of 22 /22
Introduction to NMR Quantum Information Processing Eisuke Abe (Keio University) December 18, 2002 Towards scalable quantum computationat RIEC, Tohoku University 参考文献 量子計算全般 Quantum Computation and Quantum Information, M. A. Nielsen and I. L. Chuang, Cambridge University Press (2000) NMR量子計算 (http://arxiv.org/) quant-ph/0205193, Lieven M. K. Vandersypen Ph.D Thesis (224 pages), Stanford University quant-ph/0207172, R. Laflamme et. al. 44 pages

Introduction to NMR Quantum Information Processing Introduction to NMR Quantum Information Processing Eisuke Abe (Keio University) December 18, 2002 “Towards scalable quantum computation”

Embed Size (px)

Text of Introduction to NMR Quantum Information Processing Introduction to NMR Quantum Information...

  • 1

    Introduction to NMR Quantum Information Processing

    Eisuke Abe (Keio University)December 18, 2002

    Towards scalable quantum computationat RIEC, Tohoku University

    Quantum Computation and Quantum Information, M. A. Nielsen and I. L. Chuang, Cambridge University Press (2000)

    NMR (http://arxiv.org/)quant-ph/0205193, Lieven M. K. Vandersypen

    Ph.D Thesis (224 pages), Stanford University

    quant-ph/0207172, R. Laflamme et. al.44 pages

  • 2

    NMR

    1-qubitNOT

    Deutsch-Jozsa

    (1)

    01?

    10? 01

    10

    NOT

    12

    102

    11

    12

    102

    10

    +

    H

    =

    01

    0

    1-qubit 21-qubit

    =

    10

    1 ),(10 C+=

    =

    =

    0110

    x

    1-qubit

    =11

    112

    1H

    1=$UU

    2x2OK (NOT)

    Sorry, not dagger but dollar! Uti = )exp( H

  • 3

    (2)

    =

    =

    0001

    01

    0

    01

    10000 BA

    =

    0010

    01

    =

    0100

    10

    =

    1000

    11

    n-qubit 2n2-qubit

    =

    0100100000100001

    ABC

    2-qubit

    2nx2nOK ()

    ab

    baXOR

    1011111001010000

    AB

    A

    B

    A

    BA

    Physical Realization

    Cavity QED

    Magnetic resonance

    Ion trap

    Superconductor

  • 4

    DiVincenzos Criteria1. Well defined extensible qubit array2. Preparable in the 000 state3. Long decoherence time4. Universal set of gate operations5. Single quantum measurements

    NMR

    1. 1/2qubit2. 3. 4. 1-qubitJ-2-qubit5.

    qubit

    C

    C C

    C

    Br

    BrS

    H

    H

    2,3-dibromo-thiophene

    2-qubit !!

    0

    1

    1/2,0,1

    (~ 10T)

  • 5

    Bulk ensemble

    >

    610 deviation

    +

    =+=

    1001

    41001

    21)

    2(

    21 zeq 1

    1-qubit

    0

    1

    ]]1001[[

    1000000000000001

    21

    21

    =+=+= zzBz

    Az II 11

    ]]31111113[[ =++=Cz

    Bz

    Az III

    2-qubit

    3-qubit

    B0

    z

    xy

    (free induction decay)

    pulse2/

  • 8

    Free Induction Decay

    FFT BA

    ABJ2 ABJ2

    B

    ABB J

    ABB J +

    ABA J +

    ABA J

    00

    11

    0110

    ]]1001[[ =00 01 10 11

    ]]31111113[[ =

    ]]31111131[[$ =UU

    000 001 010 011 100 101 110 111ABC

    U

    )31(:)11(:)13(:)11( ++++

    00 01 10 11A,B,C4 (::)

    2:1:2:1=)31(:)11(:)13(:)11( ++

    1:0:1:0=)31(:)11(:)11(:)31( ++

    1:0:0:1=

  • 9

    (Temporal averaging) (Logical labeling) (Spatial averaging)

    2-qubit

    [ ]

    =

    ==

    0000000000000001

    0001

    0001

    0000pure

    effpureeq orU

    00002

    1 += 1neff

    )(Tr)(Tr FF pureeff =Q

    ??

    ==

    dc

    ba

    eq1

    ==

    cb

    da

    UU eq$

    2

    ==

    bd

    ca

    UU eq2$2

    3

    0000)14()1(

    11

    13

    321

    +

    =

    =

    = ++

    aa

    aa

    aa

    eff

    1

    1=+++ dcbaQ

    ==

    0100001010000001

    BAABCCU U

  • 10

    ]]0101[[3 =

    2

    A

    ]]1001[[1 =

    1000 1101

    ]]0011[[2 =00 01 10 11

    B2 3

    4

    00

    12335251544122553

    5234331425133241131512

    2533114344552213244551

    NOTNOTNOTNOTNOTNOTNOT

    CCCCCCCCCCCCCCCCCCCCCCCCCCC

    1 (::)

    5-qubit

  • 11

    ]]31111113[[$ =UU

    110010

    101001 ABC

    A=0

    +

    00

    01

    4

    11

    11

    ]]31111113[[ =000 001 010 011 100 101 110 111

    =

    1000000000000100000000100001000000001000010000000010000000000001

    U

    000

    001 010

    011

    100

    101 110

    111

    00

    11

    01 10

  • 12

    BC1001ANOT

    010110001101110010101001

    UABC

    U ?

    111011111011111011

    BAC CAC

    B1ANOTC1ANOT

    (BC11A2NOT)

    B or CANOT

    BACACABA CCCCU ==

    A

    B

    C

    Spin Hamiltonian

    +

    +

    +

    1000010000100001

    2000

    000000000

    21 AB

    BA

    BA

    BA

    BA

    J

    Bz

    AzAB

    BzB

    AzA IIJII 2 +=H

    =

    2

    ZeemanLarmor J-

    0B

    100.0040.0519F

    1.0710.7113C

    99.9942.581H

    (%)

    (MHz/T)

    z

    ??

    x

    B0

    x

    )sincos( ttBrf = yxBLrr

    xy

    x

    z

    B0

    Brf

    zxBeff )( 0

    += BBrf

    =B0

    B0

    B0

  • 14

    1-qubit

    =B0

    pulse2/

    xy-x-y

    z

    pulse

    Brfx

    L++++=

    = !3!2!

    32

    0

    AAAnAe

    n

    nA 1

    AxixixA sincos)exp( += 1A

    =

    =

    =

    )2

    exp(0

    0)2

    exp()(

    2cos

    2sin

    2sin

    2cos

    )(

    2cos

    2sin

    2sin

    2cos

    )(

    i

    iRR

    i

    iR zyx

    )2/exp(

    1lim)(

    =

    =

    n

    n nIi

    R

    (x,y,z) (!!)

    ===

    ==

    ==

    iiXXYRZRY

    ii

    RX zyx 001

    )2/(1111

    21)2/(

    11

    21)2/(

    XYXRZRYRX zyx ==== )2/()2/()2/(

    2/ =

  • 15

    J-Bz

    AzAB

    AzAA IIJI 2 +=H

    A

    BBBzI 02

    10 =

    AzABAA IJ )( =H

    BA

    BABA

    BA

    AB

    00

    11

    0110

    ABB J

    ABB J +ABA J +

    ABA J 00

    11

    0110

    J-

    ==

    )2/exp(0000)2/exp(0000)2/exp(0000)2/exp(

    )2exp()(

    JtiJti

    JtiJti

    IIJtitU BzAzJ

    J-

    Z

    Z zJ =

    J

    ==

    10000000000001

    )2/1(i

    iiJUJ J

    Jt

    21

    =

  • 16

    NOT

    =

    =

    0100100000100001

    i

    JYXZZC BBBAAB

    ==

    ==

    ==

    ==

    ii

    iZZ

    ii

    ii

    XX

    i

    iiZZYY

    AB

    BB

    00000000100001

    100100

    001001

    21

    00001000000001

    11001100

    00110011

    21

    11

    11

    JZ

    Z

    Y X=

    A

    B

    ==

    0100000

    0000001

    ~i

    iiJYXC BBAB

    ]][[~]][[~ $ cdbaCdcbaC ABAB =

    NOT

    NOT

    NOT A

    B

    0

    1

    0

    0

    0

    1

    1

    1

    0

    1

    1

    0

    BXBY Jx

    y

    B

    xy

  • 17

    Refocusing1== )()()()( 2222 JBJBJAJA UYUYUYUY

    2AY

    xy

    2AYA

    2BY

    xy

    2BY

    A

    -

    B

    pulse J

    NMR

    CC C

    F Br

    Cl

    H F F

    Deutsch-Jozsa

    chloroform

    qubit AMHz5002/ A

    qubit BMHz1252/ B

    Hz215ABJ

    bromotrifluoroethylene

    MHz470F19

    T7.110 =B

    122.1Hz=ABJ

    Hz8.53=BCJ

    Hz0.75=ACJ

    qubit A

    qubit B

    qubit C

    kHz2.132/)( = BA

    kHz5.92/)( = AC

    Cl

    Cl

  • 18

    Deutsch-Jozsa

    fY

    Y

    Y

    Y

    x x

    y )(xfy

    01101

    10100

    f4f3f2f1

    balancedconstantx

    2 bit f (x)

    2 f (x) constantbalanced

    0

    0

    output

    constant 0balanced 1

    input qubit A 10 +

    10

    work qubit B

    1111

    001010

    0101

    100000

    BCAB

    NMR00

    work bit1

    D-Jx x

    y )(xfy

    f

    BBBAAA

    BBBBBAAA

    JYYXYXYJYXXYXYXYf

    == ))((3xyxfy = )(3

    )4/1()4/1( 212

    2 JUXJUfXf JBJB ==yyxfy == 1)(2

    )4/1()4/1( 221 JUXJUXf JBJB=yyxfy == 0)(1

    BBBAAAB JYYXYXYfXf == 32

    4xyxfy = )(4

    f ?

  • 19

    D-JA

    constantbalanced

    ]]1001[[1 =

    ]]1100[[$1 =UU

    1000 1101

    balanced

    ]]0011[[2 =

    ]]0110[[$2 =UU

    ]]0101[[3 =

    ]]0101[[$3 =UU

    2

    1111

    001010

    0101

    100000

    BCAB

    D-JA (:)

    49.9755160MHz

    constant

    balanced

  • 20

    =A

    B

    C

    ABJ2/1

    ACJ2/1

    Y Y2X 2X

    (::)]]31111113[[ ]]31111113[[

    Cz

    BzBC

    Cz

    AzAC

    Bz

    AzAB

    CzC

    BzB

    AzA IIJIIJIIJIII 222 +++=H

    ==

    Hz0.75Hz1.122

    AC

    AB

    JJ

    Refocusing

    ACABA JJJ ==

    X

    Cz

    AzA

    Bz

    AzA

    AzAA IIJIIJI 22 +=H

    A

    Case.1: BC

    Case.2:BC AzAAzAA IJI )2( =H

    AzAA I=H

    AY AY2Jx

    x

    y

    y

    U BC1001ANOTCase.1

    Case.2

    2

  • 21

    Nature

    Phys. Rev. Lett.

    Phys. Rev. Lett.

    Nature

    Phys. Rev. Lett.

    J. Chem. Phys.

    Nature

    Nature

    Phys. Rev. Lett.

    Journal

    2001IBM (Vandersypen)Shor (Factoring 15)7

    2000IBM (Vandersypen)Order Finding5

    1999IBM (Vandersypen)Logical Labeling

    1998LANL (Neilsen)Teleportation

    1998MIT (Cory)Error Correction

    3

    1998Oxford (Jones)Deutsch-Jozsa

    1998Oxford (Jones)Grover

    1998IBM (Chuang)Deutsch-Jozsa

    1998IBM (Chuang)Grover

    2

    YearGroup (First Author)AlgorithmsQubits

    Scalable ??

    )(21

    += 1n

    W.S.Warren, Science 277, 1688(1997)

    10-qubit??

  • 22

    B. E. Kane, Nature (1998)

    T. D. Ladd et. al., PRL (2002)

    E. Knill et. al. (KLM), Nature (2001)

    J. Q. You et. al., PRL (2002)

    Nuclear Spin Linear Optics

    Josephson junction