41
1 Insitusyong Teknolohikal ng Pilipinas 938 Aurora Blvd, Quezon City Paano nabuo ang isang buhawi at mga lugar na tinamaan dito sa Pilipinas Mananaliksik: Pacer, Klarence Medel C. ng ES12KA3 Ipinasa Kay: G. Mark Madrona

Pamanahong Papel Sa Filipino

Embed Size (px)

DESCRIPTION

tungkol ito sa mga buhawi dito sa pilipinas, paano ba ito nabubuo at ilan na ba ang tumama dito sa ating bansa

Citation preview

Page 1: Pamanahong Papel Sa Filipino

1

Insitusyong Teknolohikal ng Pilipinas

938 Aurora Blvd, Quezon City

Paano nabuo ang isang buhawi at mga lugar na tinamaan dito sa

Pilipinas

Mananaliksik: Pacer, Klarence Medel C. ng ES12KA3

Ipinasa Kay: G. Mark Madrona

Kabanata 1: Ang Suliranin at ang

Page 2: Pamanahong Papel Sa Filipino

2

Kaligiran nito

Panimula o Introduksyon

Ang Buhawi ay isang bayolente, mapanganib, at umiikot na kolumna ng hangin na

dumarapo o sumasayad kapwa sa kalatagan ng lupa ng daigdig at ng isang ulap na

kumulonimbus, o sa hindi kadalasang pagkakataon, sa paanan ng isang ulap na kumulus.

Dumarating ang mga buhawi sa maraming mga sukat at laki ngunit karaniwang nasa anyo ng

isang nakikitang embudo

ng kondensasyon, na

humihipo ang makipot na

dulo sa lupa ng mundo, at

kalimitang napapalibutan

ng ulap o usok ng mga

pinagguhuan o mga

nawasak at mga

alikabok.Ang buhawi ay

nabubuo sa ibabaw ng

lupa samantalang and ipo-ipo naman ay nabubuo sa ibabaw ng tubig. Pero paano nga ba nabubuo

ang isang buhawi? Dahil sa Supercell na tinatawag, ang Supercell ay isang higanteng

thunderstorm na kinakikitaan ng presensya ng Mesocyclone, nagaganap ang mga ito, ang

mahalumigmig at tuyong hangin ay nagsasama, tapos ang mahalumigmig na hangin ay babagsak

at ang tuyong hangin ay aangat sa atmospera, tapos ang tuyong hangin ay tatabingi at mamumuo

Page 3: Pamanahong Papel Sa Filipino

3

ito ng anyong suso na ulap na parang imbudo ang itsura at pagkatapos ang kalangitan ay

magiging madilim na berde at dito na magsisimula ang buhawi dadahang dahan itong tatama sa

kalupaan.

Layunin ng Pag-aaral

Ang layunin ko sa pag-aaral na ito ay para malaman kung paano ba nabubuo ang isang

buhawi, tumama na ba ito sa ating bansa, at paano ito nalalaman ng mga experto sa atmospera,

kaya ang malaking tanong dito ay “Paano ba nagkakaroon ng buhawi? Tumama na ba ito sa

Pilipinas? Kung tumama na, ilang beses na? At paano ba malalaman kung may buhawi na tatama

sa ating bansa?”

Kahalagahan ng Pag-aaral

Itong pag-aaral ko na ito ay para sa mga tao na hindi pa nauunawaan at naliliwanagan

tungkol sa buhawi, sapagkat may mga tao na hindi nila inaasahan na ito ay darating sa kanilang

kinatitirikang lugar.

Saklaw at Limitasyon

Ang pag-aaral ko na ito ay sumasaklaw lamang dito sa Pilipinas, lalo sa ang lugar na

tinamaan ng buhawi.

Page 4: Pamanahong Papel Sa Filipino

4

Depinisyon ng Terminolohiya

1. A Supercell is a thunderstorm that is characterized by the presence of a Mesocyclone: a deep,

persistently rotating updraft. For this reason, these storms are sometimes referred to as rotating

thunderstorms. Of the four classifications of thunderstorms (Supercell, squall line, multi-cell, and

single-cell), super cells are the overall least common and have the potential to be the most severe.

Supercell are often isolated from other thunderstorms, and can dominate the local climate up to

32 kilometers (20 mi) away.

2. A Mesocyclone is a vortex of air, approximately 2 mi (3.2 km) to 50 mi (80 km) in diameter (the

mesoscale of meteorology), within a convective storm. That is, it is air that rises and rotates

around a vertical axis, usually in the same direction as low pressure systems in a given

hemisphere. They are most often cyclonic, that is, associated with a localized low-pressure region

within a severe thunderstorm. Such thunderstorms can feature strong surface winds and severe

hail. Mesocyclones often occur together with updrafts in supercells, where tornadoes may form.

Mesocyclones are believed to form when strong changes of wind speed and/or direction with

height ("wind shear") sets parts of the lower part of the atmosphere spinning in invisible tube-like

rolls. The convective updraft of a thunderstorm is then thought to draw up this spinning air, tilting

the rolls' orientation upward (from parallel to the ground to perpendicular) and causing the entire

updraft to rotate as a vertical column. Mesocyclones are normally relatively localized: they lie

between the synoptic scale (hundreds of kilometers) and small scale (hundreds of meters). Radar

imagery is used to identify these features. Mesoscale convective systems (MCS) can develop

mesoscale convective vortexes which can spur later development of either another MCS or a

tropical cyclone.

3. Wind shear, sometimes referred to as wind shear or wind gradient, is a difference in wind speed

and direction over a relatively short distance in the atmosphere. Wind shear can be broken down

into vertical and horizontal components, with horizontal wind shear seen across fronts and near

Page 5: Pamanahong Papel Sa Filipino

5

the coast, and vertical shear typically near the surface, though also at higher levels in the

atmosphere near upper level jets and frontal zones aloft. Wind shear itself is a microscale

meteorological phenomenon occurring over a very small distance, but it can be associated with

mesoscale or synoptic scale weather features such as squall lines and cold fronts. It is commonly

observed near microbursts and downbursts caused by thunderstorms, fronts, areas of locally

higher low level winds referred to as low level jets, near mountains, radiation inversions that

occur due to clear skies and calm winds, buildings, wind turbines, and sailboats. Wind shear has a

significant effect during take-off and landing of aircraft due to its effects on control of the

aircraft, and it has been a sole or contributing cause of many aircraft accidents.

4. An updraft or downdraft is the vertical movement of air as a weather related phenomenon. One of

two forces causes the air to move. Localized regions of warm or cool air will exhibit vertical

movement. A mass of warm air will typically be less dense than the surrounding region, and so

will rise until it reaches air that is either warmer or less dense than itself. The converse will occur

for a mass of cool air, and is known as subsidence. This movement of large volumes of air,

especially when regions of hot, wet air rise, can create large clouds, and is the main cause of

thunderstorms. Drafts can also be created by low or high pressure regions. A low pressure region

will attract air from the surrounding area, which will move towards the center and then rise,

creating an updraft. A high pressure region will then attract air from the surrounding area, which

will move towards the center and sink, creating a downdraft.

Kabanata 2: Mga Kaugnay sa Pag-aaral at Literatura

Page 6: Pamanahong Papel Sa Filipino

6

Banyagang Pag-aaral

A tornado is defined as a violently rotating column of air extending from a thunderstorm to the

ground. Significant advances in understanding tornadoes were made in the 1970’s with the pioneering

work of T.T. Fujita. Prime means of measurement for deducing the vortex structure of tornadoes in nature

are photogrammetry, local and aerial surveys of damage. A notable outcome from the aerial surveys has

been the development of the Fujita scale (F-scale) for classifying a tornado according to its damage

potential (Fujita, 1981). In recent years mobile Doppler radars have been used to capture the velocity

fields of real tornadoes for studying its flow features (Zrnic et.al 1985, Wurman et.al 1996, Wurman

2002, Bluestein et. al 2004, Lee and Wurman 2005). The availability of a combination of physical

observation techniques and mobile radar techniques has paved way for better understating of tornadoes.

(Natarajan et al. 2011)

Deadliest Tornadoes

Most tornadoes do not result in death, and of those that do, most claim only a few lives. Also, as a

result of improved forecasting and early warning systems, the death toll from tornadoes has dropped

significantly over the years, despite increasing populations in tornado-prone areas. Unfortunately, super-

violent tornadoes are still documented, some with exceptional death tolls. Interestingly, a number of these

devastating tornadoes have occurred outside of Tornado Alley, and several at times of day or year not

normally associated with violent tornadoes. Although all of most deadly tornadoes occurred prior to the

invention of the Fujita Scale, historical records of their damage have led them to be classified as either

F4 or F5

Page 7: Pamanahong Papel Sa Filipino

7

Rank DateEstimated intensity*

StateInjuries (Deaths)

Remarks

1March 18,

1925F5

MO, IL, IN

2027 (695)Tri-State TornadoWikipedia EntryTornado Project Page

2May 6, 1840

Unkn. LA, MS 109 (317)

hit Nachez, MSNWS informationWikipedia InformationTornado Project Page

3May 27,

1896F4 MO, IL 1000 (255)

The Great St. Louis TornadoTornado Project PageThe Great Cyclone. SIU PressSt. Louis American Local History Network

4April 5,

1936F5 MS 700 (216)

hit Tupelo, MSNWS informationTornado Project Page

5April 6,

1936F4 GA 1600 (203)

hit Gainesville, GATornado Project PageAbout N. Georgia

6April 9,

1947F5

TX, KS, OK

970 (181) Tornado Project Page

7May 22,

2011EF5 MO 1,000 (158)

Hit Joplin, MO NWS Summary

8April 24,

1908F4 LA, MS 770 (143)

hit Amite, LA and Purvis, MSTornado Project Page

9June 12,

1899F5 WI 200 (117)

hit New Richmond, WITornado Project Page

10June 8, 1953

F5 MI 844 (116)hit Flint, MITornado Project Page

The ten deadliest documented tornado events

Page 8: Pamanahong Papel Sa Filipino

8

Historical Records and Trends

One of the main difficulties with tornado records is that a tornado, or evidence of a tornado must

have been observed. Unlike rainfall or temperature, which may be measured by a fixed instrument,

tornadoes are ephemeral and very unpredictable. If a tornado occurs in a place with few or no people, it

is not likely to be documented. Unfortunately, much of what we know as tornado alley was very sparsely

populated until the 20th century, and so it is possible that many significant tornadoes may never have

made it into the historical record.

Much early work on tornado climatology in the U.S. was done by John Park Finley in his

bookTornadoes, published in 1887. While some of Finley's safety guidelines have since been refuted as

dangerous practices, the book itself remains a seminal work in tornado research. The University of

Oklahoma has created a pdf copy of the entire book and made it accessible at: John Finley's 'Tornadoes'

Today, nearly all of the United States is reasonably well populated, or at least covered by

NOAA's Doppler weather radars. Even if a tornado is not actually observed, modern damage assessments

by NWS personnel can discern if a tornado caused the damage, and if so, how strong the tornado may

have been. This disparity between tornado records of the past and current records contributes a great

deal of uncertainty regarding questions about the long-term behavior or patterns of tornado occurrence.

Improved tornado observation practices have led to an increase in the number of reported weaker

tornadoes, and in recent years the number ofEF-0 and EF-1 tornadoes have become more prevelant in

the total number of reported tornadoes. In addition, even today many smaller tornadoes still may go

undocumented in places with low populations or inconsistent communication facilities.

With increased national Doppler radar coverage, increasing population, and greater attention to

tornado reporting, there has been an increase in the number of tornado reports over the past several

decades. This can create a misleading appearance of an increasing trend in tornado frequency. To better

Page 9: Pamanahong Papel Sa Filipino

9

understand the true variability and trend in tornado frequency in the U.S., the total number of strong to

violent tornadoes (EF3 to EF5 category on the Enhanced Fujita scale) can be analyzed. These are the

tornadoes that would have likely been reported even during the decades before Doppler radar use

became widespread and practices resulted in increasing tornado reports. The bar chart below indicates

there has been little trend in the frequency of the strongest tornadoes over the past 55 years. (NSSL

NOAA, 2010)

Ang mga impormasyon na ito ay galing sa National Oceanic Atmospheric Administration o

NOAA, iyan ang ahensiya sa Estados Unidos kung saan sila ang tagapangasiwa sa pagbabantay sa ating

atmospera, samakatuwid hindi lang ang NOAA ang nangangasiwa, pati rin ang National Severe Storms

Laboratory o NSSL iyan ang ahensiya sa Estados Unidos na kung saan sila ang mga eksperto sa mga

pinakabayolente at pinakamapinsalang Thunderstorms, Hails, Wind Winter at lalo na sa Buhawi. At ditto

mo rin matatagpuan ang mga Storm Chasers kung sila’y tatawagin sapagakat sila ang mga kumukuha ng

mga impormasyon sa o mga datos sa pagdating ng isang buhawi, sila ay merong mga sasakyan na may

sariling radar, mga wind vane at aerovane para masukat ang bilis ng hangin ng isang buhawi.

Lokal na Pag-aaral

Ayon sa aking mga nasagap na impormasyon at sa aking palagay, dito sa Pilipinas wala pang

nagtaya ng pag-aaral tungkol sa buhawi sapagkat bihira lamang dumaan ang isang buhawi sa ating bansa,

paminsan minsan hindi natin namamalayan may dumating na pala, mga dalawampung segundo o isang

minuto lamang nagtatagal ang isang buhawi at depende pa ito sa kanyang istruktura ng kanyang imbudo.

Page 10: Pamanahong Papel Sa Filipino

10

Kabanata 4: Presentasyon at Interpretasyon ng mga Datos

Ang maraming katanungan ko sa pag-aaral na ito ay nakuha ko na ang mga kasagutan at

ngayon, sisimulan ko ng ilahad lahat.

Ang buhawi ay isang bayolente at mapanirang kolumna ng hangin na dumadapo o

sumasayad kapwa sa kalagatan ng lupa ng daigdig at ng isang ulap na kumulonimbus o sa hindi

kadalasang pagkakataon, sa paanan ng isang ulap na kumulus. Ito ay mapanganib sapagkat ang

hangin nito ay sobrang lakas na umaabot sa 200-300 kilometro kada segundo na kayang kainin

ang isang buong subdivision sa isang lugar, nakadepende ito sa kanyang istruktura kung malaki

at malapad ito, kayang kaya niyang pulbusin ang isang village ng 30 segundo o 1 minuto.

Nabubuo ito dahil sa pagsasanib ng mainit na tuyong hangin mula sa Golpo ng Mexico at

mahalumigmig at basing hangin naman sa Hilagang Canada, kapag nagsanib na sila nag-iikutan

silasa langit at ito ay tinatawag na updraft. Kapag tuloy tuloy ito parin sa pag-ikot ang dalawang

hangin na ito, dito na nabubuo ang Mesocyclone, ang mesocyclone ay isang borteks na hangin na

umaangat at umiikot sa patayong aksis, kadalasan kinakikitaan ito ng low pressure system sa

kanyang kinatatayuan. Kapag tuloy tuloy ang proseso na ito ang Supercell naman ang nakikita,

ito ay nabubuo sa pag-tuloy na pag-ikot ng updraft sa langit, kadalasan sa pagbuo nito may mga

mapanganib na thunderstorms at precipitation ang nagaganap, lalo na ang mga kadalasang pag-

kidlat at pag-ulan ng yelo o Hail sa ingles. Kapag nangyari na ang lahat ng mga ito kakalas ang

malamig na hangin papunta sa ibaba at ang mesocyclone ay dahang dahang bababa sa lupa at

dito na nagkakaroon ng buhawi.

Page 11: Pamanahong Papel Sa Filipino

11

At sa aking mga nakalap na impormasyon, eto ang listahan ng mga tumamang buhawi

dito sa Pilipinas

Event Date Area Tornadoes

Casualties Sources

Notes

MacabebeMasantol, Philippines

13 June1968

Philippines - 12 fatalities - -

Southern Philippines

14 June1990

Southern Philippines

- 30 fatalities - -

Southern Philippines

2 July1994

Southern Philippines

- 2-13 fatalities - -

San Fernando, Pampanga

16October1994

Philippines - 3 fatalities - -

Southern Philippines

29November1994

Southern Philippines

- 14 fatalities - -

Los Baños, Laguna

14 August2008

Los Baños, Laguna Philippines

- 20 injured Inquirer. net

UP Diliman, Quezon City

4 June2009

Quezon City, Philippines

1 No reported deaths or injured

Inquirer. net

12 shantiesdemolished

sSariaya, Quezon

14 June2009

Sariaya, Quezon Province

1 At least 1 injured

Inquirer. net

7 houses and a school were damaged

Perez, Quezon 23 June2009

Perez, Quezon Province

1 At least 4 dead Inquirer. net

Can-avid, Eastern Samar

23 June2009

Can-avid, Eastern Samar Philippines

1 - Inquirer. Net

26 houses were

damaged

Oton, Iloilo 10 August2009

Oton, IloiloPhilippines

1 20 elementary students were injured

Inquirer. net

26 houses were damaged

http://en.wikipedia.org/wiki/List_of_Asian_tornadoes_and_tornado_outbreaks

Page 12: Pamanahong Papel Sa Filipino

12

At eto naman ang mapa ng pagtama ng mga buhawi sa Pilipinas ito ay naganap sa taong

1995-2012 (PAGASA, 2013)

Page 13: Pamanahong Papel Sa Filipino

13

Kung ating papansinin natin ang unang pigura ng Kabanata 4, sa mga listahan 11 lamang

ang tumama sa Pilipinas iyan ay ayon sa Wikipedia samantalang sa pangalawang pigura naman

kung ating papansining maigi, sa loob ng 17 taon ay napakadami nang mga lalo na sa Southern

Mindanao sa bandang Maguindanao, North Cotabato at South Cotabato

Kung ating ipagkukumpara ang dalawang pigura na ito ay ang unang pigura ay hindi

maaasahan sa kanyang reperensyang nakalap, ngunit sa pangalawang pigura ay ito ay nagmula

pa sa ahensya ng PAGASA o Philippine Atmospheric Geophysical Astronomical Services

Administration alam naman naten na ang mga ahensya na ito ay narito ang mga dalubhasa sa

pagtukoy ng mga nagaganap sa ating atmospera kaya ang reperensyang ito ay maaasahan.

Sa mga buhawi na tumama dito sa Pilipinas, ang iisa sa pinakamalakas ay naganap noong

ika-14 ng Hunyo taong 1990, 30 ang namatay ngunit sa impormasyon na aking nakalap, walang

naitala na kung ilang kabahayan o istruktura ang nasira, ito ay naganap sa Katimugang bahagi ng

ating bansa.

Sa aking pag-aaral na ito, hindi maiiwasang itanong ito, “Saang lugar o probinsya sa

Pilipinas ang delikado dito?” eto lamang ang kasagutan dyan, kung papansinin natin ang mapa

na ibinigay sa akin ni Dr. Niño Relos ng Climatology and Agrometeorology Division ng

PAGASA, ay ang lugat na madalas na tinamaan ay ung Southern Mindanao lalo na sa North and

South Cotabato dahil kung papansinin natin ang mapa ng mundo ang Southern Mindanao ay

lumagpas na sa ekwador malapit na ito sa Tropika ng Cancer kung saan dito na ang lugar kung

saan ang kanilang klima ay 4 at dito rin mararanasan ang mahalumigmig at basang hangin na

mula sa Antartica, tapos ang mainit at tuyong hangin naman ay mula sa Northern Luzon kung

saan tuwing tag-init ay doon nagaganap ang mainit at tuyong hangin.

Page 14: Pamanahong Papel Sa Filipino

14

Ang mga buhawi ay maiiwasan at mapaghahandaan ang pagdating nito, ito ang mga payo

ng mga eksperto tungkol dito. Ayon sa NOAA at NSSL ang pinakaunang dapat gawin ay laging

umantabay sa telebisyon o sa Radio at kapag nag-anunsyo na ang lokal na weather bureau sa

iyong lugar, agad na lumabas ng bahay at pumunta sa isang storm cellar. Ang storm cellar ay

isang maliit na bahay ngunit ito’y nasa ilalim ng lupa kung saan dito ang pinakaligtas na lugar

kung darating man ang buhawi, kung walang storm cellar ang bahay mo, pumunta sa basement

ng bahay na walang bintana sapagkat kapag may bintana ito pwedeng mabasag at pwedeng

magkaroon ng aksidente. Kapag nasa loob na ng storm cellar o basement ng bahay, huwag na

huwag lalabas hangga’t hindi pa nahuhupa ang buhawi sa inyong lugar, at kapag nahupa na ang

buhawi, lumabas at isalba ang iba pang gamit na pwede pang isalba.

Kabanata 5: Konklusyon at Rekomendasyon

Sa ngayon, dito na matatapos ang pamanahong papel na ito, sana maging daan ito sa atin

para magkaroon ng bagong kaalaman tungkol sa iba pang mapanganib na meteorological events

sa ating bansa, hindi lamang mga bagyo at mabibigat na ulan ang nagaganap sa ating atmospera

kundi buhawi din. Inererekomenda ko na dapat lahat ng mga bahay ay merong storm cellar sa

knilang likod bahay, at laging tandaan ang mga nagaganap sa ating atmospera ay hindi lahat.

Page 15: Pamanahong Papel Sa Filipino

15

References

1. "merriam-webster.com". merriam-webster.com. Retrieved 2012-09-03.

2. a b Wurman, Joshua (2008-08-29). "Doppler On Wheels". Center for Severe Weather

Research. Retrieved 2009-12-13.

3. a b "Hallam Nebraska Tornado". National Weather Service. National Oceanic and

Atmospheric Administration. 2005-10-02. Retrieved 2009-11-15.

4. a b c d e f g h i j k Roger Edwards (2006-04-04). "The Online Tornado FAQ". Storm

Prediction Center. National Oceanic and Atmospheric Administration. Retrieved 2006-

09-08.

5. National Weather Service (2009-02-03). "15 January 2009: Lake Champlain Sea Smoke,

Steam Devils, and Waterspout: Chapters IV and V". National Oceanic and Atmospheric

Administration. Retrieved 2009-06-21.

6. a b Sid Perkins (2002-05-11). "Tornado Alley, USA". Science News. pp. 296–298.

Archived from the original on 2006-08-25. Retrieved 2006-09-20.

7. a b "Tornado: Global occurrence". Encyclopædia Britannica Online. 2009. Retrieved

2009-12-13.

8. Meaden, Terrance (2004). "Wind Scales: Beaufort, T — Scale, and Fujita's Scale".

Tornado and Storm Research Organisation. Retrieved 2009-09-11.

9. "Enhanced F Scale for Tornado Damage". Storm Prediction Center. National Oceanic and

Atmospheric Administration. 2007-02-01. Retrieved 2009-06-21.

10. Douglas Harper (2001). "Online Etymology Dictionary". Retrieved 2009-12-13.

Page 16: Pamanahong Papel Sa Filipino

16

11. Frederick C Mish (1993). Merriam Webster's Collegiate Dictionary (10th ed.). Merriam-

Webster, Incorporated. ISBN 0-87779-709-9. Retrieved 2009-12-13.

12. a b Tim Marshall (2008-11-09). "The Tornado Project's Terrific, Timeless and

Sometimes Trivial Truths about Those Terrifying Twirling Twisters!". The Tornado

Project. Retrieved 2008-11-09.

13. "Frequently Asked Questions about Tornadoes". National Severe Storms Laboratory.

2009-07-20.

14. a b Glossary of Meteorology (2000). "Section:T". American Meteorological Society.

Retrieved 2009-11-15.

15. a b c d e f g h Doswell, Moller, Anderson et al. (2005). "Advanced Spotters' Field Guide"

(PDF). US Department of Commerce. Retrieved 2006-09-20.

16. Charles A Doswell III (2001-10-01). "What is a tornado?". Cooperative Institute for

Mesoscale Meteorological Studies. Retrieved 2008-05-28.

17. Nilton O. Renno (2008-07-03). "A thermodynamically general theory for convective

vortices" (PDF). Tellus A (International Meteorological Institute in Stockholm) 60 (4):

688–99. Bibcode 2008TellA..60..688R. doi:10.1111/j.1600-0870.2008.00331.x.

Retrieved 2009-12-12.

18. Glossary of Meteorology (2000-06-30). "Funnel cloud". American Meteorological

Society. Retrieved 2009-02-25.

19. Michael Branick (2006). "A Comprehensive Glossary of Weather Terms for Storm

Spotters". National Oceanic and Atmospheric Administration. Archived from the original

on 2003-08-03. Retrieved 2007-02-27.

Page 17: Pamanahong Papel Sa Filipino

17

20. a b c d e f g h i Thomas P Grazulis (July 1993). Significant Tornadoes 1680–1991. St.

Johnsbury, VT: The Tornado Project of Environmental Films. ISBN 1-879362-03-1.

21. Russell S Schneider, Harold E. Brooks, and Joseph T. Schaefer (2004). "Tornado

Outbreak Day Sequences: Historic Events and Climatology (1875–2003)" (PDF).

Retrieved 2007-03-20.

22. a b c d e f g Walter A Lyons (1997). "Tornadoes". The Handy Weather Answer Book

(2nd ed.). Detroit, Michigan: Visible Ink press. pp. 175–200. ISBN 0-7876-1034-8.

23. Roger Edwards (2008-07-18). "Wedge Tornado". National Weather Service. National

Oceanic and Atmospheric Administration. Retrieved 2007-02-28.

24. a b Singer, Oscar (May–July 1985). "27.0.0 General Laws Influencing the Creation of

Bands of Strong Bands". Bible of Weather Forecasting (Singer Press) 1 (4): 57–58.

25. Roger Edwards (2008-07-18). "Rope Tornado". National Weather Service. National

Oceanic and Atmospheric Administration. Retrieved 2007-02-28.

26. Dr. Charles A, III oswell. "The Tri-State Tornado of 18 March 1925 Reanalysis Project"

(Powerpoint Presentation). Archived from the original on 2007-06-04. Retrieved 2007-

04-07.

27. a b Roger Edwards (2009). "Public Domain Tornado Images". National Weather Service.

National Oceanic and Atmospheric Administration. Retrieved 2009-11-17.

28. a b Linda Mercer Lloyd (1996). Target: Tornado (Videotape). The Weather Channel

Enterprises, Inc..

29. "The Basics of Storm Spotting". National Weather Service. National Oceanic and

Atmospheric Administration. 2009-01-15. Archived from the original on 2003-10-11.

Retrieved 2009-11-17.

Page 18: Pamanahong Papel Sa Filipino

18

30. Corporation, Bonnier (1978). "Tornado Factory — Giant Simulator Probes Killer

Twisters". Popular Science 213 (1): 77. Retrieved 2009-11-17.

31. R. Monastersky (1999-05-15). "Oklahoma Tornado Sets Wind Record". Science News.

pp. 308–309. Retrieved 2006-10-20.

32. Alonzo A Justice (1930). "Seeing the Inside of a Tornado" (PDF). Monthly Weather

Review. American Meteorological Society. pp. 205–206. Retrieved 2006-10-20.

33. Roy S Hall (2003). "Inside a Texas Tornado". Tornadoes. Greenhaven Press. pp. 59–65.

ISBN 0-7377-1473-5

34. Robert Davies-Jones (October 1984). "Streamwise Vorticity: The Origin of Updraft

Rotation in Supercell Storms". Journal of the Atmospheric Sciences (American

Meteorological Society) 41 (20): 2991–3006. Bibcode 1984JAtS...41.2991D.

doi:10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2. Retrieved 2007-04-13.

35. Richard Rotunno, Joseph Klemp (February 1985). "On the Rotation and Propagation of

Simulated Supercell Thunderstorms". Journal of the Atmospheric Sciences (American

Meteorological Society) 42 (3): 271–292. Bibcode 1985JAtS...42..271R.

doi:10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2. Retrieved 2007-04-13.

36. Louis J. Wicker, Robert B. Wilhelmson (August 1995). "Simulation and Analysis of

Tornado Development and Decay within a Three-Dimensional Supercell Thunderstorm".

Journal of the Atmospheric Sciences (American Meteorological Society) 52 (15): 2675–

2703. Bibcode 1995JAtS...52.2675W. doi:10.1175/1520-

0469(1995)052<2675:SAAOTD>2.0.CO;2. Retrieved 2007-04-13.

37. Greg Forbes (2006-04-26). "anticyclonic tornado in El Reno, OK". The Weather

Channel. Retrieved 2006-12-30.

Page 19: Pamanahong Papel Sa Filipino

19

38. John Monteverdi (2003-01-25). "Sunnyvale and Los Altos, CA Tornadoes 1998-05-04".

Retrieved 2006-10-20.

39. Abdul Abdullah (April 1966). "The "Musical" Sound Emitted by a Tornado"". Monthly

Weather Review (American Meteorological Society) 94 (4): 213–220. Bibcode

1966MWRv...94..213A. doi:10.1175/1520-0493(1966)094<0213:TMSEBA>2.3.CO;2.

40. David K. Hoadley (1983-03-31). "Tornado Sound Experiences". Stormtrack 6 (3): 5–9.

41. A. J. Bedard (January 2005). "Low-Frequency Atmospheric Acoustic Energy Associated

with Vortices Produced by Thunderstorms". Monthly Weather Review (American

Meteorological Society) 133 (1): 241–263. Bibcode 2005MWRv..133..241B.

doi:10.1175/MWR-2851.1.

42. a b c Howard Bluestein (1998-10-27). "A History of Severe-Storm-Intercept Field

Programs". Weather and Forecasting (American Meteorological Society) 14 (4): 558–

577. Bibcode 1999WtFor..14..558B. doi:10.1175/1520-

0434(1999)014<0558:AHOSSI>2.0.CO;2.

43. Frank Tatom, Kevin R. Knupp, and Stanley J. Vitto (February 1995). "Tornado Detection

Based on Seismic Signal". Journal of Applied Meteorology (American Meteorological

Society) 34 (2): 572–582. Bibcode 1995JApMe..34..572T. doi:10.1175/1520-

0450(1995)034<0572:TDBOSS>2.0.CO;2.

44. John R Leeman, E.D. Schmitter (April 2009). "Electric signals generated by tornados".

Atmospheric Research 92 (2): 277–9. doi:10.1016/j.atmosres.2008.10.029.

45. Timothy M. Samaras (October 2004). "A Historical Perspective of In-Situ Observations

within Tornado Cores". Preprints of the 22nd Conference on Severe Local Storms.

Hyannis, MA: American Meteorological Society.

Page 20: Pamanahong Papel Sa Filipino

20

46. Antony H Perez, Louis J. Wicker, and Richard E. Orville (September 1997).

"Characteristics of Cloud-to-Ground Lightning Associated with Violent Tornadoes".

Weather and Forecasting 12 (3): 428–437. Bibcode 1997WtFor..12..428P.

doi:10.1175/1520-0434(1997)012<0428:COCTGL>2.0.CO;2.

47. Julian J. Lee, Timothy P. Samaras, Carl R. Young (2004-10-07). "Pressure Measurements

at the ground in an F-4 tornado". Preprints of the 22nd Conference on Severe Local

Storms. Hyannis, Massachusetts: American Meteorological Society.

48. Markowski, Straka, and Rasmussen (2002-10-14). "Tornadogenesis Resulting from the

Transport of Circulation by a Downdraft: Idealized Numerical Simulations". Journal of

the Atmospheric Sciences (American Meteorological Society) 60 (6): 28. Bibcode

2003JAtS...60..795M. doi:10.1175/1520-0469(2003)060<0795:TRFTTO>2.0.CO;2.

Retrieved 2009-12-13.

49. Dave Zittel (2000-05-04). "Tornado Chase 2000". USA Today. Retrieved 2007-05-19.

50. Joseph Golden (2007-11-01). "Waterspouts are tornadoes over water". USA Today.

Retrieved 2007-05-19.

51. Thomas P. Grazulis, Dan Flores (2003). The Tornado: Nature's Ultimate Windstorm.

Norman OK: University of Oklahoma Press. p. 256. ISBN 0-8061-3538-7.

52. "About Waterspouts". National Weather Service. National Oceanic and Atmospheric

Administration. 2007-01-04. Retrieved 2009-12-13.

53. No author given (2012-01-02). "European Severe Weather Database definitions".

54. "Gustnado". Glossary of Meteorology. American Meteorological Society. June 2000.

Retrieved 2006-09-20.

Page 21: Pamanahong Papel Sa Filipino

21

55. Charles H Jones, Charlie A. Liles (1999). "Severe Weather Climatology for New

Mexico". Retrieved 2006-09-29.

56. "Goshen County Tornado Given Official Rating of EF2". National Weather Service.

National Oceanic and Atmospheric Administration. Retrieved 2009-11-21.

57. David C Lewellen, M I Zimmerman (2008-10-28). "Using Simulated Tornado Surface

Marks to Decipher Near-Ground Winds" (PDF). 24th Conference on Severe Local

Storms. Bulletin of the American Meteorological Society. Retrieved 2009-12-09.

58. Harold E Brooks (2004-04-01). "On the Relationship of Tornado Path Length and Width

to Intensity". Weather and Forecasting 19 (2): 310–319. Bibcode 2004WtFor..19..310B.

doi:10.1175/1520-0434(2004)019<0310:OTROTP>2.0.CO;2. Retrieved 2007-04-06.

59. a b Edwards, Moller, Purpura et al. (1998-03-31). "Basic Spotters’ Field Guide" (PDF).

National Weather Service. National Oceanic and Atmospheric Administration. Retrieved

2006-11-01.

60. Dotzek, Nikolai, Jürgen Grieser, Harold E. Brooks (2003-03-01). "Statistical modeling of

tornado intensity distributions" (PDF). Atmospheric Research Vol. 67–68. pp. 163–187.

Retrieved 2007-04-06.

61. a b Nikolai Dotzek (2003-03-20). "An updated estimate of tornado occurrence in Europe"

(PDF). Atmospheric Research. Retrieved 2009-12-13.

62. Huaqing Cai (2001-09-24). "Dryline cross section". University of California Los

Angeles. Retrieved 2009-12-13.

63. "Tornadoes". Prairie Storm Prediction Centre. Environment Canada. 2007-10-07.

Retrieved 2009-12-13.

Page 22: Pamanahong Papel Sa Filipino

22

64. J Holden, A Wright (2003-03-13). "UK tornado climatology and the development of

simple prediction tools" (PDF). Quarterly Journal of the Meteorological Society (Royal

Meteorological Society) 130 (598): 1009–1021. Bibcode 2004QJRMS.130.1009H.

doi:10.1256/qj.03.45. Archived from the original on 2007-08-24. Retrieved 2009-12-13.

65. Staff (2002-03-28). "Natural Disasters: Tornadoes". BBC Science and Nature. BBC.

Archived from the original on 2002-10-14. Retrieved 2009-12-13.

66. a b Bimal Kanti Paul, Rejuan Hossain Bhuiyan (2005-01-18). "The April 2004 Tornado

in North-Central Bangladesh: A Case for Introducing Tornado Forecasting and Warning

Systems" (PDF). Retrieved 2009-12-13.

67. Jonathan Finch (2008-04-02). "Bangladesh and East India Tornadoes Background

Information". Retrieved 2009-12-13.

68. Michael Graf (2008-06-28). "Synoptical and mesoscale weather situations associated

with tornadoes in Europe" (PDF). Retrieved 2009-12-13.

69. a b c "Structure and Dynamics of Supercell Thunderstorms". National Weather Service.

National Oceanic and Atmospheric Administration. 2008-08-28. Retrieved 2009-12-13.

70. "Frequently Asked Questions: Are TC tornadoes weaker than midlatitude tornadoes?".

Atlantic Oceanographic and Meteorological Laboratory, Hurricane Research Division.

National Oceanic and Atmospheric Administration. 2006-10-04. Retrieved 2009-12-13.

71. Kelly, Schaefer, McNulty, et al. (1978-04-10). "An Augmented Tornado Climatology"

(PDF). Monthly Weather Review. American Meteorological Society. p. 12. Retrieved

2009-12-13.

72. "Tornado: Diurnal patterns". Encyclopædia Britannica Online. 2007. p. G.6. Retrieved

2009-12-13.

Page 23: Pamanahong Papel Sa Filipino

23

73. A.M. Holzer (2000). "Tornado Climatology of Austria". Atmospheric Research (56):

203–211. Archived from the original on 2007-02-19. Retrieved 2007-02-27.

74. Nikolai Dotzek (2000-05-16). "Tornadoes in Germany" (PDF). Atmospheric Research.

Retrieved 2007-02-27.

75. "South African Tornadoes". South African Weather Service. 2003. Archived from the

original on 2007-05-26. Retrieved 2009-12-13.

76. Jonathan D. Finch, Ashraf M. Dewan (2007-05-23). "Bangladesh Tornado Climatology".

Retrieved 2009-12-13.

77. Roger Edwards, Steven J. Weiss (1996-02-23). "Comparisons between Gulf of Mexico

Sea Surface Temperature Anomalies and Southern U.S. Severe Thunderstorm Frequency

in the Cool Season". 18th Conference on Severe Local Storms. American Meteorological

Society.

78. Ashton Robinson Cook, Joseph T. Schaefer (2008-01-22). "The Relation of El Nino

Southern Oscillation (ENSO) to Winter Tornado Outbreaks". 19th Conference on

Probability and Statistics. American Meteorological Society. Retrieved 2009-12-13.

79. Robert J Trapp, NS Diffenbaugh, HE Brooks, ME Baldwin, ED Robinson, and JS Pal

(2007-12-12). "Changes in severe thunderstorm environment frequency during the 21st

century caused by anthropogenically enhanced global radiative forcing". Proceedings of

the National Academy of Sciences 104 (50): 19719–23. doi:10.1073/pnas.0705494104.

80. Susan Solomon et al. (2007). Climate Change 2007 - The Physical Science Basis.

Contribution of Working Group I to the Fourth Assessment Report of the

Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA:

Page 24: Pamanahong Papel Sa Filipino

24

Cambridge University Press for the Intergovernmental Panel on Climate Change. ISBN

978-0-521-88009-1. Retrieved 2009-12-13.

81. "The First Tornadic Hook Echo Weather Radar Observations". Colorado State

University. 2008. Retrieved 2008-01-30.

82. Paul M. Markowski (April 2002). "Hook Echoes and Rear-Flank Downdrafts: A

Review". Monthly Weather Review 130 (4): 852–876. Bibcode 2002MWRv..130..852M.

doi:10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

83. a b Airbus (2007-03-14). "Flight Briefing Notes: Adverse Weather Operations Optimum

Use of Weather Radar" (PDF). SKYbrary. p. 2. Retrieved 2009-11-19.

84. a b "Tornado Detection at Environment Canada". Environment Canada. 2004-06-02.

Retrieved 2009-12-13.

85. Charles A. Doswell, III, Alan R. Moller, Harold E. Brooks (1999-08-02). "Storm

Spotting and Public Awareness since the First Tornado Forecasts of 1948". Weather and

Forecasting 14 (4): 544–557. Bibcode 1999WtFor..14..544D. doi:10.1175/1520-

0434(1999)014<0544:SSAPAS>2.0.CO;2. Retrieved 2009-12-13.

86. National Weather Service (2009-02-06). "What is SKYWARN?". National Oceanic and

Atmospheric Administration. Retrieved 2009-12-13.

87. European Union (2009-05-31). "Skywarn Europe". Retrieved 2009-12-13.

88. Terence Meaden (1985). "A Brief History". Tornado and Storm Research Organisation.

Retrieved 2009-12-13.

89. a b National Severe Storms Laboratory (2006-11-15). "Detecting Tornadoes: What Does

a Tornado Look Like?". National Oceanic and Atmospheric Administration. Retrieved

2009-12-13.

Page 25: Pamanahong Papel Sa Filipino

25

90. "Proposals For Changes in Severe Local Storm Warnings, Warning Criteria and

Verification". Roger and Elke Edwards. 2003. Retrieved 2009-12-13.

91. "Questions and Answers about Tornadoes". A Severe Weather Primer. National Severe

Storms Laboratory. 2006-11-15. Retrieved 2007-07-05.

92. Harold E Brooks, Charles A. Doswell III (2000-10-01). "Normalized Damage from

Major Tornadoes in the United States: 1890–1999". Retrieved 2007-02-28.

93. Lee R Hoxit, Charles F Chappell (1975-11-01). "Tornado Outbreak of April 3–4, 1974;

Synoptic Analysis" (PDF). National Oceanic and Atmospheric Administration. Retrieved

2009-12-13.

94. Anatomy of May 3's F5 tornado, The Oklahoman Newspaper, May 1, 2009

95. Thomas P Grazulis (2005-09-20). "Tornado Oddities". Retrieved 2009-12-13.

96. Emily Yahr (2006-02-21). "Q: You've probably heard the expression, "it's raining cats

and dogs." Has it ever rained animals?". Answers archive: Tornado history, climatology.

USA Today. Retrieved 2009-12-13.

97. Roger Edwards (2008-07-16). "Tornado Safety". National Weather Service. National

Oceanic and Atmospheric Administration. Retrieved 2009-11-17.

98. "Storm Shelters" (PDF). National Weather Service. National Oceanic and Atmospheric

Administration. 2002-08-26. Archived from the original on 2006-02-23. Retrieved 2009-

12-13.

99. a b "Highway Overpasses as Tornado Shelters". National Weather Service. National

Oceanic and Atmospheric Administration. 2000-03-01. Archived from the original on

2000-06-16. Retrieved 2007-02-28.

Page 26: Pamanahong Papel Sa Filipino

26

100. Knight, Meredith (2011-04-18). "Fact or Fiction?: If the Sky Is Green, Run for

Cover—A Tornado Is Coming". Scientific American. Retrieved 2012-09-03.

101. a b c Thomas P Grazulis (2001). "Tornado Myths". The Tornado: Nature's

Ultimate Windstorm. University of Oklahoma Press. ISBN 0-8061-3258-2.

102. a b c Tim Marshall (2005-03-15). "Myths and Misconceptions about Tornadoes".

The Tornado Project. Retrieved 2007-02-28.

103. a b National Weather Service Forecast Office, Dodge City, Kansas. "Overpasses

and Tornado Safety: Not a Good Mix". Tornado Overpass Information. NOAA.

Retrieved 24 March 2012.

104. Climate Services and Monitoring Division (2006-08-17). "Tornado Myths, Facts,

and Safety". National Climatic Data Center. Retrieved 2012-03-27.

105. Chris Cappella (2005-05-17). "Overpasses are tornado death traps". USA Today.

Retrieved 2007-02-28.

106. Kenneth F Dewey (2002-07-11). "Tornado Myths & Tornado Reality". High

Plains Regional Climate Center and University of Nebraska–Lincoln. Archived from the

original on June 11, 2008. Retrieved 2009-11-17

107. John Monteverdi, Roger Edwards, Greg Stumpf, Daniel Gudgel (2006-09-13).

"Tornado, Rockwell Pass, Sequoia National Park, 2004-07-07". Retrieved 2009-11-19.

108. National Severe Storms Laboratory (2006-10-30). "VORTEX: Unraveling the

Secrets". National Oceanic and Atmospheric Administration. Retrieved 2007-02-28.

109. Micheal H Mogil (2007). Extreme Weather. New York: Black Dog & Leventhal

Publisher. pp. 210–211. ISBN 978-1-57912-743-5.

Page 27: Pamanahong Papel Sa Filipino

27

110. Kevin McGrath (1998-11-05). "Mesocyclone Climatology Project". University of

Oklahoma. Retrieved 2009-11-19.

111. Seymour, Simon (2001). Tornadoes. New York City, New York: HarperCollins.

p. 32. ISBN 978-0-06-443791-2.

112. Thomas P Grazulis (2001). The tornado: nature's ultimate windstorm. University

of Oklahoma Press. pp. 63–65. ISBN 978-0-8061-3258-7. Retrieved 2009-11-20.

113. Erik Rasmussen (2000-12-31). "Severe Storms Research: Tornado Forecasting".

The Cooperative Institute for Mesoscale Meteorological Studies. Archived from the

original on April 7, 2007. Retrieved 2007-03-27.

114. United States Environmental Protection Agency (2009-09-30). "Tornadoes".

Retrieved 2009-11-20.

115. Grazulis, Thomas P. (2001). The tornado: nature's ultimate windstorm. University

of Oklahoma Press. pp. 65–69. ISBN 978-0-8061-3258-7. Retrieved 2009-11-20.

116. National Center for Atmospheric Research (2008). "Tornadoes". University

Corporation for Atmospheric Research. Retrieved 2009-11-20.

117. "Huge tornadoes discovered on the Sun". Physorg.com. Retrieved 2012-09-03.