19
اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺔ اﻟﺠﺎﻣﻌﺔ اﻟﻤﻌﺪات و اﻟﻤﻜﺎﺋﻦ هﻨﺪﺳﺔ ﻗﺴﻢFluid Mechanics II اﻟﻤﻮاﺋﻊ ﻣﻴﻜﺎﻧﻴﻚ) 2 ( ) ﻣﻠﺨﺺ( 3 rd year Mechanical Engineering اﻟﺜﺎﻟﺜﺔ اﻟﻤﺮﺣﻠﺔ- اﻻﺧﺘﺼﺎﺻﺎت آﺎﻓﺔ2008 / 2009 ﻣﺪرﺳﻮ اﻟﻤﺎدة د. د ﻓﻴﺎض ﻣﺤﻤﺪ إﺧﻼص. ﻣﺤﺴﻦ إدرﻳﺲ ﻣﺤﻤﺪ ﻣﺴﺎﻋﺪ أﺳﺘﺎذ ﻣﺴﺎﻋﺪ أﺳﺘﺎذ

Fluid Mechanics II 2) ﻊﺋاﻮﻤﻟا ﻚﻴﻧﺎﻜﻴﻣ ﺺﺨﻠﻣ...Fluid Mechanics II ( 2) ﻊﺋاﻮﻤﻟا ﻚﻴﻧﺎﻜﻴﻣ (ﺺﺨﻠﻣ) 3rd year Mechanical

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • الجامعة التكنولوجية

    قسم هندسة المكائن و المعدات

    Fluid Mechanics II )2(ميكانيك الموائع

    )ملخص(

    3rd year Mechanical Engineering آافة االختصاصات-المرحلة الثالثة

    2008/2009 المادةمدرسو

    محمد إدريس محسن.إخالص محمد فياض د.د أستاذ مساعدأستاذ مساعد

  • Syllabus فرع الميكانيك العام(مفردات المادة( Subject : fluid mechanics موائع :موضوعII Weekly Hours : 2 Theoretical:2 UNITS: 5 5 : الوحدات 2: نظري : الساعات األسبوعية Tutorial : ة مناقش : Experimental : 1 1 :عملي

    week Contents األسبوع المحتويات

    1. The ideal fluid – introduction 1. مقدمة–المائع المثالي 2. Stream function, potential function, circulation 2. دالة االنسياب ، دالة الجهد ، الدوران 3. Basic flow patterns 3. أنماط الجريان األساسية 4. Applications 4. تطبيقات 5. Combination of basic flows 5. جمع أنماط الجريان 6. Flow around circular cylinder 6. الجريان حول اسطوانة دائرية 7. Applications 7. تطبيقات

    8. Boundary layers (introduction) , displacement and momentum thicknesses سمك اإلزاحة ،سمك -)مقدمة(الطبقات المتاخمة

    8. الزخم

    9. Momentum equation for boundary layer 9. معادلة الزخم للطبقة المتاخمة 10. Laminar boundary layer 10. الطبقة المتاخمة الطباقية 11. Turbulent boundary layer 11. لمتاخمة االضطرابية الطبقة ا 12. Applications 12. تطبيقات 13. Transition region 13. )االنتقالية(منطقة التحول

    14. Effect of pressure gradient (separation and pressure drag) االنفصال و الكبح الناشى عن ( تأثير انحدار الضغط

    .14 الضغط

    15. Applications 15 تطبيقات. 16. Navier – Stokes equations (derivation) 16 )مقدمة و االشتقاقات( ستوك -معادالت نافير.

    17. Laminar flow between parallel plates and Couette flow الجريان الطباقى بين صفيحتين متوازيتين و جريان

    .17 آوت

    18. Hydrodynamic lubrication 18 ميكيالتزييت الهيدرودينا. 19. Laminar flow between co-axial rotating cylinders 19 الجريان الطباقي بين اسطوانتين دوارتين متمرآزتين. 20. Applications 20. تطبيقات 21. Introduction to hydraulic machines 21 )مقدمة ( المكائن الهيدروليكية. 22. Impulse turbine 22 يالتوربين الدفع. 23. Reaction turbine 23 توربين رد الفعل. 24. Applications 24 تطبيقات. 25. Pumps/ classification 25 تصنيفها/ المضخات. 26. Centrifugal pumps 26 المضخات الطاردة المرآزية. 27. Performance of Centrifugal pumps 27 المضخات الطاردة المرآزيةأداء. 28. Similarity laws for pumps/ Specific speed 28 السرعة النوعية/ قوانين التشابه للمضخات. 29. Cavitation in hydraulic machines 29 التكهف في المكائن الهيدروليكية. 30. Applications 30 تطبيقات.

  • Syllabus فرعي التكييف و السيارات(مفردات المادة ( Subject : fluid mechanics موائع :موضوعII Weekly Hours : 2 Theoretical:2 UNITS: 5 5 : الوحدات 2: نظري : الساعات األسبوعية Tutorial : مناقشة : Experimental : 1 1 :عملي

    week Contents األسبوع المحتويات

    1. The ideal fluid – introduction 1. مقدمة–المائع المثالي 2. Stream function, potential function, circulation 2. دالة االنسياب ، دالة الجهد ، الدوران 3. Basic flow patterns 3. أنماط الجريان األساسية 4. Applications 4. تطبيقات

    5. Boundary layers (introduction) , displacement and momentum thicknesses سمك اإلزاحة ،سمك -)مقدمة(الطبقات المتاخمة

    5. الزخم

    6. Effect of displacement thickness on internal flow 6. الجريان الداخليعلى سمك اإلزاحةتأثير 7. Momentum equation for boundary layer 7. لة الزخم للطبقة المتاخمةمعاد 8. Laminar boundary layer 8. الطبقة المتاخمة الطباقية 9. Turbulent boundary layer 9. الطبقة المتاخمة االضطرابية

    10. Applications 10. تطبيقات 11. Transition region 11. )االنتقالية(منطقة التحول

    12. Effect of pressure gradient (separation and pressure drag) االنفصال و الكبح الناشى عن ( تأثير انحدار الضغط

    12. الضغط

    13. Separation in internal flow 13. ظاهرة االنفصال في الجريان الداخلي 14. Applications 14 تطبيقات. 15. Applications 15 تطبيقات. 16. Navier – Stokes equations (derivation) 16 )مقدمة و االشتقاقات( ستوك -معادالت نافير.

    17. Laminar flow between parallel plates and Couette flow الجريان الطباقى بين صفيحتين متوازيتين و جريان

    .17 آوت

    18. Hydrodynamic lubrication 18 التزييت الهيدروديناميكي. 19. Laminar flow between co-axial rotating cylinders 19 الجريان الطباقي بين اسطوانتين دوارتين متمرآزتين. 20. Applications 20. تطبيقات 21. Introduction to hydraulic machines 21 )مقدمة ( المكائن الهيدروليكية. 22. Pumps/ classification 22 تصنيفها/ المضخات. 23. Centrifugal pumps 23 المضخات الطاردة المرآزية. 24. Performance of Centrifugal pumps 24 المضخات الطاردة المرآزيةأداء. 25. Similarity laws for pumps/ Specific speed 25 السرعة النوعية/ قوانين التشابه للمضخات. 26. Cavitation in hydraulic machines 26 وليكية التكهف في المكائن الهيدر. 27. Applications 27 تطبيقات. 28. Fans 28 المراوح. 29. Performance of fans 29 أداء المراوح. 30. Applications 30 تطبيقات.

  • Syllabus فرع الطائرات(مفردات المادة(

    Subject: Aerodynamics ميك هواءدينا: الموضوع Weekly Hours : Theoretical :2 Units : 5 2: نظري : الساعات األسبوعية 5: الوحدات Tutorial : مناقشة : Experimental : 1 1: عملي Week tsConten األسبوع المحتويات

    1 The ideal fluid – introduction 1 مقدمة–المائع المثالي 2 Stream function, potential function,

    circulation 2 دالة االنسياب ، دالة الجهد ، الدوران

    3 Basic flow patterns 3 أنماط الجريان األساسية 4 Combination of basic flows 4 اط الجريانجمع أنم 5 Flow around circular cylinder 5 الجريان حول اسطوانة دائرية 6 Applications 6 تطبيقات 7 Boundary layers (introduction) ,

    displacement and momentum thicknesses

    سمك اإلزاحة ،سمك -)مقدمة(الطبقات المتاخمة الزخم

    7

    8 Momentum equation for boundary layer

    8 معادلة الزخم للطبقة المتاخمة

    9 Laminar boundary layer 9 الطبقة المتاخمة الطباقية 10 Turbulent boundary layer and

    Transition region الطبقة المتاخمة االضطرابية و منطقة التحول

    )االنتقالية(10

    11 Effect of pressure gradient(separation and pressure drag)

    االنفصال و الكبح الناشى ( تأثير انحدار الضغط عن الضغط

    11

    12 Applications 12 تطبيقات 13 Navier – Stokes equations

    (derivation) 13 )مقدمة و االشتقاقات ( ستوك -معادالت نافير

    14 Laminar flow between parallel plates and Couette flow

    بين صفيحتين متوازيتين و الجريان الطباقى جريان آوت

    14

    15 Applications 15 تطبيقات 16 Pumps / Classification 16 تصنيفها/ المضخات 17 Centrifugal pumps and Performance 17 المضخات الطاردة المرآزية و أدائها 18 Incompressible flow over airfoils (thin

    airfoil theory – an introduction) مدخل إلى (الجريان الالانضغاطى حول المقاطع

    )نظرية المقاطع الرقيقة18

    19 Finite wings –downwash , induced drag, rotary wings

    االجتراف السفلى ، الكبح –األجنحة المحددة المحتث ، األجنحة الدوارة

    19

    20 Incompressible flow over wings (finite wing theory – an introduction)

    مدخل إلى (الجريان الالانضغاطى على األجنحة )نظرية الجناح المحدد

    20

    21 Introduction to the numerical methods for airfoils and wings

    مدخل إلى الطرق العددية لحلول الجريان حول المقاطع و األجنحة

    21

    22 Gas dynamics – introduction , speed of sound

    22 مقدمة ، سرعة الصوت– تديناميك الغازا

    23 Isentropic flow 23 الجريان االيزنتروبي 24 The area-velocity relation (flow in

    nozzles) 24 )الجريان في األبواق(عالقة السرعة مع المساحة

    25 shock waves 25 الموجات الصدمية 26 Normal shock waves 26 موجات الصدمية العمودية ال 27 Oblique shock waves 27 الموجات الصدمية المائلة 28 Oblique shock analysis 28 المائلةةالموجتحليل 29 Applications 29 تطبيقات 30 Applications 30 تطبيقات

  • References المصادر 1- Fluid Mechanics By Streeter & Wylie 2- Fluid Mechanics with Engineering Applications By Daugherty & Franzini 3- Introduction to Fluid Mechanics By Fox & McDonald 4- Engineering Fluid Mechanics By Roberson & Crowe

    :ملحوظةللمرحلة الثالثة II مادة ميكانيك الموائع لهذه المحاضرات تتضمن ملخص

    دول ي ج ررة ف ة المق ساعات النظري ضور ال ن ح ب ع ي الطال ي ال تغن وه .الدروس األسبوعي

  • Chapter One Ideal Fluid Flow

    Contents 1- Introduction. 2- Requirements for ideal fluid flow. 3- Relationships between stream function (ψ), potential function (φ) and velocity component. 4- Basic flow patterns. 5- Combination of basic flows. )لفرعي الميكانيك العام و الطائرات فقط( 6- Examples. 7- Problems; sheet No. 1 1- Introduction Velocity vector vvv

    kwjviuqv ++= In Cartesian coordinates kwuruq rvvvv ++= θθ In Polar coordinates

    Divergence of = qv qv⋅∇

    zw

    yv

    xuq

    ∂∂

    +∂∂

    +∂∂

    =⋅∇ v

    Continuity equation

    0=⋅∇ qv Or

    0=∂∂

    +∂∂

    +∂∂

    zw

    yv

    xu

  • Curl of qq vv ×∇= Vorticity equation

    kjiq

    kyu

    xvj

    xw

    zui

    zv

    ywq

    zyx

    vvvv

    vvvv

    ωωω ++=×∇

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    −∂∂

    +⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    −∂∂

    +⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    −∂∂

    =×∇

    If the flow is called rotational 0≠×∇ qv

    If the flow is called irrotational 0=×∇ qv

    2- Requirements for ideal- fluid flow 1- non viscous. 2- incompressible. 3- 0=⋅∇ qv

    4- 0=×∇ qv

    3- Relationships between stream function (ψ), potential function (φ) and velocity component

    θφψ

    φθψ

    φψ

    φψ

    θ ∂∂

    =∂∂

    −=

    ∂∂

    =∂∂

    =

    ∂∂

    =∂∂

    −=

    ∂∂

    =∂∂

    =

    rru

    rru

    yxv

    xyu

    r

    1

    1:scoordinate lcylindricaIn

  • 4- Basic flow patterns: 1- Uniform flow a- Uniform flow in the x- direction

    b- Uniform flow in the y- direction

    c- General uniform flow

  • 2- Source flow

    3- Sink flow

    4- Doublet flow

  • 5- Free vortex flow

    Stream function and Potential function for Basic flow patterns: Type of flow ψ φ

    Uniform flow in the x- direction Uniform flow in the y- direction General uniform flow

    uy -vx

    uy-vx

    ux vy

    ux+vy Source kθ k ln r Sink -kθ -k ln r Doublet

    πμ sin

    2−

    πμ cos

    2

    Free vortex rln2πΓ

    − θπ2Γ

    Note: k = strength of the source = )2

    (or 2 ππ

    mQ=

    Definition of circulation (Г):

    ∫=Γc

    sdsq

    Circulation = vorticity×area Г = ωz × A

  • 5- Combination of basic flows: 1- Uniform flow and a source.

    The stream function:

    θθψθψ

    krUkUy

    +=+=sin.

    The velocity components:

    θψ

    θθψ

    θ sin.

    and

    cos.1

    Ur

    u

    rkU

    rur

    −=∂∂

    −=

    +=∂∂

    =

    The dividing streamline (2Q

    =ψ ) could be replaced by a solid surface of the

    same shape, forming a semi-infinite body (half-body).

  • 2- Uniform flow and a source-sink pair.

    The stream function:

    bxyk

    bxykUy

    kkUy

    −−

    ++=

    −+=

    −− 11

    21

    tantanψ

    θθψ

    The velocity component:

    ( ) ( )⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛

    −+−

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛

    +++

    +=∂∂

    =22

    11bx

    ybx

    k

    bxybx

    kUy

    u ψ

    The dividing streamline ( 0=ψ ) could be replaced by a solid surface of the same shape, forming an oval called a Rankine oval. 3- Uniform flow and a doublet: (Non lifting flow over a cylinder)

  • The stream function:

    UR

    rRrU

    rUy

    πμ

    θψ

    θπμψ

    2

    where

    1sin.

    sin2

    2

    2

    2

    =

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=

    −=

    The velocity components:

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+−=

    ∂∂

    −=

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=

    ∂∂

    =

    2

    2

    2

    2

    1sin.

    and

    1cos.1

    rRU

    ru

    rRU

    rur

    θψ

    θθψ

    θ

    The dividing streamline ( 0=ψ ) could be replaced by a solid surface of the

    same shape, forming a circular cylinder with radiusU

    Rπμ

    2= .

    The pressure distribution on the cylinder surface is obtained from:

    ( )θρ 22 sin4121

    −+= UPP os

    The pressure distribution is symmetrical around the cylinder and the resultant force developed on the cylinder = zero.

  • 4- Doublet and free vortex in a uniform flow: (Lifting flow over a cylinder)

    The stream function:

    rrRrU ln

    21sin. 2

    2

    πθψ Γ+⎟⎟

    ⎞⎜⎜⎝

    ⎛−=

    The velocity components:

    rrRU

    ru

    rRU

    rur

    πθψ

    θθψ

    θ 21sin.

    and

    1cos.1

    2

    2

    2

    2

    Γ−⎟⎟

    ⎞⎜⎜⎝

    ⎛+−=

    ∂∂

    −=

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=

    ∂∂

    =

    The location of the stagnation points is given by:

    ⎟⎠⎞

    ⎜⎝⎛ Γ−==

    RURr

    πθ

    4sin ;

    There are four possible cases:

    a- (Г = 0)

  • b- (Г < 4πRU)

    c- (Г = 4πRU)

    d- (Г > 4πRU)

    The pressure distribution on the cylinder surface is obtained from:

    22

    2sin.2

    21

    21

    ⎟⎠⎞

    ⎜⎝⎛ Γ−−−+=

    RUUPP os π

    θρρ

  • The lift force on the cylinder is Lift = ρUГL where L = length of the cylinder

    6- Examples: 1- Does the stream function (ψ = xy) represent a physically possible flow? If so, determine the velocity at a point (2,3). Solution:

  • 2- A velocity potential in two-dimensional flow is given by (φ = y+x2-y2); find the stream function for this flow. Solution:

    3- A stream function in two-dimensional flow is (ψ = 9+6x-4y+7xy); find the velocity potential for this flow. Solution:

  • University of Technology Sheet No. 1 Mechanical Engineering Dep. Ideal Fluid Flow Fluid Mechanics II (3 rd year) 2008/2009 1- Show that the two-dimensional flow described by the equation 22 22 yxx −+=ψ is irrotational. Find the velocity potential for this flow. [ cxyy +−−= 4φ ] 2- A certain flow field is described by the velocity potential θφ cosln BrrA += where A and B are positive constants. Determine the corresponding stream function and locate

    any stagnation points in this flow field. [ ⎟⎠⎞

    ⎜⎝⎛

    ⎟⎠⎞

    ⎜⎝⎛++= πθθψ , 0, ; sin

    BA

    BAcBrA ]

    3- The velocity components in a two-dimensional flow field for an incompressible fluid

    are expressed as: 3

    2 ; 23

    322

    3 xyxyvyxxyu −−=−+= .

    a) show that these functions represents a possible case of irrotational flow. b) obtain expressions for the stream function and velocity potential. 4- The formula represent the velocity potential of a two-dimensional ideal flow. Evaluate the constants a and b, and calculate the pressure difference between the points (0,0) and (3,4)m, if the fluid has density of 1300 kg/m3.

    32304.0 byaxyx ++=φ

    [a = -0.12, b = 0 ; 5.85 kN/m2] 5- The two-dimensional flow of a non-viscous, incompressible fluid in the vicinity of the 90o corner of figure is described by the stream function θψ 2sin2 2r= . a) determine the corresponding velocity potential. b) if the pressure at point(1,0) on the wall is 30kPa, what is the pressure at point (0,0.5) , assume ρ = 1000 kg/m3 , and x-y plane is horizontal. [ ; 36 kPa] cr += θφ 2cos2 2

    6- The stream function for an incompressible flow filed is given by the equation

    323 tyytx −=ψ . Find the potential function and determine the flow rates across the faces of the triangular prism OAB shown in figure having a thickness of 5 units in the z-direction at time t = 1. [ ; 40; 0; 40] ctxytx +−= 23 3φ

    Problem No. 5 Problem No.6

  • 7- Prove that for a two-dimensional flow, the vorticity at a point is twice the rotation (angular velocity). 8- The pressure far from an irrotational vortex in the atmosphere is zero gage. If the velocity at r = 20 m is 20 m/s, find the velocity and pressure at r = 2 m. (ρ = 1.2 kg/m3)

    [200 m/s ; -23.76 kPa] 9- A non viscous incompressible fluid flow between wedge shaped-wall into small opening as shown in figure. The velocity potential which described the flow is rln2−=φ . Determine the volume rate of flow (per unit length) in the opening. [-π/3 m3/s per m] 10- A source with strength 0.2/2π m3/s.m and a vortex with strength 1/2π m2/s are located at the origin. Determine the equations for velocity potential and stream function. What are the velocity components at x = 1 m , y = 0.5 m? [0.0285 m/s ; 0.143 m/s] 11- In an infinite two-dimensional flow filed, a sink of strength 3/2π m3/s.m is located at the origin, and another of strength 4/2π m3/s.m at (2 , 0). What is the magnitude and direction of the velocity at point (0 , 2). [0.429 m/s ; -68.22o] 12- Flow over a plane half-body is studied by utilizing a free-stream at 5 m/s superimposed on a source at the origin. The body has a maximum width 2 m. Calculate: a) the coordinates of the stagnation point. b) the width of the body at the origin. c) the velocity at a point (0.5 , π/2). [(0.32 , π) ; 1 m ; 5.93 m/s] 13- The shape of a hill arising from a plain can be approximated with the top section of a half-body as is shown in figure. The height of the hill approaches 61 m. When a 18 m/s wind blows toward the hill, what is the magnitude of the air velocity at point (2) above the origin. What is the elevation of point (2) and what is the difference in pressure between point (1) and point (2). (ρair = 1.23 kg/m3) [21.34 m/s ; 30.5 m ; 448.83 Pa] 14- A circular cylinder 0.5 m diameter rotates at 600 rpm in a uniform stream of 15 m/s. Locate the stagnation points. Calculate the minimum rotational speed for detached stagnation point in the same uniform flow. [-31.6o and -148.4o ; 1146 rpm] 15- A circular cylinder 20 m long is placed in a uniform stream of 100 m/s (ρ= 0.7 kg/m3). The lift force generated by the cylinder is 2100 kN. The stagnation points are at (-60o and -120o). Derive a relationship between the locations of the stagnation points and the circulation around the cylinder. Calculate the diameter of the cylinder. [2.75 m]

    Problem No. 9 Problem No. 13

    موضوع : موائع II موضوع : موائع II