Lecture03 Ee474 Mos Models2

Embed Size (px)

Citation preview

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    1/28

    Sam Palermo

    Analog & Mixed-Signal Center

    Texas A&M University

    ECEN474: (Analog) VLSI Circuit DesignFall 2012

    Lecture 3: MOS Transistor Modeling

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    2/28

    Announcements

    Lab 1 this week

    Current Reading

    Razavi Chapters 2 & 16

    2

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    3/28

    Agenda

    MOS Transistor Modeling Large-Signal DC Model

    Small-Signal AC Model

    MOS Capacitors

    3

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    4/28

    Drawn & Effective Channel Lengths

    The transistor gate overlaps both the source and drainregion by a length of LDdue to side diffusion in the

    fabrication process This results in the effective transistor gate length, Leff,

    being shorter than the drawn length, Ldrawn Throughout the remainder of the course, L will generally

    refer to Leff 4

    Ddrawneff LLL 2=

    [Razavi]

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    5/28

    Finite Output Resistance in Saturation

    In saturation, as VDS is increased the channel

    pinch-off point moves slightly towards the source

    This phenomenon is called channel-lengthmodulation and is characterized by a parameter

    5

    [Sedra/Smith]

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    6/28

    Finite Output Resistance in Saturation

    The current will increase slightlywith VDSin saturation, resulting

    in a finite incremental outputresistance

    Note, the channel-lengthmodulation parameter is

    inversely proportional to L 6

    ( )

    ( )

    ( )

    ( )

    ( ) ( )DSTnGS

    oxn

    D

    DS

    TnGS

    oxn

    D

    DS

    TnGS

    oxn

    TnGS

    oxn

    TnGSoxn

    D

    VVVL

    WCI

    L

    L

    VVV

    L

    WCI

    VL

    L

    LVVL

    WC

    VV

    L

    LL

    WC

    VVLL

    WCI

    +=

    =

    +=

    =

    +

    =

    =

    12

    1

    2

    12

    1

    1

    2

    2

    2

    2

    2

    2

    2

    [Sedra/Smith]

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    7/28

    TAMU-474-08 J. Silva-Martinez

    - 7 -

    OUTPUT RESISTANCE (SATURATION REGION)

    Drain current

    substrate

    P+ P+

    S G D

    N+

    B

    Depletion region

    Channel length modulation is a second

    (unreliable) order effect!

    (Badly) Represented in SPICE by using

    or a more complex model.

    Simulated and experimental results

    might be off by more than 100%

    Channel Length Modulation

    [ ] [ ]DSTGSeffOX

    D VVVL

    WC

    i +

    122

    Leff

    Lch

    0

    VD

    S

    IDS

    VGS2

    =0

    Measure this parameter!

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    8/28

    MOS Large-Signal Output Characteristicwith Finite Output Resistance

    8

    [Sedra/Smith]

    ( )

    ( ) ( )DSTnGSoxn

    D

    DSDSTnGSoxnD

    VVVL

    WCI

    VVVVL

    WCI

    +=

    =

    12:Saturation

    5.0:Triode

    2

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    9/28

    MOS Large-Signal Transfer Characteristic

    9

    [Sedra/Smith]

    ( ) ( )DSTnGS

    oxn

    D VVV

    L

    WCI

    += 1

    2

    2

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    10/28

    Impact of Bulk Voltage

    10

    [Razavi]( ) ( )

    DSTnGS

    oxn

    D VVV

    L

    WCI

    += 1

    2

    2

    00022

    =++=

    SBVTFSBFTT

    VVVV

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    11/28

    Large-Signal DC Response

    11

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    12/28

    Large-Signal DC +Small-Signal AC Response

    12

    For small-signal analysis, we linearize the response

    about the DC operating point

    If the signal is small enough, linearity holds and thecomplete response is the summation of the large-signalDC response and the small-signal AC response

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    13/28

    Low-Frequency Small-Signal Model

    13

    [Razavi]

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    14/28

    Transistor transfer characteristic is used to extracttransconductance, gm

    Transconductance, gm

    14

    ( )

    ( )Q

    TGS

    eff

    OX

    Qgs

    D

    m

    TGSeff

    OX

    D

    VVL

    WC

    v

    ig

    VVL

    WC

    I

    =

    =

    2

    2

    Effects)g(NeglectinSaturationIn

    [Sedra/Smith]

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    15/28

    Transistor output characteristic is used to extract outputconductance, go

    Output Conductance, go

    15

    ( ) ( )

    ( ) D

    Q

    TGS

    eff

    OX

    Qds

    D

    o

    DSTGS

    eff

    OX

    D

    IVVL

    WC

    v

    ig

    VVV

    L

    WCI

    =

    +=

    2

    21

    2

    Effects)(IncludingSaturationIn

    [Sedra/Smith]

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    16/28

    The small-signal drain current changes with VBSmodulationdue to changes in VT

    Body Transconductance, gmb

    16

    [Razavi]

    [ ] SBFm

    Qbs

    T

    Q

    TGSeff

    OX

    Qbs

    D

    mb V

    g

    v

    V

    VVL

    W

    Cv

    i

    g +

    =

    22*

    Effects)g(NeglectinSaturationIn

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    17/28

    Low-Frequency Small-Signal Model

    17

    ( )

    ( )

    [ ]SBF

    m

    Qbs

    T

    Q

    TGS

    eff

    OX

    Qbs

    Dmb

    Q

    TGS

    eff

    OX

    Qds

    D

    Q

    TGSeff

    OX

    Qgs

    D

    m

    V

    g

    v

    V*VV

    L

    WC

    v

    ig

    VVL

    WC

    v

    ig

    VVL

    W

    Cv

    i

    g

    +

    =

    =

    =

    22

    2

    20

    [Razavi]

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    18/28

    MOS Transistor Capacitances

    181

    1

    CapJunctionBulk-Drain

    CapJunctionBulk-Source

    Cap(Fringing)OverlapDrain-Gate

    Note,Cap(Fringing)OverlapSource-Gate

    4CapBulk-Channel

    CapChannel-Gate

    00

    msw

    B

    BX

    jsw

    jswm

    B

    BX

    j

    j

    jswDjDDBJ

    jswSjSSBJ

    ovGDov

    DoxovovGSov

    F

    subSieffCB

    oxeffGC

    V

    CC

    V

    CC

    CPCAC

    CPCAC

    WCC

    LCCWCC

    NqWLC

    CWLC

    +

    =

    +

    =

    +==

    +==

    ==

    ==

    ==

    ==

    [Razavi]

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    19/28

    MOS Transistor Capacitances (Off)

    19

    SBJSB

    DBJDB

    CBGC

    CBGCGB

    ovGDovGS

    ovGDovGD

    CC

    CC

    CC

    CCC

    WCCC

    WCCC

    CapBulk-Source

    CapBulk-Drain

    CapBulk-Gate

    CapSource-Gate

    CapDrain-Gate

    ==

    ==+

    ==

    ===

    ===

    [Razavi]

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    20/28

    MOS Transistor Capacitances (Triode)

    20

    [Razavi]

    CBSBJSB

    CBDBJDB

    GB

    GCGSovGS

    GCGDovGD

    CCC

    CCC

    C

    CCC

    CCC

    2

    1CapBulk-Source

    2

    1CapBulk-Drain

    0CapBulk-Gate

    2

    1CapSource-Gate

    2

    1CapDrain-Gate

    +==

    +==

    =

    +==

    +==

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    21/28

    MOS Transistor Capacitances (Saturation)

    21

    [Razavi]

    CBSBJSB

    DBJDB

    GB

    GCGSovGS

    GDovGD

    CCC

    CC

    C

    CCC

    CC

    3

    2CapBulk-Source

    CapBulk-Drain

    0CapBulk-Gate

    3

    2CapSource-Gate

    CapDrain-Gate

    +==

    ==

    =

    +==

    ==

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    22/28

    MOS Gate Capacitors Response

    22

    [Razavi]Doxov

    LCC Note,

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    23/28

    MOS Source & Drain Junction Capacitors

    23

    [Razavi] ( )

    ( ) jswjjswjDBSB

    DS

    DS

    CEWWECPCACCC

    EWPP

    WEAA

    ++=+==

    +==

    ==

    2Junction

    2

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    24/28

    Source/Drain Junction Perimeter CapsDisclaimer

    Note, there is some ambiguity on how to model the source/drainjunction perimeter (sidewall) capacitance on the side of the gate

    This is due to the channel occupying a portion of the sidewall area

    Different textbooks present different approaches

    The Razavi text conservatively assumes that the sidewall perimeter

    capacitance is the same on all sides

    The Johns/Martin text (used in 2010) optimistically sets the sidewallperimeter cap to zero under the gate

    The correct answer is somewhere in the middle

    This semester I will follow the Razavi method and assume that thesidewall perimeter capacitance is the same on all sides (even underthe gate)

    I will try to make it clear on any problem description

    24

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    25/28

    MOS Source & Drain Junction Capacitors

    25

    [Razavi] ( )

    ( ) jswjjswjDBSB

    DS

    DS

    CEWWECPCACCC

    EWPP

    WEAA

    ++=+==

    +==

    ==

    2Junction

    2

    ( )

    ( ) jswjjswDjDDB

    jswjjswSjSSB

    D

    S

    D

    S

    CEWECW

    CPCAC

    CEWWECCPCAC

    EW

    P

    EW

    P

    EW

    A

    WEEW

    A

    22

    Junction

    22Junction

    22

    2

    22

    2

    22

    ++=+=

    ++=+=

    +=

    +=

    =

    =

    =

    Folding the transistorallows for approximatelyhalf the drain junctioncapacitance with a small

    increase in source junctioncapacitance

    Folding into2 fingers

    Folding into 2 fingers & sharing drain

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    26/28

    TAMU-474-08 J. Silva-Martinez

    - 26 -

    Other resistors: Source/Drain

    Drain/Source Resistance

    Drain/Source Resistance

    In addition to the contact resistance ,

    the diffusion resistance has to be

    considered.

    In SPICE, R[]is defined as RSH

    ( )

    =

    =

    tW

    LR

    RW

    LR

    Rseries

    []R

    series

    P+

    D/S

    iD

    Top view

    iD

    LR

    W

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    27/28

    TAMU-474-08 J. Silva-Martinez

    - 27 -

    Small Signal Model (Saturation region)

    Small signal model (saturation region)

    B

    gogmbvbsgmvgs

    B

    D

    CdbCgd

    Cgs

    Cbs

    S

    S

    GD

    [ ] [ ]

    [ ]

    [ ] [ ] bs

    Qbs

    Dds

    Qds

    Dgs

    Qgs

    D

    Q

    DSTGS

    eff

    OXD

    FSBFTT

    DSTGS

    eff

    OXD

    vv

    iv

    v

    iv

    v

    iVVV

    L

    WCi

    VVV

    VVVL

    WCI

    +

    +

    ++

    ++=

    +=

    12

    22

    12

    2

    0

    2

    ( )

    ( )

    [ ]SBF

    m

    Qbs

    T

    Q

    TGS

    eff

    OX

    Qbs

    Dmb

    Q

    TGS

    eff

    OX

    Qds

    D

    Q

    TGS

    eff

    OX

    Qgs

    Dm

    V

    g

    v

    V*VV

    L

    WC

    v

    ig

    VVL

    WC

    v

    ig

    VVL

    WC

    v

    ig

    +

    =

    =

    =

    22

    2

    20 bsmbds0gsmDD vgvgvgIi +++

  • 8/13/2019 Lecture03 Ee474 Mos Models2

    28/28

    Next Time

    MOS Transistor Modeling High-Field Short-Channel Effects

    Spice Models

    28