251

Fluid Mechanics

Embed Size (px)

Citation preview

  • Fluid Mechanics

    (Fluid Mechanics)

    .. 2553

  • Fluid Mechanics

  • Fluid Mechanics

    .

  • Fluid Mechanics

  • i Fluid Mechanics

    Contents

    1 (Basic concept and Fluid property) 1-1 1.1 1-1 1.2 (Dimension) 1-1 1.3 (Unit) 1-2 1.4 1-4 1.5 (Basic concept and Fluid property) 1-5 1.5.1 (Density) 1-5 1.5.2 (Specific weight) 1-5 1.5.3 (Specific gravity) 1-5 1.5.4 (Specific volume) 1-6 1.5.5 (Viscosity) 1-6 1.5.6 (Compressibility) 1-13 1.5.7 (Surface tension) 1-14 2 (Fluid static) 2-1 2.1 (Pressure) 2-1 2.1.1 (Pressure at a point in fluid) 2-2 2.1.2 (Variation of pressure in static fluid) 2-3 2.1.3 (Measurement of Pressure) 2-6 2.1.4 (Pressure Units) 2-6 2.1.5 (Pressure gauge) 2-8 2.2 (Pressure Force on a Plane Surface) 2-11 2.3 (Pressure Force on a Curved Surface) 2-18 2.4 (Buoyancy Force) 2-27 2.4.1 2-30 (Stability of Floating and Submerged Bodies) 2.5 2-36

    (Variation of fluid pressure in moving container) 2.5.1 2-36 (Fluid pressure in Linear moving container) 2.5.2 2-42 (Fluid pressure in angular moving container)

  • ii Fluid Mechanics

    Contents

    3 (Basic of flow theorem) 3-1 3.1 (Flow classification) 3-2 3.2 (Flow analysis with Control Volume method) 3-5 3.3 (Reynolds Transport Theorem) 3-7 3.4 (Mass Conservation) 3-11 4 (Energy equation) 4-1 4.1 Euler (Eulers Energy equation) 4-1 4.2 Bernoulli (Bernoullis equation) 4-3 4.3 (Energy equation) 4-12 4.3.1 (Head loss) 4-12 4.3.2 (Pump) 4-21 4.3.3 (Turbine) 4-24 5 (Momentum equation) 5-1 5.1 (Linearly Monentum Equation) 5-2 5.3 5-14 (Momentum equation for moving control volume) 6 (Flow in Pressure Conduit) 6-1 6.1 (Behavior of flow in pipe) 6-2 6.2 (Entrance Flow Development) 6-3 6.3 (Friction head loss or Major loss) 6-5 6.3.1 6-7 (Friction factor for larminar flow) 6.3.2 6-9 (Friction factor for turbulent flow in smooth pipe) 6.3.3 6-12 (Friction factor for turbulent flow in rough pipe) 6.4 (Minor loss) 6-14

  • iii Fluid Mechanics

    Contents

    7 (Open channel fFlow) 7-1 7.1 (Type of channel) 7-1 7.2 (Open channel flow classification) 7-2 7.2.1 7-2 (Classified by flow pattern) 7.2.2 (Classified by stage of flow) 7-5 7.3 (Basic equation of open channel flow) 7-6 7.3.1 (Continuity Equation) 7-7 7.3.2 (Energy Equation) 7-8 7.3.3 (Momentum Equation) 7-9 7.4 (Steady Uniform Flow) 7-10 7.5 7-15 (Specific energy and steady rapidly varied flow) 7.6 7-2 (Momentum function and steady rapidly varied flow) 8 (Dimension analysis and Similarity) 8-1 8.1 (Dimension analysis) 8-1 8.1.1 (Dimension and Unit) 8-2 8.1.2 8-4 (Dimension analysis by Buckingham Pi Theorem) 8.2 (Similarity) 8-13 8.2.1 (Similarity analysis) 8-13 8.2.2 8-15 (Dimensionless term in Similarity analysis) 8.2.3 (Case study of similarity analysis) 8-18 (Exercise) E-1 1 E-1 2 E-3 3 E-11 4 E-13 5 E-15 6 E-17 7 E-20 8 E-21 R-1 A-1

  • iv Fluid Mechanics

    Contents

  • 1-1 Fluid Mechanics

    Fluid Property

    1

    1.1 (Fluid mechanics) (Fluid Statics) (Fluid Dynamics) 1.2 (Dimensions) 2

    1.2.1 (Primary Dimensions or Basic Dimensions) 4

    - (Mass) M - (Length) L - (Time) T - (Temperature)

    1.2.2 (Secondary Dimensions) (L) (L) (L) L3 (L) (T) L/T 1.2

    1.1 (F) F = ma m () M a () LT-2 F () MLT-2 Ans

    1 (F)

  • 1-2 Fluid Mechanics

    Fluid Property

    1.2 - T (N) T-1 Ans -

    T () T-1 Ans 1.2

    1.3 (Unit) 2

    - System International Unit SI SI - British Gravitational System BG

    SI 1.1 1.2 1.1 SI BG

    1.2

  • 1-3 Fluid Mechanics

    Fluid Property

    1.3 Newton F = ma N (Newton) m () M kg a () LT-2 m/s2 F () MLT-2 kg m/s2 1 N = 1 kg m/s2 Ans

    Prefixes

    Prefixes

    2.5 (km) 2103 2,000 (m) k 103 1.5 (mm) 1.510-3 0.0015 (m) m () 10-3

    1.3 Prefixes

  • 1-4 Fluid Mechanics

    Fluid Property

    1.4 (Fluid) (Liquid) - (Free surface) ( ) (Gas)

    1.1

  • 1-5 Fluid Mechanics

    Fluid Property

    1.5

    1.5.1 (Density or Mass Density) (mass) (Volume) ( rho)

    m

    VolumeMass : ./.. (kg/m3)

    4OC 1 1,000 ./.. (W) 1.5.2 (Specific Weight) (Weight) (Volume) ( gamma)

    g mg

    VolumeWeight : /.. (N/m

    3)

    4OC 1 9,810 /.. (W) 1.5.3 (Specific Gravity) 4 OC 1 S SG

    wwww gg

    WWSG

    :

    4OC 1 1

  • 1-6 Fluid Mechanics

    Fluid Property

    1.5.4 (Specific Volume) (Volume) (mass)

    1

    MMassVolume : ../. (m3/kg)

    1.5.5 (Viscosity) (Deformation) (shear stress) (Viscosity) (Friction) 1.2 (Cohesion Force)

    1.2 1.2 (AD) V (BC) V+v v t = 0 ABCD t = t ABCD

    yatan

    yatan

    = tva

  • 1-7 Fluid Mechanics

    Fluid Property

    yv

    tytv

    --------- (1.1)

    t

    Rate of shear strain () Shear stress ()

    t

    yv --------- (1.2)

    Shear stress

    dydv --------- (1.3)

    1.3 (Newtons equation of viscosity) ( mu) (Dynamic Viscosity) (Absolute Viscosity) FL-2T N s / m2 lb sec / ft2 dv/dy

    1.3 (dv/dy)

  • 1-8 Fluid Mechanics

    Fluid Property

    1.4 (Absolute Viscosity)

    (Kinematic Viscosity) ( )

    --------- (1.4) L2/T m2/s ft2/sec

  • 1-9 Fluid Mechanics

    Fluid Property

    1.5 (Kinematic Viscosity)

  • 1-10 Fluid Mechanics

    Fluid Property

    dv/dy (Newtonian fluid) dv/dy (Non-Newtonian fluid) 3

    1) (Dilatant fluid) 2) (Pseudoplastic fulid) 3) (Plastic fluid)

    (yield) Newtonian

    1.6 (dv/dy)

  • 1-11 Fluid Mechanics

    Fluid Property

    1.4 plate (F) plate v ()

    a

    v0a0v

    yv

    dydv

    av

    dydv

    F = A A = ( 2 ) A = 2 (2b b) = 4b2

    F = t A 24bavF

    avb4F

    2 Ans

    1.5 parabola 6 m/s 3 m

    Parabola (v-k) = C(y-h)2 ; (h,k) parabola

    parabola y = 0 ; v = 6 h = 0 m k = 6 m/s

    (v-6) = C(y-0)2 y = 3 ; v = 0 (0-6) = C(3)2 C = -(6/9) = -(2/3) 232 y6v y

    dydv

    34 y = 3 134 s43dy

    dv

    = = (910-5 m2/s)(1000 kg/m3) = 0.009 kg/s m ( N s/m2)

    dydv = (0.009 Ns/m2)(4 s-1) = 0.036 N/m2 Ans

  • 1-12 Fluid Mechanics

    Fluid Property

    1.6 1 ./ 2 ./ ()

    bV

    dvdv

    24W m sNmskg72.0000,19.0108SG 2m

    kN32.40005.0372.0

    bV

    20.005.032.4DLAF = 135.7 N Ans

  • 1-13 Fluid Mechanics

    Fluid Property

    1.5.6 (Compressibility) () Compressibility (Modulus) () Bulk Modulus (k)

    d

    dpk --------- (1.5)

    dp = d = =

    2

    - (Incompressible fluid)

    - (Compressible fluid)

    1.7 Incompressible fluid Compressible fluid

  • 1-14 Fluid Mechanics

    Fluid Property

    1.5.7 (Surface tension) ws LF --------- (1.5)

    Fs = (N) = (N/m) = () Lw = (m)

    1.8

    1.9

    2 (A) (C) 2 1.10 () ()

  • 1-15 Fluid Mechanics

    Fluid Property

    1.10

    1.10 () ()

    1.11

    P Pa r 1.11 () Fs = 2a2 rPrP r2 = 2a rPP aPP

    2r --------- (1.6)

    1.11 () r Fs = 2a2 rPrP r22 = 2a rPP aPP

    4r --------- (1.7)

    1.6 1.7 4

  • 1-16 Fluid Mechanics

    Fluid Property

    Capillarity

    1.12 Capillarity

    r

    cos2h --------- (1.8)

    r = =

    1.4

  • 2-1 Fluid Mechanics

    Fluid Static

    2

    (Fluid Statics)

    2.1 (Pressure) ( FL-2 ML-1T-2) dF dA A

    dAdFP --------- (2.1)

    A

    AFP --------- (2.2)

    SI / (N/m2)

    2.1

  • 2-2 Fluid Mechanics

    Fluid Static

    2.1.1 (Pressure at a point in fluid) 2.2

    2.2

    maF Y sindxdlPdxdzPy = yadxdydz21 dzsindl dxdzPdxdzPy = yadxdydz21 PPy = yady21 dy 0 0ady21 y PPy --------- (2.3) Z dxdydz21cosdxdlPdxdyPz = zadxdydz21 dycosdl dxdydz21dxdyPdxdyPz = zadxdydz21 PPz = dz21adz21 z dy 0 0adz21 z PPz --------- (2.4) 2.3 2.4 (Pascals law) Static Pressure

  • 2-3 Fluid Mechanics

    Fluid Static

    2.1.2 (Variation of pressure in static fluid) 2.3 P

    2.3

    Y zx

    2y

    yppzx

    2y

    yppFy

    zyxypFy --------- (2.5)

    Y X zyx

    xpFx --------- (2.6)

    zyxzpFz --------- (2.7)

    2.5 2.6 2.7 kFjFiFF zyxs

    zyxk

    zpj

    ypi

    xpFs

    --------- (2.8)

    k

    zp

    jyp

    ixp

    p --------- (2.9)

    2.8 2.9 3 zyxpFs --------- (2.10)

  • 2-4 Fluid Mechanics

    Fluid Static

    kzyxkw- --------- (2.11) amF azyxkwFs --------- (2.12) 2.10 2.11 2.12 azyxkzyxzyxp akp --------- (2.13) 2.13 () 0 2.13 kp = 0 kk

    zpj

    ypi

    xp

    = 0 --------- (2.14)

    X 0i

    xp

    --------- (2.15)

    Y 0j

    yp

    --------- (2.16)

    2.15 2.16 X Y 0

  • 2-5 Fluid Mechanics

    Fluid Static

    Z kk

    zp

    dzdP --------- (2.17)

    2.17 Z 0

    2.4

    2.17 dzdP 2

    P

    1PdP = 2

    z

    1zdz

    P2-P1 = -(z2-z1) zP --------- (2.18) 2.18 z z

  • 2-6 Fluid Mechanics

    Fluid Static

    2.1.3 (Measurement of Pressure) 2

    - (Absolute pressure) (absolute zero pressure)

    - (Gauge Pressure) (mean sea level : MSL) 0

    2.5 2.1.4 (Pressure Units) SI (N/m2)

    - SI (Pa) (N/m2) (m of water ; mm.Hg) (bar) 105 (105 N/m2) - BG / (psi = lb / in2) (ft of water ; in.Hg)

    * atm (Standard atmospheric pressure) 1 atm (1.013105 N/m2) 1 atm = 1.013105 N / m2 (Pa) = 14.7 lb / in2 (psi) = 1.013 bar (1bar = 105Pa) = 760 mm.Hg = 29.9 in. Hg = 10.33 m of Water = 33.9 ft of Water

  • 2-7 Fluid Mechanics

    Fluid Static

    2.1 2 - 0.5 . - 0.5 . Pa = 1 atm

    P1 = P2+w(h1-h2) P2 = Pa+oil(h2-0) Pa = 1 atm = 1.013 105 N/m2 P2 = (1.013 105) +(0.85w)(0.3-0) = 103801.6 N/m2 P1 = 103801.6 +w(0.4) P1 = 107725.6 N/m2 Ans P3 = P2+w(h3-h2) = 103801.6+w(0.2) 0.5 m P3 = 105763.6 N/m2 Ans

    = 107725.6-101300 = 6425.6 N/m2 Ans 0.5 . = 105763.6-101300 = 4463.6 N/m2 Ans

  • 2-8 Fluid Mechanics

    Fluid Static

    2.1.5 (Pressure gauge)

    2.1.5.1 (Barometer) 2.6 ( ) () (absolute pressure)

    2.6

    Pair = Pv+ h Pv = 0.000023 lb/in2 Pair = h --------- (2.19) ( : mm.Hg) 2.1.5.2 (Manometer) barometer (gauge pressure) 3

    2.7 U

  • 2-9 Fluid Mechanics

    Fluid Static

    - (Piezometer) 2.7 ()

    A PA = h --------- (2.20) A PA = Pair+h --------- (2.21) - U (U-tube Manometer) Piezometer

    (h) U Gage Fluid ( ) h 2.7 ()

    A PA = 2h2-1h1 --------- (2.22) A PA = Pair+2h2-1h1 --------- (2.23) - (Incline Tube Manometer) manometer

    2.7 () A PA = 2(L sin)-1h1 --------- (2.24) A PA = Pair+2(L sin)-1h1 --------- (2.25) 2.1.5.3 (Bourdon gauge)

    2.8

  • 2-10 Fluid Mechanics

    Fluid Static

    2.2 B A 25 mm-Hg ( m)

    1 mm-Hg = (110-3 m.)SGHgw = 0.00113.69810 = 133.4 Pa A PA = 25 mm.Hg = 25133.4 = 3335.4 Pa = 3.34 kPa B PB = PA + (0.15) w + (0.30) HG - (0.45) Oil = 3335.4 + (0.15) (9810) + (0.30) (13.69810) - (0.45) (0.809810) = 41.31103 Pa = 41.31 kPa Ans 2.3 U 3 (Unknown fluid) 0.045W + 0.015 0.035 0.015W 0.005Oil = 0

    (0.045-0.015)W 0.005(0.8)W + (0.015-0.035) = 0 (0.03-0.004) W = 0.02 = 1.3W

    = (/g) = (1.3W)/g = 1.3W = 1.3(1,000) = 1,300 kg/m3 Ans

  • 2-11 Fluid Mechanics

    Fluid Static

    2.2 (Pressure Force on a Plane Surface) (Static Pressure) 2.9

    2.9

    (Pressure Force : FR) (Center of Pressure : CP) 2.10 A X Y h

    2.10

  • 2-12 Fluid Mechanics

    Fluid Static

    C (Centroid of Surface) CP (Center of Pressure) yC Y yP Y hC () hP () dAhdF

    AR dAhdFF

    h = y sin A

    R dAsinyF

    AR ydAsinF

    AyydA cA

    ( X) sinAyF cR hc = yc sin AhF cR --------- (2.26) Y (yR) O X PRyF =

    AdFy

    = A

    dAhy =

    A

    2 dAsiny

    Py = R

    A

    2

    F

    dAsiny

    = sinyA

    dAsiny

    c

    A

    2

    Py = c

    A

    2

    Ay

    dAy --------- (2.27)

    xA

    2 IdAy ()

    Py = c

    X

    AyI --------- (2.28)

  • 2-13 Fluid Mechanics

    Fluid Static

    X (IX) XI =

    2cXC AyI --------- (2.29)

    IXC X X Py =

    c

    2cxc

    AyAyI

    c

    xccP Ay

    Iyy --------- (2.30)

    2.11 Y O Y PRxF =

    AdFx

    = A

    dAhx =

    AdAsinxy

    Px = R

    A

    F

    dAsinxy

    =

    sinyA

    dAsinxy

    c

    A

    Px = c

    A

    Ay

    xydA --------- (2.31)

    xyA

    I dA xy ( XY) XY (IXY) ccxycxy yAxII

    Px = c

    ccxyc

    AyyAxI

  • 2-14 Fluid Mechanics

    Fluid Static

    Y cc

    xycP xAx

    Ix --------- (2.32)

    ( Y : Ixyc = 0)

    2.12

    2.11 2.2 PAFR --------- (2.33)

    2.13 O X PRyF =

    AdFy

    = A

    dAPy

    P FR=PA

    Py = PA

    dAyPA

  • 2-15 Fluid Mechanics

    Fluid Static

    A

    dAyy AP

    --------- (2.34)

    2.34 A

    dAyA

    X cP yy --------- (2.35) O Y PRxF =

    AdFx

    Px = PA

    dAxPA

    A

    dAxx AP

    --------- (2.36)

    2.36 A

    dAxA

    y cP xx --------- (2.37) 2.35 2.37

  • 2-16 Fluid Mechanics

    Fluid Static

    2.4 1.2 m 1.8 m F P ()

    FR = hCA hC = 3.9 sin 60O = 3.38 m A = 1.2 1.8 = 2.16 m2 FR = W(3.38)(2.16) = 98103.38 2.16 = 71,621 N = 71,621 kN

    cc

    xcP yAy

    Iy ; 4

    33

    xc m583.0121.81.2

    12bdI

    m97.33.93.92.16

    0.583yP MHinge = 0 0.97FR = (1.8F) F = (0.97FR)/1.8 = (0.9771621)/1.8 = 38,596 N Ans

  • 2-17 Fluid Mechanics

    Fluid Static

    2.5 1.0 m 1,500 kg (h) 0.9

    F = F1+F2

    F1 P = Oilh F1 WW2Oil1 h7069.0h149.0hAF

    ---- (1)

    F1 m5.0

    20.1

    2Dy 1P ---- (2)

    F2 F2 wW

    22CW2 2356.00.142

    6.0AhF

    ---- (3) ( m3.0

    53

    20.1sinyh 2C2C

    )

    F2

    AyIyy

    2C

    2XC2C2P

    m5.020.1y 2C 4442XC m0491.0640.164DI

    m625.00.1

    45.0

    0491.05.0y

    22P

    ---- (4)

    0MO 0aWyFyF 2P21P1 625.02356.05.0h7069.0 WW = 81.9500,14.0 0.353h + 0.147 = 0.6 ---- (5) (5) h = 1.283 Ans

  • 2-18 Fluid Mechanics

    Fluid Static

    2.3 (Pressure Force on a Curved Surface) 2.14

    2.14

    (FH) (FV) 2.15

    2.15 AB

    2.15 abc abfd 2.15 () F1 aced F2 bcef 2.15 () 0 0FX Fx = F1 Fx F1 acde Fx (FH) yz (F1) aced 2.15 () 2.16

  • 2-19 Fluid Mechanics

    Fluid Static

    2.16

    0 0FY

    Fy = F2 + W Fy W F1 bcef Fy (FV) xy (F2) bcef (W) 2.15 () 2.17

    2.17

  • 2-20 Fluid Mechanics

    Fluid Static

    2.6 4 . 2 .

    ABC

    0FX FX = F1

    F1 AC ACCW1 AhF m5.3

    225.2h:m842A C

    2AC

    F1 = 85.3W = W28 FX = W28 (FH) FX FH = W28 = 274.68 kN Ans c

    cACP yyA

    Iy

    1224I:m842A:m5.3

    225.2hy

    3

    XCACCC

    m60.35.35.3812

    24

    y

    3

    P

    Ans 0FY FY = F2 + W F2 BC BCBC2 APF 2BCWBC m842A:5.2P WW2 2085.2F

  • 2-21 Fluid Mechanics

    Fluid Static

    F2 BC m1

    22

    x2 C W W = W2 4241 = W4 W ABC

    m85.0

    38

    324x3 C

    Fy = WW 420 = W420 (FV) Fy WV 420F = 319.48 kN Ans

    FV FV F2 W xFV = 85.0W1F2 x =

    W

    WW

    42085.04120

    x = 0.94 m C Ans F = 2V

    2H FF

    = 2WW2W 42028 = 421.33 kN Ans tan =

    H

    V

    FF

    =

    W

    W

    28420

    = 49.31O Ans

  • 2-22 Fluid Mechanics

    Fluid Static

    2.7 4 . 2 . ABC

    0FX FX = F1

    F1 AC ACCW1 AhF m5.3

    225.2h:m842A C

    2AC

    F1 = 85.3W = W28 FX = W28

    (FH) FX FH = W28 = 274.68 kN Ans c

    cACP yyA

    Iy

    1224I:m842A:m5.3

    225.2hy

    3

    XCACCC

    m60.35.35.3812

    24

    y

    3

    P

    Ans 0FY FY = F2 - W F2 BC BCBC2 APF 2BCWBC m842A:5.4P WW2 3685.4F F2 BC m1

    22x2 C

    W ABC

  • 2-23 Fluid Mechanics

    Fluid Static

    W4 ADBC W4 = W422 = W16 W4 ADBC m1

    22x4 B

    W5 ADB W5 = W2 4241 = W4 W5 ADB

    m85.0

    38

    324x5 B

    Fy = WWW 41636 = W420 (FV) Fy WV 420F = 319.48 kN Ans

    FV FV F2 W4 W5 xFV = 85.0W1W1F 542 x420 W = 85.04116136 WWW X =

    420

    85.041636

    = 0.942 m B Ans F = 2V

    2H FF

    F = 2WW2W 42028 = 421.33 kN Ans tan =

    H

    V

    FF

    =

    W

    W

    28420

    = 49.31O Ans

  • 2-24 Fluid Mechanics

    Fluid Static

    2.8 AB 4 . 2 . F B ABC

    F1 F1 = AhCW 2C m842A;m5.315.2h F1 = 85.3W = W28 F1 c

    cACP yyA

    Iy

    43

    CC m667.21242I;m5.3hy

    m60.35.35.382.667yP

    F1 A 1.1 m F2 W F2 BC APF BC2 F2 = 85.4 W = W36 F2 BC : x2 = 1.0 m C W ABC W = 4241 2W = W4 W ABC : x3 = m85.03

    24 C A 0 21 F0.1F1.1 = F0.2W85.0 WW 360.1281.1 = F0.2485.0 W F =

    212.56 W

    F = 275.26 kN Ans

  • 2-25 Fluid Mechanics

    Fluid Static

    2.9 AOB 5 . 2 . 3 1 F ( 0.75) ABC

    F1 + F2 F1 AC F1 APO 521 O WW 5.71075.01 F1 AC m5.215.01y1 F1 O 1.0 m

    F2 AC AhF CW2 2C m1052A;m5.15.01h F2 = WW 15105.1 F2

    CACC2 yA

    Iyy

    43

    CC m333.31252I;m5.1hy

    y2 = m722.15.110333.35.1

    F2 O 2.5 - 1.72 = 0.78 m F4+W F4 BC APF BC4 F4 = 5215.0 OW = 1075.05.0 WW = W5.12

  • 2-26 Fluid Mechanics

    Fluid Static

    F4 BC F4 O m0.1x4 W ABC W5 AOBC W5 = 522W = W20 W5 AOBC W5 O m0.1x5 W6 ABC W6 = 5241 2W = W5 W6 ABC W5 O

    m85.0

    324x6

    O 0

    621 W85.0F78.0F1 = F2F1W1 45 W585.01578.05.71 = F25.121201 W

    WW 5.3255.32 = F2 F = WW 025.02

    05.0

    F 245.25 N Ans

  • 2-27 Fluid Mechanics

    Fluid Static

    2.4 (Buoyancy Force) ABCD 2.18 DAB F1 DCB F2 F1 HE F2 FG

    2.18 ABC CDA ABC CDA ABC CDA (FB) 2.19 Fb W ABCD ABCD

    2.19

    2.19 AB DC A AB F1 = Ah1 DC F2 = Ah2

  • 2-28 Fluid Mechanics

    Fluid Static

    Fb = WFF 12 = WAhAh 12 Fb = WAhh 12 --------- (2.38) 2.19 Ahh 12 Box Box = Ahh 12 --------- (2.39) W W = Box --------- (2.40) 2.39 2.40 2.38 Fb = BoxBox Fb = --------- (2.41) Fb Fb

    BF --------- (2.42)

  • 2-29 Fluid Mechanics

    Fluid Static

    2.10

    0Fy W = WBOilB FF = WWOilOil = WWOil 8.0

    W

    =

    WOil 8.0

    SG =

    35.035.03.015.035.03.08.020.035.03.0

    SG = 0.886 Ans 2.11 1.01.00.5 m3 20 kN

    T = F1 + W F1 F1 = PA = 112 W = W2 T = 3W 10202 = 39.62 kN Ans

    T = W - FB FB = W5.011 = W5.0 T = W3 5.01020 = 15.095 kN Ans

  • 2-30 Fluid Mechanics

    Fluid Static

    2.4.1 (Stability of Floating and Submerged Bodies)

    3 - Stable Equilibrium - Neutral Equilibrium - Unstable Equilibrium 2.4.1.1 (Stability of Submerged Bodies) 2.20() (C) (G) (Stable)

    2.20 (G) (C) (Unstable) 2.20() 2.4.1.2 (Stability of Floating Bodies) (Metacenter) (Metacentric Height) G C

  • 2-31 Fluid Mechanics

    Fluid Static

    (Metacenter) M 2.21 () 2.21() 2.21()

    2.21

    2.22

    (Metacentric Height) 2.22() GM

  • 2-32 Fluid Mechanics

    Fluid Static

    (GM)

    2.23 2.23 () C C ABFE = ABFE + BBO - AAO xFE'B'A = 3AO'A2BO'B1ABFE xxx x Y FE'B'A 1x Y ABFE 2x Y BO'B 3x Y AO'A ABFE Y 0x1 xFE'B'A = 3AO'A2BO'B xx xFE'B'A = AO'ABO'B dxdx --------- (2.43) 2.23() d = dAtanx --------- (2.44) 2.44 2.43 xFE'B'A = AO'ABO'B dAtanxxdAtanxx xFE'B'A =

    AO'A2

    BO'B

    2 dAxdAxtan --------- (2.45)

    AO'A

    2

    BO'B

    2 dAxdAx B'AOB'A

    2dAx ( z) GHIJ 2.23 () 2.43 xFE'B'A = ZItan --------- (2.46)

  • 2-33 Fluid Mechanics

    Fluid Static

    2.23() FE'B'A x = ZItan tan

    x =

    ZI --------- (2.47)

    2.23() tanx

    (C) (M) (Metacentric Radius) CM

    ZICM --------- (2.48)

    CG (C) (G) (M) CM CG CGCMGM --------- (2.49) GM (+) GM (-)

  • 2-34 Fluid Mechanics

    Fluid Static

    2.12 30 . 60 . 30 . 318 N

    0 W = FB = W 318 = Wd6.03.0 d = W6.03.0

    318 = 0.18 m

    (G) m15.023.0

    (C) m09.0218.0

    CG = 0.15 0.09 = 0.06 m = 18.06.03.0 = 0.0324 m3 Y X

    ICM CM I I

    43

    X m0054.0126.03.0I 43Y m00135.012 6.03.0I

    Y m4167.00324.000135.0

    CM 048.009.0042.0CGCMGM GM (-) Ans

  • 2-35 Fluid Mechanics

    Fluid Static

    2.13 Platform 0.250.30 . 10 . Platform 600 ./..

    0 W = FB ----(1) W = 1025.03.02g = 75.02g600 = 8.829 kN

    FB = Wd103.02 = Wd6 (1) 310829.8 = Wd6 d =

    W

    3

    610829.8

    = 0.15 m

    (G) m125.0225.0

    (C) m075.0215.0

    CG = 0.125 0.075 = 0.05 m Y X

    43X m50212

    103.0I

    433

    Y m26.112106.0

    12102.1I

    Y m4.11015.03.02

    26.1ICM Y 35.105.04.1CGCMGM GM (+) Ans

  • 2-36 Fluid Mechanics

    Fluid Static

    2.5 (Variation of fluid pressure in moving container)

    (dv) ( 2.13) 2.13 kp = a X Y Z

    xP

    = xa --------- (2.50)

    yP

    = ya --------- (2.51)

    zP

    = zag --------- (2.52) 2.50 2.51 2.52 X Y Z 2.24

    2.24

    2.5.1 (Fluid pressure in Linear moving container)

    2.25

  • 2-37 Fluid Mechanics

    Fluid Static

    Y Z 2.25 a 2 yz ( y , z ) ( y+dy , z+dz ) 2.24 dP = dz

    zPdy

    yP

    --------- (2.53)

    2.26 2 yz

    2.51 2.52 2.53 dzgadyadP zy --------- (2.54) 2.54 0 dP = 0 2.54 0 = dzgadya zy z

    y

    aga

    dydz

    --------- (2.55) 2.55 2.27

    2.27

  • 2-38 Fluid Mechanics

    Fluid Static

    (a=0) 2.55 0 2.1.2 ay az 2.54 0 2.52 dzdzgdP 2.17 2.1.2

  • 2-39 Fluid Mechanics

    Fluid Static

    2.14 1.20 . 0.45 . 1.45 .

    -

    - - 3 m/s2

    2.53 z

    y

    aga

    dydz

    z : 0az

    ga

    dydz y ---- (1)

    45.1

    15.015.0dydz

    (1) 45.115.015.0 =

    gay

    ay =

    g45.115.015.0

    ay = 2.030 m/s2 Ans

    2.54 dzgadyadP zy CzgyaP y ---- (2) (2) 4 P y z C

    E ( ) D 0 C D : y = -0.725 ; z = +0.15 ; P = 0 (2) 0 = C0.15g0.725-2.03 C = 0 A : y = -0.725 ; z = -1.05 (2) PA = 01.05-g0.725-2.03 = +11.77 kPa Ans B : y = +0.725 ; z = -1.05 (2) PB = 01.05-g0.7252.03 = +8.83 kPa Ans

  • 2-40 Fluid Mechanics

    Fluid Static

    3 306.0

    g3

    dydz

    DC D m222.0725.0306.0y

    dydzz

    DC ABFG d m072.015.0222.0bzd = 072.005.145.045.1 = 0.638 m3 Ans

    2.15 a

    - -

    2.55 zy

    aga

    dydz

    2

    10.2

    5.05.0dydz

    a54cosaay

    a53sinaaz

    21 =

    a53g

    a54

    a = g115 = 4.459 m/s2 Ans 2.54 dzgadyadP zy CzgayaP zy D E 0 C

  • 2-41 Fluid Mechanics

    Fluid Static

    E : y = +1.0 ; z = 0 ; P = 0 (2) 0 = C0gg1.0g 1155311554 C = w114 A B A : y = 0 ; z = -1.5 PA = w1141155311554 1.5-gg0g = w1116 = +14.269 kPa B : y = +2.0 ; z = -3.0 PB = w1141155311554 3-gg2g = w1120 = +17.836 kPa B 17.836 kPa Ans

  • 2-42 Fluid Mechanics

    Fluid Static

    2.5.2 (Fluid pressure in angular moving container)

    z z 2.28()

    2.28

    (Polar Coordinate) r Z ( 2.53)

    dP = dzzp

    dp

    drrp

    --------- (2.56)

    5.24()

    rr maF radzddrrrddz2dr

    rp

    prddz2dr

    rp

    p

    22r rr-arp --------- (2.57)

    maF

    adzddrrdrdz2dp

    pdrdz2

    dpp

    rap

    0a 0p

    --------- (2.58)

  • 2-43 Fluid Mechanics

    Fluid Static

    zz maF radzddrrdzddrrrddr2

    dzzp

    prddr2dz

    zp

    p

    zagzp --------- (2.59)

    2.57 2.58 2.59 2.56

    dzagdrrdp z2 --------- (2.60) 2.60 0 dP = 0 2.60 dzagdrr0 z2

    z

    2

    agr

    drdz

    --------- (2.61)

    2.61 2.61 dr

    agr

    dzz

    2

    --------- (2.62)

    2.60 Crag2z

    2

    z

    2

    --------- (2.63)

    2.63 (Paraboloid) 2.27

  • 2-44 Fluid Mechanics

    Fluid Static

    2.27

    0 z = C C r

  • 2-45 Fluid Mechanics

    Fluid Static

    2.16 z 0.4 m/s2 - -

    ( O) ( A) r = 0.6 m z = 1.0 m

    2.63 Crag2

    1z 2z

    2

    C = 0 m. s/rad53.706.04g2

    10.1 22

    Ans

    2.58 dP = dzagdrr z2 P = 1z22 Czagr 2

    1

    C1 O O : r = 0 ; z = 0 ; P = 0 C1 = 0 D r = 0 ; z = -0.5 PD = 05.0-4g53.70 22 2

    1

    = 6.905 kPa B r = +0.6 ; z = -0.5 PB = 05.0-4g53.70.6 22 2

    1

    = 17.11 kPa 17.11 kPa Ans

    ( O) ( A) r = 0.6 m z = 1.5 m 2.61 Cr

    agz 2

    z

    2

    C = 0 m.

  • 2-46 Fluid Mechanics

    Fluid Static

    s/rad73.1006.04g2

    15.1 22

    Ans

    ***

    = = 25.12.145.12.14 22 = 0.848 m3 = = 848.00.12.1

    42

    = 0.283 m3 Ans

  • 3-1 Fluid Mechanics

    Flow Theorem

    3

    Kinematics of Fluid Flow

    - Streamline streamline

    - Streakline

    - Pathline () streamline streamline streakline pathline ( 3.5) 3.1 (Pathline) x streakline 3.1() streamline 3.1 ()

    3.1 streamline streakline pathline

  • 3-2 Fluid Mechanics

    Flow Theorem

    3.1 (Flow classification)

    ( ) 5

    3.1.1 (Real Fluid and Ideal Fluid) (Real Fluid) (Ideal Fluid) ()

    3.2 () ()

    3.1.2 (Compressibility) (Compressible Fluid) 3.3() (Incompressible Fluid) 3.3 ()

    3.3

  • 3-3 Fluid Mechanics

    Flow Theorem

    3.1.3 Steady Flow Unsteady Flow

    3.4 Steady flow Unsteady flow 3.1.4 2

    - (Laminar Flow) ( StreamLine) ( 3.5 )

    - (Turbulent Flow)

    ( 3.5 )

    3.5

  • 3-4 Fluid Mechanics

    Flow Theorem

    3.1.5 2

    - (Rotational Flow) - (Irrotational Flow) Irrotational Flow

    3.6

  • 3-5 Fluid Mechanics

    Flow Theorem

    3.2 (Flow analysis with Control Volume method) 3

    - (Differential Approach)

    - (Finite Region)

    - (Dimensional Analysis and Modeling)

    (Control Volume Approach)

    - (System)

    - (Surrounding) - (Control Volume)

    - (Control Surface)

    (Fix Control Volume) 3.7 () (Moving Control Volume)

  • 3-6 Fluid Mechanics

    Flow Theorem

    3.7 () (Deforming Control Volume) 3.7 ()

    3.7

  • 3-7 Fluid Mechanics

    Flow Theorem

    3.3 (Reynolds Transport Theorem)

    (General Conservation Equation)

    3.3.1

    3.8

    3.8

    B =

    3.7 () t = t BSYS(t) BCV(t)

    BSYS(t) = BCV(t) --------- (3.1) t

    ttBsys = ttBttBttB IIICV --------- (3.2) ttBI ttBII

    t B

    tBsys

    =

    t

    tBttB syssys

    --------- (3.3)

  • 3-8 Fluid Mechanics

    Flow Theorem

    3.1 3.2 3.3

    tBsys

    =

    t

    tBttBttBttB CVIIICV

    t

    Bsys

    =

    t

    ttBt

    ttBt

    tBttB IIICVCV

    --------- (3.4)

    t 0 t

    Bsys

    DtDBsys

    t

    tBttB CVCV

    t

    BCV

    3.4

    DtDBsys =

    t

    ttBt

    ttBt

    B IIICV

    --------- (3.5)

    t

    ttBI

    t

    ttBI

    InB

    t

    ttBII

    t

    ttBII

    OutB 3.5

    tDBD sys = OutInCV BBt

    B

    --------- (3.6)

    3.6

    OutInCVsys BBt

    BtD

    BD --------- (3.7) 3.7 (Raynolds Transport Theorem)

    QIn/Out = (-)

    tOut/In

    b = ( ) b =

    mB

  • 3-9 Fluid Mechanics

    Flow Theorem

    ( InB ) In

    InIn

    InInInInInIn btt

    btbmB

    InB = InInIn bQ --------- (3.8) ( OutB ) Out

    OutOut

    OutOutOutOutOutOut btt

    btbmB

    OutB = OutOutOut bQ --------- (3.9) 3.7

    OutOutOutInInInCVsys bQbQtB

    tDBD

    --------- (3.10)

    3.3.2

    3.9

    3.9

    syssyssys dbdmbB

    sys

    sys dbdtd

    DtDB --------- (3.11)

    CVCV

    CV dbdmbB

    CV

    CV dbdtd

    dtdB --------- (3.12)

  • 3-10 Fluid Mechanics

    Flow Theorem

    3.9 () t+dt (II) nvvn

    --------- (3.13) v = n = 3.9 () tdAbvB nOut --------- (3.14) dAbv

    tB

    B nOutOut --------- (3.15)

    OutCSnOut dAbvB --------- (3.16)

    tdAbvB nIn --------- (3.17)

    nvnv dAbv

    tBB nInIn --------- (3.18)

    InCSnIn dAbvB --------- (3.19)

    ( 3.7)

    tD

    BD CV = InOutCV BBtB

    ]

    =

    InCS

    nOutCS

    nCV dAbvdAbvt

    B

    CS

    nCVsys dAbvt

    BtD

    BD --------- (3.20)

    CS

    nCVsys

    dAbvdbdtddb

    dtd --------- (3.21)

  • 3-11 Fluid Mechanics

    Flow Theorem

    3.4 (Mass Conservation)

    3.7

    OutInCVsys MMtM

    tDMD --------- (3.22)

    0tD

    MD sys 0 =

    OutIn

    CV MMt

    M

    OutInCV MMt

    M --------- (3.23) 3.23 (Mass Conservation)

    (Continuity Equation) 3.21

    1mmb 0db

    dtd

    sys

    0dAbvdbdtd

    CSn

    CV --------- (3.24)

    3.24 (Mass Conservation) 3.20

    mb

    ()

    CS

    nCVsys dAvttD

    D --------- (3.22) 1

    CS

    nCVsys dAvttD

    D --------- (3.23)

    (Incompressible Fluid) 0

    tDD sys

    CSn

    CV dAvt

    --------- (3.24)

    InCS

    nOutCS

    nCS

    n dAvdAvdAv 3.24

    tCV

    =

    InCSn

    OutCSn dAvdAv

  • 3-12 Fluid Mechanics

    Flow Theorem

    tCV

    = OutCS

    nInCS

    n dAvdAv

    QdAvCS

    n

    OutInCV QQt

    --------- (3.25)

    (Fix Control Volume)

    (Steady Flow) 0

    tCV

    OutIn QQ --------- (3.26)

  • 3-13 Fluid Mechanics

    Flow Theorem

    3.1 Y 0.1 cms 0.3 cms (SGAlcohol = 0.8)

    OutInCVsys BBtB

    tDBD

    Fix Control Volume

    OutIn

    CV MMt

    M 0

    tMCV

    InM = AlcoholAlcoholww QQ = ww 8.03.01.0 OutM = MixMixQ MixMixwlw Q8.03.01.00 ----- (1)

    OutIn QQ Alcoholw QQ = mixQ (0.1) + (0.3) = mixQ mixQ = 0.4 cms (1) 0 = 4.08.03.01.0 Mixwlw Mix = w4.0

    8.03.01.0

    = w85.0 = 850 kg/m3 Ans

  • 3-14 Fluid Mechanics

    Flow Theorem

    3.2 1 l/s 6 mm 100 mm (V) () 600 rpm

    OutInCVsys BBtB

    tDBD

    Moving Control Volume

    OutInCV MMt

    M ----- (1) 0

    tMCV

    InM = inwQ = w001.0 OutM = OutwQ2 QOut = WAOut = W006.04

    2

    W OutM =

    W006.0

    42 2w

    (1) 0 = w001.0 -

    W006.0

    42 2w

    W = 2006.0

    42

    001.0

    = 17.68 m/s

    UWV U = R = 1.0

    606002

    = 2 m/s

    V = (-17.68) + (+2) = -11.40 m/s Ans

  • 3-15 Fluid Mechanics

    Flow Theorem

    3.3 (Plunger) 500 .. 300 cc/min 0.1

    OutInCVsys BBt

    BtD

    BD Deforming Control Volume

    OutIn

    CV MMt

    M ----- (1) 0MIn OutM = Q1.0Q

    (1)

    tMCV

    = Q1.0Q0

    tMCV

    = - Q1.1 ----- (2)

    tMCV

    = td

    d CV = tdALd

    t

    MCV

    = td

    dLA ----- (3) V =

    tddS =

    tddL ----- (4)

    (3) (4) (2) VA = Q1.1 V =

    A

    Q1.1

    = 6

    6

    1050060

    103001.1

    V = 0.011 m/s Ans

  • 3-16 Fluid Mechanics

    Flow Theorem

    3.4 500 / 1.0015 1.0012 1.6552 ()

    OutInCVsys BBtB

    tDBD

    Fix Control Volume

    OutIn

    CV MMt

    M ----- (1) InM = ininQ = 0.10015.1 W ----- (2) OutM = outoutQ = 0.10012.1 W ----- (3)

    t = 0 Control Volume 1 2 t = t Control volume 1 2 CVM = 211 mmmm = 2 mm = 22 = 2 = 10000012.16552.133600 CVM = 7,063,200 kg = 7,063.2 ton Control volume

    tMCV

    = t

    MCV

    = t

    102.063,7 3

    ----- (4)

    (2) (3) (4) (1) t

    102.063,7 3

    = W0012.10015.1

    t = 0012.10015.12.063,7

    = 47,088,000 = 545 Ans

  • 4-1 Fluid Mechanics

    Energy Equation

    4

    3 (Incompressible Fluid) Streamline Steady flow

    Leonhard Euler (streamline) Bernouli Euler

    4.1 Euler (Eulers Energy equation)

    streamline 4.1

    4.1

    streamline as

    - dAP dAds

    sPP

    - dsdAddW 2 amF

  • 4-2 Fluid Mechanics

    Energy Equation

    samsindWdAdss

    PPdAP

    --------- (4.1)

    dtdVas t,sfV

    tV

    sVV

    dtdt

    tV

    dtds

    sVa

    s

    --------- (4.2)

    (Steady flow) 0tV

    dsdV

    sV

    4.2

    dsdVVas --------- (4.3)

    dsdAdm --------- (4.4) 4.3 4.4 4.1

    dsdVVds

    dsdzdsds

    sPPP

    dsdVVdsdAsindsdAdAds

    sPPdAP

    Steady flow dsdP

    sP

    dsdVVds

    dsdzdsds

    dsdPPP

    0

    gdVVdPdz --------- (4.5)

    4.5 Leonhard Euler

  • 4-3 Fluid Mechanics

    Energy Equation

    4.2 Bernoulli (Bernoullis equation)

    Bernoulli Leonhard Euler

    0g

    dVVdPdz

    C

    g2VPz

    2 --------- (4.6)

    g2

    VPzg2

    VPz222

    2

    211

    1 --------- (4.7) 4.7 Bernoulli Bernoulli Bernoulli

    streamline 1 2 4.7

    4.2 Bernoulli

    4.6 4.7 (L)

    L:z LTML

    LMLTTML

    FL:P 2222

    22

    2

    L

    LTLT:

    g2V

    2

    212

    = LFFL:

    WeightEnergy

    Bernoulli

  • 4-4 Fluid Mechanics

    Energy Equation

    (Energy Head) (Head)

    Z (Potential head or Elevation head)

    P (Pressure head)

    g2V2 (Velocity head)

    (Steady flow) (Ideal Fluid) (Incompressible fluid) streamline streamline 4.2 (Energy Grade Line ; E.G.L.) (Hydraulic Grade Lime ; H.G.L.)

    ( ; Static head Piezomatic head)

  • 4-5 Fluid Mechanics

    Energy Equation

    4.1 1.0 . 0.7 . 0.2 . 10 . () Bernoulli A C

    g2

    VPz

    2AA

    A = g2VP

    z2CC

    C (Datum) 0 A : zA = +0.7 m ; PA = 0 ; VA = 0 C : zC = +0.2 m ; PC = 0 (1) 007.0 =

    g2V02.0

    2C

    VC = 3.13 m/s

    s/l29.12s/m012.013.310.0VAQ 324CC Ans 4.2 A B A 10 . 68.67 kPa B 7.5 . ( B) Bernoulli A B

    g2

    VPz

    2AA

    A = g2VP

    z2BB

    B ----- (1) (Datum) 0 A : zA = 0 ; PA = 68.67 x 103 Pa B : zB = 0 ; PB = 0 (1)

    g2V1067.680

    2A

    3

    =

    g2V00

    2B

    0957.6g2 = 2A2B VV ----- (2) BB

    2

    B

    2

    A

    BB

    A

    BABBAA V5625.0V10.0

    075.0VDD

    VAA

    VVAVAQ

    (2) 957.6g2 = 2B2B V5625.0V VB = 14.13 m/s

    s/l42.62s/m06242.013.14075.0VAQ 324BB Ans

  • 4-6 Fluid Mechanics

    Energy Equation

    4.3 AG A-B 15 . C-G 10 . A 39.24 kPa G A 78.3 l/s

    GCGCBABA VAVAQ sm43.4

    15.00783.0V;sm97.9

    1.00783.0V 2

    4BA2

    4GC

    m50.8g2

    43.445.3g2

    VPz.L.G.E

    22AA

    AA

    m5.70.45.3Pz.L.G.H AAA

    G A

    g2VP

    z2GG

    G = g2VP

    z2AA

    A

    g2

    97.9P5.6

    2G = g2

    43.41024.395.323

    GP = -3.06 m

    m5.8g2

    97.906.35.6g2

    VPz.L.G.E

    22GG

    GG

    m44.306.35.6Pz.L.G.H GGG

    F A

    g2VP

    z2FF

    F = g2VP

    z2AA

    A

    g2

    97.9P5.62

    F = g243.41024.395.3

    23

    FP = -3.06 m

  • 4-7 Fluid Mechanics

    Energy Equation

    m5.8g2

    97.906.35.6g2

    VPz.L.G.E

    22FF

    FF

    m44.306.35.6Pz.L.G.H FFF

    E A

    g2VP

    z2EE

    E = g2VP

    z2AA

    A

    g2

    97.9P0.52

    E = g243.41024.395.3

    23

    EP = -1.56 m

    m5.8g2

    97.956.10.5g2

    VPz.L.G.E

    22EE

    EE

    m44.356.10.5Pz.L.G.H EEE

    D A

    g2VP

    z2DD

    D = g2VP

    z2AA

    A

    g2

    97.9P5.32

    D = g243.41024.395.3

    23

    DP = -0.06 m

    m5.8g2

    97.906.05.3g2

    VPz.L.G.E

    22DD

    DD

    m44.306.05.3Pz.L.G.H DDD

    C A

    g2VP

    z2CC

    C = g2VP

    z2AA

    A

    g2

    97.9P5.32

    C = g243.41024.395.3

    23

    GP = -0.06 m

  • 4-8 Fluid Mechanics

    Energy Equation

    m5.8g2

    97.906.05.3g2

    VPz.L.G.E22

    CCCC

    m44.306.05.3Pz.L.G.H CCC

    B A

    g2VP

    z2BB

    B = g2VP

    z2AA

    A

    g2

    43.4P5.32

    B = g243.41024.395.3

    23

    BP = 4.0 m

    m50.8g2

    43.445.3g2

    VPz.L.G.E

    22BB

    BB

    m5.70.45.3Pz.L.G.H BBB E.G.L. H.G.L.

  • 4-9 Fluid Mechanics

    Energy Equation

    Bernoulli - Venturi meter

    Venturi meter

    4.3 Venturi

    4.3 Piezometer (H1 , H2) Static head Bernoulli 1-2

    g2VPz

    g2VPz

    222

    2

    211

    1 H1 , H2 static head 1 2

    212212

    22

    2

    21

    1

    VVHHg2

    g2VH

    g2VH

    122

    21

    22211 VDDVVAVA

    1DD

    Hg2VV 4

    2

    11

    --------- (4.8)

    4.8 (CV) Hg2C

    1DD

    Hg2CV W4

    2

    1V

    --------- (4.9)

    CW 1

    DD

    C4

    2

    1

    V

  • 4-10 Fluid Mechanics

    Energy Equation

    - Pitot tube Pitot tube 4.4

    4.4 pitot tube

    4.4 Pitot tube Pitot tube Static head Velocity head (Total Energy Head) Bernoulli 1-2

    g2VPz

    g2VPz

    222

    2

    211

    1 H1 , H2 static head 1 2 0H

    g2VH 2

    21

    1 Hg2VV 1 --------- (4.10) 4.10 (CP) Hg2CV P --------- (4.11)

    4.5

  • 4-11 Fluid Mechanics

    Energy Equation

    4.4 Venturi 1 2 D 0.5D h Ideal Fluid Bernoulli 1 2

    g2VPz

    g2VPz

    222

    2

    211

    1 z1 = z2

    g2VVPP 21

    2221

    ------- (1) 1W1 hP 2W2 hP hhhPP W21W21 ------- (2) Q1 = Q2 11

    2

    1

    2

    2

    11

    2

    122211 V4VD5.0

    DVDDV

    AAVVAVA

    ------- (3)

    (2) (3) (1)

    hg2V15g2

    VV4h 21

    21

    21

    W

    W

    15

    hg2V1 ------- (4)

    15

    hg2D4

    VAQ 211

    Ans

  • 4-12 Fluid Mechanics

    Energy Equation

    4.3 (Energy Equation)

    Bernoulli () () (Pump and Turbine) Bernoulli

    4.3.1 (Head loss)

    2

    - (Major loss) (Friction head loss) hf

    - (Minor loss)

    (Fitting Devices) hm

    4.6

    Bernoulli

    mf222

    2

    211

    1 hhg2VPz

    g2VPz ------- (4.12)

  • 4-13 Fluid Mechanics

    Energy Equation

    4.7

  • 4-14 Fluid Mechanics

    Energy Equation

    4.5

    A-H

    g2VPz

    2A

    w

    AA = mf

    2H

    w

    HH hhg2

    VPz

    PA = 0 , PH = 0 , VA = 0 Az = mf

    2H

    H hhg2V

    z ------- (1)

    m722111h HAf m75.12115.1h HAm (1) 0.15 = 0.70.7

    g2V

    0.02H

    HV = 4.429 m/s

    sm035.0429.410.04

    VAQ 32HH A-B

    g2VPz

    2A

    w

    AA = BAmf

    2B

    w

    BB hhg2

    VPz

    PA = 0 , VA = 0 s/m968.1429.415.010.0V

    DDV 2

    2

    H2B

    2H

    B

    m5.1h BAm m0h BAf 000.15 = 05.1

    g2968.1P

    0.102

    w

    B

    w

    BP = = 3.303 m

  • 4-15 Fluid Mechanics

    Energy Equation

    B E.G.L. = m5.13g2

    968.1303.310g2

    VPz22

    B

    w

    BB

    H.G.L. = m303.13303.310Pzw

    BB

    B-C ()

    g2VPz

    2B

    w

    BB = mf

    2inC

    w

    inCinC hhg2

    VPz

    m5.13g2

    VPz2B

    w

    BB s/m968.1VV BC

    m1h CBf m0h CBm 13.5 = 00.1

    g2968.1P

    0.102

    w

    B

    w

    inCP

    = 2.303 m

    Cin E.G.L. = m5.12g2

    968.1303.210g2

    VPz22

    C

    w

    CC

    H.G.L. = m303.12303.210Pzw

    CC

    - C

    g2

    VPz

    2inC

    w

    inCinC = mf

    2outC

    w

    outCoutC hhg2

    VPz

    m5.12g2

    VPz

    2inC

    w

    inCinC s/m968.1VV outCinC outCinC zz

    m0h outCinCf m1h outCinCm 12.5 = 0.10

    g2968.1P

    0.102

    w

    outC

    w

    outCP

    = 1.303 m

    Cout E.G.L. = m5.11g2

    968.1303.110g2

    VPz

    22outC

    w

    outCoutC

    H.G.L. = m303.11303.110Pzw

    outCoutC

  • 4-16 Fluid Mechanics

    Energy Equation

    C D

    g2

    VPz

    2outC

    w

    outCoutC = mf

    2inD

    w

    inDinD hhg2

    VPz

    m5.11g2

    VPz

    2outC

    w

    outCoutC s/m968.1VV inDoutC

    m0.1h inDoutCf m0h inDoutCm 11.5 = 00.1

    g2968.1P

    0.52

    w

    inD

    w

    inDP

    = 5.303 m

    Din E.G.L. = m5.10g2

    968.1303.50.5g2

    VPz

    22inD

    w

    inDinD

    H.G.L. = m303.10303.50.5Pzw

    inDinD

    - D

    g2

    VPz

    2inD

    w

    inDinD = mf

    2outD

    w

    outDoutD hhg2

    VPz

    m5.10g2

    VPz

    2inD

    w

    inDinD s/m968.1VV outDinD outDinD zz

    0h outDinDf m0.1h outDinDm 10.5 = 0.10

    g2968.1P

    0.52

    w

    outD

    w

    outDP

    = 4.303 m

    Dout E.G.L. = m5.9g2

    968.1303.40.5g2

    VPz

    22outD

    w

    outDoutD

    H.G.L. = m303.9303.40.5Pzw

    outDoutD

  • 4-17 Fluid Mechanics

    Energy Equation

    D - E

    g2

    VPz

    2outD

    w

    outDoutD = mf

    2E

    w

    EE hhg2

    VPz

    m5.9g2

    VPz

    2outD

    w

    outDoutD s/m968.1VV EoutD

    m0.1h EoutDf 0h EoutDm 9.5 = 00.1

    g2968.1P

    0.52

    w

    E

    w

    EP = 3.303 m

    E E.G.L. = m5.8g2

    968.1303.30.5g2

    VPz22

    E

    w

    EE

    H.G.L. = m303.8303.30.5Pzw

    EE

    E - F

    g2VP

    z2E

    w

    EE = mf

    2F

    w

    FF hhg2

    VPz

    m5.8g2

    VPz

    2E

    w

    EE

    s/m428.4968.110.015.0V

    DDVVAVA 2

    2

    E2F

    2E

    FFFEE

    0h FEf m0.2h FEm 8.5 = 0.20

    g2428.4P

    0.52

    w

    F

    w

    FP = 0.500 m

    F E.G.L. = m5.6g2

    428.45.00.5g2

    VPz22

    F

    w

    FF

    H.G.L. = m5.55.00.5Pzw

    FF

  • 4-18 Fluid Mechanics

    Energy Equation

    F G

    g2VPz

    2F

    w

    FF = mf

    2inG

    w

    inGinG hhg2

    VPz

    m5.6g2

    VPz2F

    w

    FF s/m428.4VV FinG

    m0.2h inGFf 0h inGFm 6.5 = 00.2

    g2428.4P

    0.52

    w

    inG

    w

    GP

    = -1.500 m

    Gin E.G.L. = m5.4g2

    428.45.10.5g2

    VPz

    22inG

    w

    inGinG

    H.G.L. = m5.35.10.5Pzw

    inGinG \

    - G

    g2

    VPz

    2inG

    w

    inGinG = mf

    2outG

    w

    outGoutG hhg2

    VPz

    m5.4g2

    VPz

    2inG

    w

    inGinG outGinG VV outGinG zz

    0h outGinGf m5.1h outGinGm 4.5 = 5.10

    g2428.4P

    0.52

    w

    outG

    w

    outGP

    = -3.000 m

    Gout E.G.L. = m0.3g2

    428.40.30.5g2

    VPz

    22outG

    w

    outGoutG

    H.G.L. = m0.20.30.5Pzw

    outGoutG

  • 4-19 Fluid Mechanics

    Energy Equation

    G - H

    g2

    VPz

    2outG

    w

    outGoutG = mf

    2H

    w

    HH hhg2

    VPz

    m0.3g2

    VPz

    2outG

    w

    outGoutG s/m428.4VV HoutG

    m0.2h HoutGf 0h HoutGm 3.0 = 00.2

    g2428.4P

    0.02

    w

    H

    w

    HP = 0.000 m

    H E.G.L. = m0.1g2

    428.400g2

    VPz22

    H

    w

    HH

    H.G.L. = m000Pzw

    HH

    Ans

  • 4-20 Fluid Mechanics

    Energy Equation

    4.6 1 2 2.5 cm D Bernoulli A G mf

    2GG

    G

    2AA

    A hhg2VP

    zg2

    VPz ------- (1)

    H (Datum) 0 A : zA = +1.3 m ; PA = 0 ; VA = 0 G : zG = +0.3 m ; PA = 0 m55.015.0215.01.0h;m3.015.015.0h GAmGAf (1) 003.1 = 55.03.0

    g2V

    03.02G

    VG = 2.971 m/s

    s/l6.0s/m0006.0971.2025.0VAQ 324GG Ans Bernoulli A D mf

    2DD

    D

    2AA

    A hhg2VP

    zg2

    VPz ------- (2)

    D : zD = +0.8 m ; VD = VG = 2.971 m/s m25.015.01.0h;m15.0h DAmDAf (2) 003.1 = 25.015.0

    g2971.2P8.0

    2D

    DP = -0.05 m

    PD = -490.5 N/m2 Ans

  • 4-21 Fluid Mechanics

    Energy Equation

    4.3.2 (Pump)

    4.8

    (hP) (HP) 4.8

    Bernoulli

    mf222

    2P

    211

    1 hhg2VPzH

    g2VPz ------- (4.13)

    (Power ; PW) PW Ht

    VolumeVolumeWight

    tWorkP

    PW QHP ------- (4.14) (PP)

    WPP PP ------- (4.15)

    P

  • 4-22 Fluid Mechanics

    Energy Equation

    4.7 1 2 0.594 ../ 60 % A-F P

    2A

    w

    AA Hg2

    VPZ = mf2F

    w

    FF hhg2

    VPZ

    PH000.5 = mf hh000.25 ----- (1) BC sm50.1

    71.0594.0

    AQV 2

    4BCB

    DE sm50.255.0

    594.0AQV 2

    4DED

    BC g2

    V0.7g2

    V0.1g2

    V0.6hh2

    CB2

    CB2

    CBCBmf

    DE g2

    V5.13g2

    V0.4g2

    V5.9hh2

    ED2

    ED2

    EDEDmf

    (1) PH = g2

    V5.13g2

    V0.75252

    ED2

    CB

    = g25.25.13

    g25.10.7525

    22

    = 25.1 m Pw = PQH = 1.25594.0 = 146,261.214 W = 146.26 kW Ans PP =

    60.0kW26.146P

    P

    W = 60.0kW26.146

    = 246.77 kW Ans

  • 4-23 Fluid Mechanics

    Energy Equation

    Cavitations () (suction zone)

    4.9 Cavitations

    4.10 Cavitations

  • 4-24 Fluid Mechanics

    Energy Equation

    4.3.3 (Turbine)

    4.11

    (HP) (hT) 4.9

    Bernoulli

    mfT222

    2

    211

    1 hhHg2VPz

    g2VPz ------- (4.16)

    (Power ; PW) TW Ht

    VolumeVolumeWight

    tWorkP

    QHTPW ------- (4.17) (PT)

    TTP PP ------- (4.18) T

  • 4-25 Fluid Mechanics

    Energy Equation

    4.8 +150 . +95 . 0.594 cms 75 % A-F T

    2A

    w

    AA Hg2

    VPZ = Tmf2F

    w

    FF Hhhg2

    VPZ 00150 = mfT hhH0095 ----- (1) BC sm50.255.0

    954.0AQV 2

    4BCB

    DE sm50.171.0954.0

    AQV 2

    4DED

    BC g2

    V0.16g2

    V5.3g2

    V5.12hh2

    CB2

    CB2

    CBCBmf

    DE g2

    V2.15g2

    V0.5g2

    V2.10hh2D

    2ED

    2ED

    EDmf (1) TH = g2

    V2.15g2

    V0.16951502

    ED2

    CB

    = g25.12.15

    g25.20.1695150

    22

    = 48.16 m Pw = TQH = 16.48594.0 = 280,635.06 = 280.64 kW Ans PT = WTP = 75.0kW64.280 = 210.48 kW Ans

  • 4-26 Fluid Mechanics

    Energy Equation

  • 5-1 Fluid Mechanics

    Momentum Equation

    5

    (Impulse momentum) 5.1

    5.1

    (Impulse momentum) (Reynolds Transport Theorem)

  • 5-2 Fluid Mechanics

    Momentum Equation

    5.1 (Linearly Momentum Equation)

    5.2

    5.2

    5.2 5.1 () 5.1 ()

    (H)

    tDHD sys

    =

    OutInCV HHt

    H

    --------- (5.1)

    H F = am =

    dtVdm

    dtF = Vdm --------- (5.2)

    5.2 (Impulse momentum) dtF (Impulse) Vdm 5.2 5.1 dtFsys = syssys Vdm sysF

    = DtHD sys

    --------- (5.3)

    5.3 ( sysF )

  • 5-3 Fluid Mechanics

    Momentum Equation

    5.3 5.1 sysF

    =

    OutInCV HHt

    H

    --------- (5.4)

    () (Incompressible Fluid) (Steady Flow)

    tHCV

    = 0 --------- (5.5)

    H =

    dt

    Vm =

    dt

    V

    H = VQ --------- (5.6) 5.4 InInInOutOutOutsys VQVQF --------- (5.7) 5.7 (Momentum Equation) (Incompressible Fluid) (Steady stage)

  • 5-4 Fluid Mechanics

    Momentum Equation

    5.1 2 0.30 ../ 1 10 kPa 2

    - - 1.5 Velocity head 1

    -

    Mmentum

    InInInOutOutOut VQVQF ---- (1) OutOutOut VQ = 2w VQ ---- (2) InInIn VQ = 1w VQ ---- (3)

    F F2 2 2 1

    g2VPz

    211

    1 = g2VPz

    222

    2 ---- (4)

    sm53.15.03.0

    DQV 2

    14214

    1 ; sm12.625.03.0

    DQV 2

    14224

    2 P1 , V1 V2 (4)

    g2

    53.11010 23 =

    g212.6P 22

    P2 = -7.56 kPa 1 2 kN96.15.01010DPAPF 2432141111 N44.37025.01056.7DPAPF 2432242222

    +

    FX F = 2X1 FFF = 44.370F1096.1 X3 F = XF44.2330 ---- (5)

  • 5-5 Fluid Mechanics

    Momentum Equation

    (2) , (3) (5) (1) XF44.2330 = 12.63.053.13.0 ww XF = 0.953 kN Ans 2 1.5 Velocity head 1

    g2VPz

    211

    1 = L222

    2 hg2VPz

    g2

    53.11010 23 =

    g253.15.1

    g212.6P 222

    P2 = -9.312 kPa 1 2 kN96.15.01010DPAPF 2432141111 N00.45725.01031.9DPAPF 2432242222 FX F = 2X1 FFF = 457F1096.1 X3 F = XF2417 ---- (6) (2) , (3) (6) (1) XF2417 = 12.63.053.13.0 ww XF = 1.04 kN Ans

  • 5-6 Fluid Mechanics

    Momentum Equation

    5.2 A 5.0 2.5 ( A) 88.29 kPa 2

    - - 1.5 Velocity head A

    -

    Mmentum InInInOutOutOut VQVQF ---- (1) OutOutOut VQ = Bw VQ ---- (2) InInIn VQ = Aw VQ ---- (3) F = XA FF ---- (4) (2) , (3) (4) (1)

    XA FF = AwBw VQVQ ---- (5) (5) VA VB 1

    g2VPz

    2AA

    A = g2VPz

    2BB

    B

    g2V1029.880

    2A

    3

    =

    g2V00

    2B

    AA2

    A

    2

    B

    AA

    B

    ABBBAA V4V5.2

    5VDDV

    AAVAVAVQ

    g2V1029.88 2A

    3

    =

    g2V16 2A

    VA = 3.43 m/s VB = 13.72 m/s Q = 24 05.043.3 = 0.0067 m3/s (5) XAA FAP = 43.3Q72.13Q ww FX = 43.372.130067.005.01029.88 w243 = 104.41 N

    FX FX 104.41 N Ans

  • 5-7 Fluid Mechanics

    Momentum Equation

    2 1.5 Velocity head A

    g2VPz

    2AA

    A = L2BB

    B hg2VP

    z

    g2V1029.880

    2A

    3

    =

    g2V5.1

    g2V00

    2A

    2B

    AA2

    A

    2

    B

    AA

    B

    ABBBAA V4V5.2

    5VDDV

    AAVAVAVQ

    g2

    V1029.88 2A3

    =

    g2V5.1

    g2V16 2A

    2A

    VA = 3.27 m/s VB = 13.09 m/s Q = 24 05.027.3 = 0.0064 m3/s (5) XAA FAP = 27.3Q09.13Q ww FX = 27.309.130064.005.01029.88 w243 = 110.51 N

    FX FX 110.51 N Ans

  • 5-8 Fluid Mechanics

    Momentum Equation

    5.3 5.3 - 5.7 XInInInXOutOutOutX VQVQF --------- (5.8) YInInInYOutOutOutY VQVQF --------- (5.9) ZInInInZOutOutOutZ VQVQF --------- (5.10)

    5.4 X-Y

  • 5-9 Fluid Mechanics

    Momentum Equation

    5.3 1 150 kPa

    - X-Y V3 outin QQ Q1 = Q2 + Q3 33AV = 21 QQ 3V =

    3

    21

    AQQ ----- (1)

    sm98.0196.055.05AVQ 324111

    sm31.0031.0102.010AVQ 324222 (1) 3V = 24 15.0

    31.098.0 = 018.0

    31.098.0 = 37.2 m/s Q3 = Q1 - Q3 = 0.67 m3/s X-Y

    2 3 2 3 P2 P3 1 2

    g2VPz

    211

    1 = g2VPz

    222

    2

    g25101500

    23

    =

    g210P0

    22

    P2 = 112.5 kPa 1 3

    g2VPz

    211

    1 = g2VPz

    233

    3

    g2

    510150023

    =

    g22.37P0

    23

    P3 = -529.42 kPa

  • 5-10 Fluid Mechanics

    Momentum Equation

    X

    xF = XininXoutout VQVQ ----- (2) XF =

    O32X 45cosFFF

    = XO

    3322 F45cosAPAP = X

    O F45cos018.042.529031.05.112 XF = kNF23.10 X ----- (3)

    XininVQ = 0 ----- (4) XoutoutVQ = O33W22W 45cosVQVQ = OWW 45cos2.3767.01031.0 = 14.52 (kN) ----- (5) (3) , (4) (5) (2) kNF23.10 X = 14.52 0 FX = 4.29 kN X YF = YininYoutout VQVQ ----- (6) YF =

    O31Y 45sinFFF

    = O3311Y 45sinAPAPF = OY 45sin018.042.529196.0150F YF = kN14.36FY ----- (7) YininVQ = 11W VQ = 598.0W = -4.9 (kN) ----- (8) YoutoutVQ = O33W 45sinVQ = O45sin2.3767.0 = -17.62 (kN) ----- (5)

  • 5-11 Fluid Mechanics

    Momentum Equation

    (7) , (8) (9) (6) 14.36FY = (-17.62) (-4.9) FY = 23.42 kN F = 2Y

    2X FF

    = 22 42.2329.4 = 23.81 kN

    =

    X

    Y1

    FFtan =

    29.481.23tan 1 = 79.62O Ans

    5.4 1 2 1.12 . -

    - Mmentum X XInInInXOutOutOutX VQVQF ---- (1) F2 2 P2

    g2VPz

    211

    1 = L222

    2 hg2VPz

    g2

    381.986.580

    2

    = 12.1g2

    VP0

    222 ---- (2)

    sm1234V4V15.03.0V

    DDV

    AAV 11

    2

    1

    2

    2

    11

    2

    12

    (2)

    g2

    381.986.580

    2

    = 12.1g2

    12P02

    2 P2 = -19.62 kPa

  • 5-12 Fluid Mechanics

    Momentum Equation

    XF = XX21 FFF

    = X542211 FAPAP = X245424 F15.062.193.086.58 = 4.438 - FX (kN) XoutoutVQ = 25422w VAV = 224w54 1215.0 = +2.036 (kN)

    XininVQ = 111w VAV = 224w 330.0 = +0.636 (kN) (1) 4.438 - FX = (+2.036) (0.636) FX = 3.038 kN - Mmentum Y YInInInYOutOutOutY VQVQF ---- (2) YF

    = YY2 FF = Y5322 FAP

    = Y2453 F15.062.19 = 0.208 FY (kN) Youtout VQ = 25322w VAV = 224w53 1215.0

    = +1.527 (kN) YininVQ = 0

    (2) 0.208 + FY = (+1.527) FY = 1.319 kN

    F = 2Y2X FF

    = 22 319.1038.3 = 3.312 kN

    =

    X

    Y1

    FFtan =

    038.3319.1tan 1

    = 23.47O Ans

  • 5-13 Fluid Mechanics

    Momentum Equation

    5.5 20 mm 7 m/s 5 cm 10 cm (V)

    g2

    VPz2

    111 = g2

    VPz222

    2

    g2

    7002

    = g2

    V01.02

    V = 7.14 m/s - - Mmentum X

    XInInInXOutOutOutX VQVQF ---- (1) xF = -FX XoutoutVQ = 0 XininVQ = 0 (1) FX = 0 - Mmentum Y YInInInYOutOutOutY VQVQF ---- (2) YF

    = YF YoutoutVQ = 0

    YininVQ = QVW = 2W AV = 224W 702.0 (2) YF = 224W 702.00 FY = 15.3 N F = FY = 15.3 N Ans

  • 5-14 Fluid Mechanics

    Momentum Equation

    5.2 (Momentum equation for moving control volume)

    5.5 5.5() V = 12 VV --------- (5.11)

    5.6 (V2) () 5.4() 1 = uV1 --------- (5.12) 2V = u2 --------- (5.13) 5.12 5.13 12 VV

    = 12 V = --------- (5.14) 5.14

  • 5-15 Fluid Mechanics

    Momentum Equation

    5.7

    5.6 5.6 XF = XF XOutOutOut VQ = cosuvQ XInInIn VQ = uvQ XF = uvQcosuvQ XF = cos1uvQ --------- (5.15) YF = YF YOutOutOut VQ = sinuvQ YInInIn VQ = 0 YF = 0sinuvQ YF = sinuvQ --------- (5.16) 5.15 5.16 5.15 5.16

  • 5-16 Fluid Mechanics

    Momentum Equation

    5.7 25 mm 10 m/s 45O M 1 kg (u) -

    XF = inXoutX QVQV ---- (1) XF = -FX = -T

    2025.0

    4UVAUVQ

    outX QV = OW 45cosuvQ = O22W 45cosuv025.04

    inX QV = uvQW = 22W uv025.04

    (1) -T = O2WO22W 45cosuv45cosuv025.04

    T = O22W 45cos1uv025.04 (1g) = O22W 45cos1u10025.04 u u = 1.91 m/s Ans

  • 5-17 Fluid Mechanics

    Momentum Equation

    (pump) (Hydraulic turbine) (Absolute path : V) (Relative path : ) 5.8 5.12

    5.8 Radial-flow centrifugal pump

    5.9 Axial-flow centrifugal pump

  • 5-18 Fluid Mechanics

    Momentum Equation

    5.10 Impulse Turbine (Pelton Turbine)

    5.11 Reaction Turbine Fransis (radial-flow)

    5.12 Reaction Turbine Kaplan (axial-flow)

  • 6-1 Fluid Mechanics

    Flow in Pressure Conduit

    6

    () (Flow in Pressure Conduit) (Steady Incompressible Flow in Pipe) ()

    6.1 - Closed conduit - Pipes - Duct - Pipes () - Fitting Devices () - Flowrate control devices () - Pump or Turbine ( )

  • 6-2 Fluid Mechanics

    Flow in Pressure Conduit

    6.1 (Behavior of flow in pipe)

    .. 1883 (Osborne Reynolds) 6.2

    6.2 3

    1) (Laminar Flow)

    2) (Turbulent Flow)

    3) (Transition Flow)

    3 (Reynolds Number ; Re) Re < 2000 2000 < Re < 4000 Re > 4000

  • 6-3 Fluid Mechanics

    Flow in Pressure Conduit

    Reynolds Number

    VDVDR e --------- (6.1)

    V = D = = = (Absolute Viscosity ; 3

    Co22atWater100.1 )

    = (Kinematic Viscosity ; 6Co22atWater

    100.1 ) 6.2 (Entrance Flow Development) (Entrance length : LE)

    6.2.1 (Entrance condition in laminar flow)

    6.3

    6.3 3

  • 6-4 Fluid Mechanics

    Flow in Pressure Conduit

    1) (Invicid core length : LI) (x) (y) Li

    2) (Development length : Ld) Li

    (x) (y) Li

    3) (Developed flow) (Ld)

    (y) (x)

    (Entrance length : LE) LE = Li + Ld --------- (6.2) LE 0.065 D Re --------- (6.3) Li E41 L --------- (6.4) Re = D =

    6.2.2 (Entrance condition in turbulent flow)

    6.4

  • 6-5 Fluid Mechanics

    Flow in Pressure Conduit

    (Li Ld ) (Ld) 6.4 Re > 105

    Li 10 D --------- (6.5) Ld 40 D --------- (6.6) LE 120 D --------- (6.7)

    6.3 (Friction head loss or Major loss : hf)

    6.5

    R 6.5

    g2VP

    Z2

    111 = f

    222

    2 hg2VP

    Z V1 = V2 hf = 2121 ZZPP

    --------- (6.6)

    F = InInInOutOutOut VQVQ V1 = V2 F = 0 RL2sinALAPAP O21 = 0

  • 6-6 Fluid Mechanics

    Flow in Pressure Conduit

    O A

    sinLPP 21 =

    A

    RL2O --------- (6.7)

    6.5 L sin Z2 Z1 6.7 2121 ZZPP

    =

    A

    RL2O --------- (6.8)

    6.8 6.6 hf =

    A

    RL2O

    hf = 2

    O

    RRL2

    hf =

    RL2O --------- (6.9)

    (O) (V) () () (D) () (Dimensionless analysis) D V (repeating variables)

    2O

    V

    =

    D,

    VD --------- (6.10)

    ( ) 6.10

    2O

    V

    =

    D,VD

    VD (Re)

    O = De2 ,RV --------- (6.11) 6.11 6.9 hf = RL2,RV De2 f = De ,R8 hf = RL28fV2

    g2

    VDLfh

    2

    f --------- (6.12)

  • 6-7 Fluid Mechanics

    Flow in Pressure Conduit

    6.12 (Henry Darcy) .. 1857 (Julius Weisbach) .. 1850 - (Darcy-Weisbach Equation) f (Darcy friction factor) (friction factor) f = 2

    O

    V8 --------- (6.13)

    f = De ,R --------- (6.14)

    6.3.1 (Friction factor for larminar flow)

    6.6 ()

    dydVr Vr r y y = R r

    r =

    drdV r --------- (6.15)

    6.9 r hf =

    r

    L2

    = rL2

    drdV r

    dVr = drrL2h f

    Vr = C2r

    L2h 2f --------- (6.16)

  • 6-8 Fluid Mechanics

    Flow in Pressure Conduit

    ( 6.6) r = 0 Vr = Vmax C = Vmax Vr = 2fmax rL4

    hV

    --------- (6.17) r = R (Vr = 0) 6.17 Vmax = 2f R

    L4h = 2f D

    L16h --------- (6.18)

    6.16 6.17 Paraboloid R Vmax Paraboloid V = 0.5 Vmax

    6.7 Paraboloid 6.18 2V = 2f D

    L16h

    hf = 2D

    LV32

    = 22

    VV

    gD

    LV32

    2

    hf = g2V

    DL

    VD64

    2 --------- (6.19)

    6.19 6.12

    eR64

    VD64f

    --------- (6.20) 6.20 Hangen-Poiseuille law Hangen Poiseuille

  • 6-9 Fluid Mechanics

    Flow in Pressure Conduit

    6.3.2 (Friction factor for turbulent flow in smooth pipe) r (u(t)) (t) Re 6.8 (Re > 4000) r 6.9

    6.8

    6.9 r

    *utu =

    *yu --------- (6.21)

    6.21 law of wall tu = y t u* = friction velocity

    O y = R r () = kinematic viscosity

    u* = O

    2*u1 =

    O

  • 6-10 Fluid Mechanics

    Flow in Pressure Conduit

    V2 22

    *uV =

    O

    2V

    --------- (6.22)

    6.13 6.22

    *uV =

    f8 --------- (6.23)

    6.10 r r 3

    - (Viscous sublayer)

    - (Outer layer)

    - (Overlab layer)

    *utu = 5.0*yuln44.2

    *utu = 5.0*urRln44.2

    --------- (6.24)

    6.11 r

    Q = dAtuR0

  • 6-11 Fluid Mechanics

    Flow in Pressure Conduit

    Q = VA ( V ) dA = drr2 ( r) V = rdr2tu

    R1 R

    02 --------- (6.25)

    6.24 6.25 V = rdr2]5.0*urRln44.2[*u

    R1 R

    02

    *u

    V = 34.1*Ruln44.2

    --------- (6.26)

    6.23 6.26

    f8 =

    34.1

    8fV2Dln44.2

    f

    1 = 02.1fRlog99.1 e --------- (6.27) .. 1935 Prandtl 6.27 Nikuradse ( Prandtl) 80.0fRlog00.2

    f1

    e --------- (6.27) (smooth pipe) ( f = [ Re ] )

    6.12

  • 6-12 Fluid Mechanics

    Flow in Pressure Conduit

    6.3.3 (Friction factor for turbulent flow in rough pipe) Nikuradse (roughness : ) 3

    5*u

    (f = [ Re ]) 7*u5

    De ,Rf

    7*u (Fully rough flow or Complete

    turbulence flow) Re

    Df .. 1939 Colebrook

    fRe51.2

    7.3D

    log2f

    1 --------- (6.28)

    .. 1983 Haaland Cloebrook Haaland 10-15%

    Re91.6

    7.3D

    log88.1f

    1 11.1 --------- (6.29)

    (Fully rough flow) Karman

    D

    7.3log2

    f1

    --------- (6.30)

    .. 1944 Lewis F. Moody Hangen-Poiseuille ( 6.20) Prandtl ( 6.27) Colebrook ( 6.28) Karman ( 6.30) Re D friction factor (f) 6.13

  • 6-13 Fluid Mechanics

    Flow in Pressure Conduit

    6.13 Moody Diagram

    6.1

  • 6-14 Fluid Mechanics

    Flow in Pressure Conduit

    6.4 (Minor loss : hm) Minor Loss (Minor loss coefficient : k) (Velocity Head) 6.31

    g2

    Vkh2

    m --------- (6.30) k 6.2 6.2 (Minor loss coefficient : K)

    6.14

  • 6-15 Fluid Mechanics

    Flow in Pressure Conduit

    6.15 -

    6.16

    6.17

  • 6-16 Fluid Mechanics

    Flow in Pressure Conduit

    6.1 1 2 z

    - 40 l/s

    - 35 m

    A B

    g2VPz

    2AA

    A = mf2HH

    H hhg2VPz

    00zA = mfH hh00z Z = mf hh --------- (1)

    B G fh = GBfh = g2

    VDLf

    2

    =

    g2V

    10.020101010f

    2

    fh = g2V500f

    2

    --------- (2)

    - (B : kB = 0.5) (Globe valve : kvalve = 10) 90O (E F : kE = kF = 1.5) (G : kG = 1) ( k 6.2) mh = g2

    Vkg2

    Vkg2

    Vkg2

    Vkg2

    Vk2

    G

    2

    F

    2

    E

    2

    valve

    2

    B

    = g2

    Vkkkkk2

    GFEvalveB

    = g2

    V0.15.15.1105.02

    mh = g2V5.14

    2

    --------- (3)

    (2) (3) (1) Z =

    g2V5.14

    g2V500f

    22

    Z = g2

    V5.14f5002

    --------- (4)

  • 6-17 Fluid Mechanics

    Flow in Pressure Conduit

    - ( Z ) Q = VA V =

    AQ = 24 10.0

    04.0

    V = 5.09 m/s

    Re = VD =

    6101 1.009.5 Re = 5.09X105 Wrought iron = 0.045 mm ( 6.1)

    D =

    10.010045.0 3 = 0.00045

    Moody diagram f = 0.0175

    V f (4) Z =

    g209.55.145000175.0

    2

    Z = 30.70 m Ans

    - Q 35 m ( Z = 35 m) Trial & Error f = 0.020 (4) 35 =

    g2V5.14500020.0

    2

    V = 5.294

    Re = VD =

    6101 1.0294.5 = 5.29 X 105

    D =

    10.010045.0 3 = 0.00045

    Moody diagram : f 0.0175 f

    f = 0.017 (4) 35 =

    g2V5.14500017.0

    2

    V = 5.464

    Re = VD =

    6101 1.0464.5 = 5.46 X 105

  • 6-18 Fluid Mechanics

    Flow in Pressure Conduit

    D =

    10.010045.0 3 = 0.00045

    Moody diagram : f 0.0172 f

    f = 0.0173 (4) 35 =

    g2V5.145000173.0

    2

    V = 5.446

    Re = VD =

    6101 1.0446.5 = 5.45 X 105

    D =

    10.010045.0 3 = 0.00045

    Moody diagram : f 0.0173 f V = 5.446 m/s Q = 24 10.0446.5 = 0.0427 m3/s = 42.7 l/s Ans

  • 6-19 Fluid Mechanics

    Flow in Pressure Conduit

    6.2 12 . wrought iron 300 0.7 5X10-7 m2/s 10.3 kPa 1 . (1) (2)

    g2VPz

    21

    O

    11 = f

    22

    O

    22 hg2

    VPz 21 zz VVV 21

    O

    1

    O

    2 PP = hf

    O

    P

    = g2

    VDL

    f2

    O

    P

    = g2

    VD000,12

    f2

    --------- (1)

    10.3 kPa/km P = (10.3 kPa/km) (12 km) = 123.6 kPa (1) 98107.0

    kPa6.123

    = g2V

    D000,12

    f2

    0.0294 = DV

    f2

    --------- (2)

    wrought iron = 0.045 mm Q = 300 l/min = 5 l/s D = 10 cm

    D

    = mm100

    mm045.0 0.00045

    V = AQ

    = 24 1.0

    005.0 = 0.637 m/s

    Re = O

    VD =

    7105 1.0637.0 5103.1 Moody diagram f 0.0195 (2) 0.0294 = 1.0

    637.00195.02

    . 0.0294 0.0791

  • 6-20 Fluid Mechanics

    Flow in Pressure Conduit

    D = 15 cm

    D

    = mm150

    mm045.0 0.0003

    V = AQ

    = 24 15.0

    005.0 = 0.283 m/s

    Re = O

    VD =

    7105 15.0283.0 4105.8 Moody diagram f 0.020 (2) 0.0294 = 15.0

    283.0020.02

    . 0.0294 0.0107 D = 12.25 cm

    D

    = mm5.122

    mm045.0 0.0004

    V = AQ

    = 24 1225.0

    005.0 = 0.424 m/s

    Re = O

    VD =

    7105 1225.0424.0 5100.1 Moody diagram f 0.020 (2) 0.0294 = 1225.0

    424.0020.02

    . 0.0294 0.02935 12.25 cm Ans

  • 6-21 Fluid Mechanics

    Flow in Pressure Conduit

    6.3 20 l/s 1.5 m + 25.0 m

    - 65 %

    - I ( BI 9 m)

    H A P

    2H

    W

    HH Hg2

    VPz = mf

    2A

    W

    AA hhg2

    VPz

    HP = mfAH hhzz --------- (1)

    Q = VA VGE = GEAQ

    = 24 10.002.0

    = 2.546 m/s

    VDB = DBAQ

    = 24 075.002.0

    = 4.527 m/s

    G B GE DB GE GEeR =

    6101 1.0546.2 GEeR = 2.546X10

    5

    = 0.15 mm ()

    D =

    10015.0

    = 0.0015

    Moody diagram fGE = 0.0225 GE DBeR =

    6101 075.0527.4 DBeR = 3.395X10

    5

    = 0.15 mm ()

    D =

    7515.0

    = 0.002

    Moody diagram fDB = 0.024

  • 6-22 Fluid Mechanics

    Flow in Pressure Conduit

    fh = BDfEGf hh =

    g2V

    DL

    fg2

    VDL

    f2DB

    DB

    DBDB

    2GE

    GE

    GEGE

    fh =

    g2527.4

    075.00.330240.0

    g2546.2

    1.05.70225.0

    22

    fh = 11.588 m (foot valve : kG = 2.0) (Gate valve : kvalve = 2.5) 90O (F C : kF = kC = 1.5) (B : kB = 1) ( k ) mh = g2

    Vkkg2

    Vkkk2DB

    BC

    2GE

    valveFG

    = g2

    527.40.15.1g2

    546.25.25.10.222

    mh = 4.594 m fh mh (1) HP = 594.4588.115.10.25 = 42.682 m PW = PQH = 682.4202.09810 = 8374.208 Watt PP =

    P

    WP =

    65.0

    208.8374

    = 12883.398 Watt PP = 12.883 k Watt Ans I A

    g2

    VPz

    2I

    W

    II = mf

    2A

    W

    AA hhg2

    VPz

    g2

    VP5.15

    2DB

    W

    I = mf hh000.25

    W

    IP = mf

    2DB hhg2

    V5.9 --------- (2)

  • 6-23 Fluid Mechanics

    Flow in Pressure Conduit

    I B fh = BIfh

    = g2

    VDL

    f2DB

    DB

    IBDB

    =

    g2527.4

    075.00.90240.0

    2

    = 3.008 m (kB = 1.0) mh = g2

    Vk2DB

    B

    = g2

    527.40.12

    mh = 1.045 m (2)

    W

    IP =

    045.1008.3g2

    527.45.92

    = 12.508 m PI = W508.12 = 122.703 kPa Ans

  • 6-24 Fluid Mechanics

    Flow in Pressure Conduit

    6.4 +210.0 .. +125.5 .. 0.5 cms 55 %

    A I

    g2VPz

    2A

    W

    AA = mfT

    2I

    W

    II hhHg2

    VPz

    HT = mfIA hhzz --------- (1) Q = VA VBE =

    BEAQ = 24 50.0

    50.0 = 2.546 m/s

    VFH = FHAQ = 24 75.0

    50.0 = 1.132 m/s

    B H BE FH BE BEeR =

    6101 5.0456.2 BEeR = 1.228X10

    6

    = 0.20 mm ()

    D =

    50020.0 = 0.0004

    Moody diagram fBE = 0.016 FH FHeR =

    6101 75.0132.1 FHeR = 8.49X10

    5

    = 0.15 mm ()

    D =

    75015.0 = 0.0002

    Moody diagram fFH = 0.015

  • 6-25 Fluid Mechanics

    Flow in Pressure Conduit

    fh = HFfEBf hh =

    g2V

    DL

    fg2

    VDL

    f2FH

    FH

    FHFH

    2BE

    BE

    BEBE

    =

    g2

    132.175.0

    35015.0g2

    546.25.0

    150016.022

    fh = 1.632 m ( : kB = 3.50) (Gate valve : kvalve = 0.39) 45O (C D : kC = kD = 0.20) 90O (kG = 0.30) (H : kH = 1.00) mh = g2

    Vkkg2

    Vkkkk2FH

    HG

    2BE

    valveDCB

    = g2

    132.10.13.0

    g2546.2

    39.02.02.050.322

    mh = 1.502 m fh mh (1) HT = 502.1632.15.1250.210 = 81.366 m PW = TQH = 366.815.09810 = 399.100 k Watt PP = WTP = 125.40055.0 = 219.050 k Watt Ans

  • 6-26 Fluid Mechanics

    Flow in Pressure Conduit

    (Pipe in parallel) 6.18

    6.18

    6.18 1 2 ABCDEFG ABCDHIEFG ABCJKLG ( A) ( G) 6.18 BCJKLmfBCDHIEFmfBCDEFmfBA hhhhhhzzz

  • 6-27 Fluid Mechanics

    Flow in Pressure Conduit

    6.5 Fully rough flow (complete turbulent)

    A G ABCDEFG ABCDHIJG

    g2

    VPz2A

    W

    AA = DFmfBDmf

    2G

    W

    GG hhhhg2

    VPz GA zz = DFmfBDmf hhhh --------- (1)

    g2VP

    z2A

    W

    AA = DJmfBDmf

    2G

    W

    GG hhhhg2

    VPz GA zz = DJmfBDmf hhhh --------- (2) (1) (2) DFmf hh = DJmf hh --------- (3) (1) (2) GA zz2 = DJmfDFmfBDmf hhhhhh2 --------- (4)

    Fully rough flow f D

    0235.0f002.0100

    20.0D BDBD

    0285.0ff004.0

    5020.0

    DD DJDFDJDF

    BDmf hh = g2Vk

    g2V

    DLf

    2BD

    DF

    2BD

    BD

    BDBD

    = g2V5.15.0

    10.0100235.0

    2BD

    = g2

    V35.42BD

  • 6-28 Fluid Mechanics

    Flow in Pressure Conduit

    DFmf hh = g2Vk

    g2V

    DLf

    2DF

    DF

    2DF

    DF

    DFDF

    = g2V0.139.05.19.0

    05.0150285.0

    2DF

    = g2

    V34.122DF

    DJmf hh = g2Vk

    g2V

    DLf

    2DJ

    DJ

    2DJ

    DJ

    DJDJ

    = g2V15.139.05.19.0

    05.0200285.0

    2DJ

    = g2

    V69.162DJ

    (3)

    g2V

    84.92DF =

    g2V

    69.162DJ

    VDF = (1.302) VDJ --------- (5) (4) 12302 =

    g2V69.16

    g2V34.12

    g2V35.42

    2DJ

    2DF

    2BD

    36 =

    g2

    V69.16g2

    V919.20g2

    V70.82DJ

    2DJ

    2BD

    36 =

    g2

    V609.37g2

    V70.82DJ

    2BD --------- (6)

    QBD = QDF + QDJ BD24 V1.0 = DJ24DF24 V05.0V05.0 (4) VBD = VDF + VDJ (5) (4) VBD = (1.302) VDJ + VDJ (1.738) VBD = VDJ --------- (7)

  • 6-29 Fluid Mechanics

    Flow in Pressure Conduit

    (7) (6) 36 =

    g2V738.1609.37

    g2V70.8

    2BD

    2BD

    36 = g2

    V738.1609.3770.82BD2

    VBD = 2.403 m/s VDJ = (1.738) 2.403 = 4.176 m/s VDF = (1.302) 4.176 = 5.438 m/s QBD = 403.210.0 24 = 0.01887 m3/s = 18.87 l/s QDF = 176.405.0 24 = 0.00820 m3/s = 8.20 l/s QDJ = 438.505.0 24 = 0.01067 m3/s = 10.67 l/s Ans

  • 6-30 Fluid Mechanics

    Flow in Pressure Conduit

  • 7-1 Fluid Mechanics

    Open Channel Flow

    7

    (Open Channel Flow) (Atmospheric pressure) (Gravity)

    7.1

    7.2

    7.1 (Type of channel)

    2 - (Natural channel)

    (Non-Prismatic channel) ( 7.1)

    - (Artificial channel) (Prismatic channel) ( 7.2)

  • 7-2 Fluid Mechanics

    Open Channel Flow

    7.2 (Open channel flow classification) 2 (Type of flow) (State of flow) 7.2.1 (Type of flow)

    2 1)

    a) (Steady flow) (y) (V) (Q) (A)

    0Q,v,A,ydtd

    b) (Unsteady flow)

    0Q,v,A,ydtd

    2)

    a) (Uniform Flow : UF) (y) (A)

    b) (Varied flow Non-Uniform flow) 2 - (Gradually Varied Flow : GVF)

    - (Rapidly Varied Flow : RVF)

    7.3

  • 7-3 Fluid Mechanics

    Open Channel Flow

    - (Steady Uniform flow)

    Steady uniform flow

    7.4 Steady uniform flow

    - (Steady Gradually Varied flow) Steady gradually varied flow

    7.5 Steady gradually varied flow

    - (Steady Rapidly Varied flow) Steady rapidly varied flow

    7.6 Steady rapidly varied flow

  • 7-4 Fluid Mechanics

    Open Channel Flow

    - (Unsteady Uniform flow) Unsteady uniform flow

    7.7 Unsteady uniform flow

    - (Unsteady Gradually Varied flow) Unsteady gradually varied flow

    7.8 Unsteady gradually varied flow

    - (Unsteady Rapidly Varied flow) Unsteady rapidly varied flow

    7.9 Unsteady rapidly varied flow

  • 7-5 Fluid Mechanics

    Open Channel Flow

    7.2.2 (State of flow)

    7.2.2.1 (Reynold number : Re) Reynold number (Vicous

    force) (Inertia force) ( 8) Re

    VRRe --------- (7.1)

    R = (Hydraulic radius) V = =

    3 - (Laminar flow)

    500 - (Turbulent flow)

    2,000 - (Transitional flow)

    500 2,000

    7.2.2.2 (Froude number : Fr) Froude number

    (Gravity force) (Inertia force) ( 8)

    gDVFr --------- (7.2)

    D = (hydraulic depth) g =

    3 - (Critical flow) 1

    - (Subcritical flow) 1

    - (Supercritical flow) 1

  • 7-6 Fluid Mechanics

    Open Channel Flow

    7.10 7.3 (Basic equation of open channel flow)

    (Ideal fluid , Incompressible fluid) (Steady flow)

    - (Depth :y) - (Top width :B) - (Hydraulic depth :D)

    BAD ( yD )

    - (Wetted perimeter :P)

    - (Hydraulic radius :R)

    PAR

    7.11

  • 7-7 Fluid Mechanics

    Open Channel Flow

    7.3.1 (Continuity Equation)

    OutIn

    CV MMt

    M 7.12 (incompressible fluid) (steady state)

    tMCV

    = 0

    InM = 1Q = 11VA OutM = 2Q = 22VA 0 = 2211 VAVA 11VA = 22VA --------- (7.3) 11 VyB = 22 VyB 11Vy = 22Vy --------- (7.4)

    7.12

  • 7-8 Fluid Mechanics

    Open Channel Flow

    7.3.2 (Energy Equation) 4 (Energy head) streamline (Elevation head) (Pressure head) (Velocity head) (Static head) 7.13

    7.13 static head 1 2

    yzhzhzPz 111111

    yzhzhzPz 222222

    static head

    L22

    22

    21

    11 hg2Vyz

    g2Vyz --------- (7.5)

    hL = yi = i zi = i Vi = i sf = sw = so =

  • 7-9 Fluid Mechanics

    Open Channel Flow

    7.14

    z 7.5 (y) 7.3.3 (Momentum Equation) 5 7.14

    7.15 Control volume

    7.14 5.7 sysF

    = InInInOutOutOut VQVQ fFFF X21 = 12 QVQV F FX + f F = 2211 QVFQVF = 222111 QVAyQVAy

    F =

    2

    2

    221

    2

    11 gAQAy

    gAQAy --------- (7.6)

    7.6

  • 7-10 Fluid Mechanics

    Open Channel Flow

    7.4 (Steady Uniform Flow) 7.16 (Sw) (So) (Sf) 7.17

    7.16 Uniform flow

    7.17 Uniform flow

    7.16 F1 F2 f = W sin (L) ostansin PL = tanAL =

    PLsAL o

    = oRs --------- (7.7) (Wall shear stress)

  • 7-11 Fluid Mechanics

    Open Channel Flow

    .. 1773 Antoni Chezy (V) V2 = 2KV (K ) --------- (7.8) 7.8 7.7 2KV = oRs V =

    KRso

    oRsCV --------- (7.9) 7.9 Chezy Chezy (Chezys Formula)

    KC

    Chezy (Chezy coefficient) .. 1890 Robert Manning Chezy Chezy Manning (Mannings roughness coefficient) 7.10 7.11 SI C = 61R

    n1 --------- (7.10)

    BG C = 61Rn49.1 --------- (7.11)

    n Manning (Mannings roughness coefficient) Chezy ( 7.1) 7.9 Chezy Manning SI 2132 SR

    n1V --------- (7.12)

    2132 SRAn1Q --------- (7.13)

    BG 2132 SRn49.1V --------- (7.14)

    2132 SRAn49.1Q --------- (7.15)

    7.12 7.14 Manning Manning (Mannings Formula)

  • 7-12 Fluid Mechanics

    Open Channel Flow

    7.1 Manning (Mannings roughness coefficient)

  • 7-13 Fluid Mechanics

    Open Channel Flow

    7.1 2 m. 0.015 0.001

    2m162224ymybA m94.1221224m1y2bP 22 m24.1

    94.1216

    PAR

    Manning V = 2132 SRn1

    = 2132 001.094.12n1 --------- (1)

    ... Manning 0.015 (1) V = 2

    132

    001.094.12015.01 --------- (2)

    Q = VA Q = 16001.094.12015.01

    21

    32

    = 38.88 cms Ans 7.2 7.1 29 cms (yn) 7.1 nn ymybA 2n m1y2bP 2

    n

    nn

    m1y2b

    ymybPAR

    Manning

    Q = 21032

    SARn1 = 210

    32

    2n

    nnnn S

    m1y2b

    ymybymybn1

    29 = 2132

    2n

    nnnn 001.0

    21y24

    yy24yy24015.01

    yn ( trial & error) yn = 1.73 m Ans

  • 7-14 Fluid Mechanics

    Open Channel Flow

    7.3 4 m. (Main channel) (Floodplain) 0.015 0.035 0.001

    3

    Main Channel : 1 21 m5.435.1145.22

    144A

    m18.15215.224P 21

    m87.218.155.43R1

    Q = 211032111

    SRAn1 = 2132 001.087.25.43

    015.01

    = 185.20 cms Floodplain : 2 3 232 m38.185.12

    5.1410AA

    m74.14315.110PP 232

    m25.174.1438.18

    RR 32 Q2 = Q3 = 21 203222

    2SRA

    n1 = 2132 001.025.138.18

    035.01

    = 19.27 cms Q = Q1+Q2+Q3 = 185.20+19.27+19.27 = 233.74 cms Ans

  • 7-15 Fluid Mechanics

    Open Channel Flow

    7.5 (S