontal line within box), 25%-75% (box lower-upper limits), 545

10%-90% (short lines), and 0%-100% (bottom-top lines) are shown 546

547

Figure 5. Derived estimates of local extinction probabilities (ε) for Aedes aegypti (A) and 548

Ae. albopictus (B). For each species, ε estimates (bold black lines) and 95% confidence 549

intervals (thin grey lines) were derived from the best-performing (lowest AICc) 38-month 550

model. We also plot variation (z-scores) of average maximum temperatures during sampling 551

days and the previous two weeks (0.5-lag, right y axes in each panel; colored areas); this was 552

the meteorological covariate in the best Aedes aegypti model. On the x axis, grey boxes 553

Page 31: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

25

highlight the periods in which city-wide, massive Aedes control campaigns, called Operação 554

Impacto [29,30], took place; note that they coincide with months of very low ε values 555

556

557

558

559

560

561

562

563

564

565

566

567

568

Page 32: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

26

Figure 1

Page 33: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

27

Figure 2

Page 34: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

28

Figure 3

Page 35: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

29

Figure 4

Page 36: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

30

Figure 5

Page 37: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

31

Tables

Table 1. Effects of control interventions, meteorological variables, and dwelling traits on

infestation rates by dengue vectors: dynamic site-occupancy models fitted to a 13-month

dataset

Species/model ∆AICc Covariate β SE CI-lower CI-upper

Aedes aegypti, 13 months

ψ(tmax-0.5-lag),γ(.),p(obs) 0

tmax-0.5-lag –0.65 0.25 –1.14 –0.16

ψ(tmax-0.5-lag,cont),γ(.),p(obs) 0.73

tmax-0.5-lag –0.87 0.36 –1.58 –0.16

cont –0.81 0.62 –2.03 0.41

ψ(tmax-0.5-lag,hou),γ(.),p(obs) 2.41

tmax-0.5-lag –0.66 0.25 –1.16 –0.17

hou 0.22 0.66 –1.08 1.51

Aedes albopictus, 13 months

ψ(tmin-0-lag,hou),γ(.),p(.) 0

tmin-0-lag –0.26 0.12 –0.49 –0.03

hou 0.78 0.40 –0.0005 1.56

ψ(tmin-0-lag,cont1-lag,hou),γ(.),p(.) 0.87

tmin-0-lag –0.27 0.11 –0.49 –0.05

cont1-lag –0.27 0.21 –0.69 0.14

hou 0.79 0.40 –0.002 1.58

ψ(tmin-0-lag,cont,hou),γ(.),p(.) 2.51

tmin-0-lag –0.27 0.12 –0.50 –0.03

cont 0.028 0.19 –0.33 0.39

hou 0.78 0.40 –0.0002 1.56

“(.)” denotes that no covariates entered this part of the model; see text for further details. ∆AICc,

variation of Akaike information criterion (corrected for small sample size) values with respect to the

first-ranking model in each set; β, slope coefficient estimated for each covariate in the corresponding

model; SE, standard error; CI-lower and CI-upper, limits of the 95% confidence interval; tmax-0.5-lag,

standardized mean of maximum daily temperatures over sampling days and the 15 days prior to

sampling; tmin-0-lag, standardized mean of daily minimum temperatures during sampling days and the

previous week; hou, house condition covariate; cont, vector control covariate (same month); cont1-lag,

vector control covariate (previous month); obs, observer covariate; see main text for further details on

covariates

Page 38: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

32

Table 2. Meteorological covariate effects on dwelling infestation rates by Aedes aegypti and

Ae. albopictus: dynamic site-occupancy models fitted to a 38-month dataset

Species/model ∆AICc Covariate β SE CI-lower CI-upper

Aedes aegypti, 38 months

ψ(tmax-0.5-lag),γ(.),p(trap,obs) 0

tmax-0.5-lag –0.63 0.14 –0.90 –0.35

ψ(tmax-0-lag),γ(.),p(trap,obs) 0.98

tmax-0-lag –0.57 0.12 –0.81 –0.33

ψ(r0-lag),γ(.),p(trap,obs) 6.29

r0-lag 0.50 0.14 0.23 0.77

Aedes albopictus, 38 months

ψ(tmin-0-lag),γ(.),p(trap) 0

tmin-0-lag –0.59 0.09 –0.77 –0.41

ψ(r1-lag),γ(.),p(trap) 21.4

r1-lag 0.46 0.09 0.28 0.64

“(.)” denotes that no covariates entered this part of the model; see text for further details . ∆AICc,

variation of Akaike information criterion (corrected for small sample size) values with respect to the

first-ranking model in each set; β, slope coefficient estimated for each covariate in the corresponding

model; SE, standard error; CI-lower and CI-upper, limits of the 95% confidence interval; tmax-0.5-lag,

standardized mean of maximum daily temperatures during sampling and the previous 15 days; tmax-0-lag,

standardized mean of maximum daily temperatures during sampling days and the previous week; r0-lag,

standardized mean of daily rainfall during sampling days and the previous week; tmin-0-lag,

standardized mean of daily minimum temperatures during sampling days and the previous week; r1-lag,

standardized mean of daily rainfall over the month before sampling; trap, trap-type covariate; obs,

observer covariate; see main text for further details on covariates

Page 39: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

33

CONCLUSÕES

Os programas rotineiros de controle e vigilância entomológica em relação com a

dengue têm um desempenho surpreendentemente precário; na nossa área de estudo, o sistema

de vigilância baseado nos LIRAa subestimou de forma grosseira a proporção de residências

infestadas por Ae. aegypti, e as campanhas de controle tiveram um efeito praticamente nulo

sobre as taxas de infestação predial.

Os dados sugerem fortemente que a implementação de um sistema de vigilância

baseado em armadilhas de oviposição, simples e de baixo custo, poderia ajudar a melhorar a

detecção de Aedes spp. em residências.

O uso de métodos analíticos que incorporam a detecção imperfeita de forma explícita

permitiria avaliar de forma mais rigorosa (e, provavelmente melhorar) os programas de

controle dos vetores da dengue. Além de fornecer estimativas de infestação mais confiáveis,

os modelos evidenciaram que as campanhas de controle de vetores são realizadas durante o

período no qual as probabilidades de extinção local dos vetores são menores (a época

chuvosa). Se realizadas durante os meses mais quentes do ano, as campanhas de destruição de

criadouros potenciais poderiam ter efeitos sinérgicos com o aumento sazonal das

probabilidades de extinção local; esta possibilidade merece ser estudada em projetos de

pesquisa operacional.

Os resultados sugerem que, como ocorre com outros organismos, a detecção

imperfeita dos mosquitos vetores da dengue pode comprometer as conclusões das pesquisas

ecológicas. A incorporação explícita das incertezas do processo amostral é necessária para

fortalecer as nossas inferências sobre ecologia de vetores.

Page 40: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

34

REFERÊNCIAS BIBLIOGRÁFICAS

Abad-Franch, F.; Ferraz, G.; Campos, C.; Palomeque, F.S.; Grijalva, M.; Aguilar, H.M.;

Miles, M.A. 2010. Modeling disease vector occurrence when detection is imperfect:

infestation of Amazonian palm trees by triatomine bugs at three spatial scales. PLoS

Neglected Tropical Diseases 4(3): e620.

Ballenger-Browning, K.K.; Elder, J.P. 2009. Multi-modal Aedes aegypti mosquito reduction

interventions and dengue fever prevention. Tropical Medicine and International Health, 14

(12): 1542–1551.

Esu, E.; Lenhart, A.; Smith, L.; Horstick, O. 2010. Effectiveness of peridomestic space

spraying with insecticide on dengue transmission; systematic review. Tropical Medicine and

International Health, 15 (5): 619–631.

Fé, N.F.; Barbosa, M.G.V.; Alecrim, W.D.; Guerra, M.V.F. 2003. Registro da ocorrência de

Aedes albopictus em área urbana do município de Manaus, Amazonas. Revista de Saúde

Pública, 37 (5): 674–675.

Figueiredo, R.M.P.; Naveca, F.G.; de Souza, M.B.; Melo, M.; Viana, S.S.; Gomes, M.P.;

Costa, C.A.; Farias, I.P. 2008. Dengue virus type 4, Manaus, Brazil. Emerging

InfectiousDiseases, 14 (4): 667–669.

Figueiredo, R.M.P.; Thatcher, B.D.; Lima, M.L.; Almeida, T.C.; Alecrim,W.D.; Guerra,

M.V.F. 2004. Doenças exantemáticas e primeira epidemia de dengue ocorrida em Manaus,

Amazonas, no período de 1998-1999. Revista da Sociedade Brasileira de Medicina Tropical,

37 (6): 476–479.

FUNASA. 2001. Dengue: Instruções para pessoal de combate ao vetor. Manual de Normas

Técnicas. 3rd ed. Ministério de Saúde/Fundação Nacional de Saúde. Brasília, Brasil. 84 p.

FUNASA. 2002. Programa Nacional de Controle da Dengue. Ministério da Saúde/Fundação

Nacional de Saúde. Brasília, Brasil. 32 p.

Gratz, N.G. 2004. Critical review of the vector status of Aedes albopictus. Medical and

Veterinary Entomology, 18 (3): 215–227.

Gonçalves da Silva, A.; Cunha, I.C.L.; Santos, W.S.; Luz, S.L.B.; Ribolla, P.E.M.; Abad-

Franch, F. 2012. Gene flow networks among American Aedes aegypti populations.

Evolutionary Applications, no prelo. doi:10.1111/j.1752-4571.2012.00244.x.

Page 41: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

35

Gubler, D.J. 1988. Dengue. Em: Monath, T.P., (Ed). Epidemiology of arthropod-borne viral

diseases. CRC Press, Boca Raton, FL, USA. p. 223–260.

Gubler, D.J. 1998. Dengue and dengue hemorrhagic fever. Clinical Microbiology Reviews, 11

(3): 480–496.

Gubler, D.J. 2002a. Epidemic dengue/dengue hemorrhagic fever as a public health, social and

economic problem in the 21st century. Trends in Microbiology, 10 (2): 100–103.

Gubler, D.J. 2002b. The global emergence/resurgence of arboviral diseases as public health

problems. Archives of Medical Research, 33 (4): 330–342.

Gürtler, R.E.; Garelli, F.M.; Coto, H.D. 2009. Effects of a five-year citywide intervention

program to control Aedes aegypti and prevent dengue outbreaks in northern Argentina. PLoS

Neglected Tropical Diseases, 3 (4): e427.

Guzmán, A.; Istúriz, R.E. 2010. Update on the global spread of dengue. International Journal

of Antimicrobial Agents 36 (Suppl. 1): S40–S42.

Guzmán, M.G.; Halstead, S.B.; Artsob, H.; Buchy, P.; Farrar, J.; Gubler, D.J.; Hunsperger, E;

Kroeger, A; Margolis, H.S.; Martínez, E; Nathan, M.B.; Pelegrino, J.L.; Simmons, C;

Yoksan, S; Peeling, R.W. 2010. Dengue: a continuing global threat. Nature Reviews

Microbiology, 8 (12 Suppl.): S7–S16.

Heintze, C.; Garrido, M.V.; Kroeger, A. 2007. What do community-based dengue control

programmes achieve? A systematic review of published evaluations. Transactions of the

Royal Society of Tropical Medicine and Hygiene, 101 (4): 317–325.

Kyle, J.L.; Harris, E. 2008. Global spread and persistence of dengue. Annual Review of

Microbiology, 62: 71–92.

Lambrechts, L.; Scott, T.W.; Gubler, D.J. 2010. Consequences of the expanding global

distribution of Aedes albopictus for dengue virus transmission. PLoS Neglected Tropical

Diseases, 4 (5): e646.

Mackenzie, D.I. 2005. Was it there? Dealing with imperfect detection for species

presence/absence data. Australia & New Zealand Journal of Statistics, 47 (1): 65–74.

Ministério da Saúde. 2005. Diagnóstico rápido nos municípios para vigilância entomológica

do Aedes aegypti no Brasil – LIRAa: Metodología para avaliação dos índices Breteau e

predial. Ministério da Saúde. Brasília, Brasil. 60 p.

Page 42: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

36

Reiter, P. 2007. Oviposition, dispersal, and survival in Aedes aegypti: implications for the

efficacy of control strategies. Vector Borne and Zoonotic Diseases, 7 (2): 261–273.

Ríos-Velásquez, C.M.; Codeço, C.T.; Honório, N.A.; Sabroza, P.S.; Moresco, M.; Cunha,

I.C.L.; Levino, A; Toledo, L.M.; Luz, S.L.B. 2007. Distribution of dengue vectors in

neighborhoods with different urbanization types of Manaus, state of Amazonas, Brazil.

Memórias do Instituto Oswaldo Cruz, 102 (5): 617–623.

San Martín, J.L.; Brathwaite, O.; Zambrano, B.; Solórzano, J.O.; Bouckenooghe, A.; Dayan,

G.H.; Guzmán, M.G. 2010. The epidemiology of dengue in the Americas over the last three

decades: a worrisome reality. American Journal of Tropical Medicine and Hygiene, 82 (1):

128–135.

WHO, 2006. Scientific Working Group Report on Dengue.

(http://www.who.int/tdr/publications/documents/swg_dengue_2.pdf) Acesso: 14/02/2012.

WHO, 2012. Global alert and response: Impact of dengue.

(http://www.who.int/csr/disease/dengue/impact/en/) Acesso: 14/02/2012.

Page 43: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

37

APÊNDICE

Page 44: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

38

APÊNDICE A – Tabela S1, todos os modelos de ocorrência gerados para ambas espécies

Aedes aegypti 38 months

Model Parameters AICc deltaAICc Likelihood AICc

weight ψ(tmax-0.5-lag),γ(.),p(trap,observer) 6 7013.56 0.00 1.00 0.457 ψ(tmax-0-lag),γ(.),p(trap,observer) 6 7014.54 0.98 0.61 0.280 ψ(tmean-0.5-lag),γ(.),p(trap,observer) 6 7016.11 2.55 0.28 0.128 ψ(tmean-0-lag),γ(.),p(trap,observer) 6 7016.62 3.06 0.22 0.099 ψ(rain-0-lag),γ(.),p(trap,observer) 6 7019.85 6.29 0.04 0.020 ψ(tmin-0.5-lag),γ(.),p(trap,observer) 6 7021.15 7.59 0.02 0.010 ψ(tmin-0-lag),γ(.),p(trap,observer) 6 7023.37 9.81 0.01 0.003 ψ(tmin-1-lag),γ(.),p(trap,observer) 6 7024.34 10.78 0.00 0.002 ψ(tmax-1-lag),γ(.),p(trap,observer) 6 7025.22 11.66 0.00 0.001 ψ(tmean-1-lag),γ(.),p(trap,observer) 6 7027.24 13.68 0.00 0.000 ψ(.),γ(.),p(trap,observer) (null) 5 7032.82 19.26 0.00 0.000

Aedes albopictus 38 months

Model Parameters AICc deltaAICc Likelihood AICc

weight ψ(tmin-0-lag),γ(.),p(trap) 5 6418.99 0.00 1.00 1.000 ψ(rain-1-lag),γ(.),p(trap) 5 6440.39 21.40 0.00 0.000 ψ(.),γ(.),p(trap) (null) 4 6466.26 47.27 0.00 0.000

Aedes aegypti 13 months

Model Parameters AICc deltaAICc Likelihood AICc

weight ψ(tmax-0.5-lag),γ(.),p(observer) 5 2593.32 0.00 1.00 0.402 ψ(tmax-0.5-lag,control),γ(.),p(observer) 6 2594.05 0.73 0.70 0.279 ψ(tmax-0.5-lag,house),γ(.),p(observer) 6 2595.73 2.41 0.30 0.121 ψ(tmax-0.5-lag,control,house),γ(.),p(observer) 7 2596.28 2.96 0.23 0.091 ψ(tmean-0-lag,control),γ(.),p(observer) 6 2597.64 4.32 0.12 0.046 ψ(.),γ(.),p(observer) (null) 4 2598.74 5.42 0.07 0.027 ψ(tmean-0-lag,control,house),γ(.),p(observer) 7 2600.24 6.92 0.03 0.013 ψ(yard),γ(.),p(observer) 5 2600.69 7.37 0.03 0.010 ψ(house),γ(.),p(observer) 5 2601.14 7.82 0.02 0.008 ψ(tmean-0-lag),γ(.),p(.) 4 2603.16 9.84 0.01 0.003

Aedes albopictus 13 months

Model Parameters AICc deltaAICc Likelihood AICc

weight ψ(tmin-0-lag,house),γ(.),p(.) 5 2500.23 0.00 1.00 0.339 ψ(tmin-0-lag,house,control-lag),γ(.),p(.) 6 2501.10 0.87 0.65 0.220 ψ(tmin-0-lag,house,control),γ(.),p(.) 6 2502.74 2.51 0.29 0.097 ψ(tmin-0-lag),γ(.),p(.) 4 2502.97 2.74 0.25 0.086 ψ(house),γ(.),p(.) 4 2503.23 3.00 0.22 0.076 ψ(tmin-0-lag,control-lag),γ(.),p(.) 5 2503.74 3.51 0.17 0.059 ψ(house,control-lag),γ(.),p(.) 5 2504.64 4.41 0.11 0.037 ψ(tmin-0-lag,control),γ(.),p(.) 5 2505.38 5.15 0.08 0.026 ψ(house,control),γ(.),p(.) 5 2505.59 5.36 0.07 0.023 ψ(.),γ(.),p(.) (null) 3 2505.87 5.64 0.06 0.020 ψ(control-lag),γ(.),p(.) 4 2507.19 6.96 0.03 0.010 ψ(control),γ(.),p(.) 4 2508.12 7.89 0.02 0.007

Page 45: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

39

ANEXOS

Page 46: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

40

ANEXO A – Parecer da banca examinadora da aula de qualificação

Page 47: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

41

ANEXO B – Parecer da avaliadora do trabalho escrito, Larissa Bailey

Page 48: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

42

ANEXO C – Parecer do avaliador do trabalho escrito, Steven Juliano

Page 49: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

43

ANEXO D – Parecer do avaliador do trabalho escrito, Ricardo Gürtler

Page 50: DINÂMICA DE OCORRÊNCIA DE Aedes aegypti Aedes … filesamael david padilla torres dinÂmica de ocorrÊncia de aedes aegypti e aedes albopictus em residÊncias urbanas de manaus,

44

ANEXO E – Ata da defesa pública da dissertação