S1_11_10_Robert_Maron_rev.pdf

  • Upload
    avca65

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    1/20

    ON-LINE MEASUREMENT OFRHEOLOGICAL PARAMETERS FOR

    FEEDBACK CONTROL

    Alex van der Spek, Zdoor BV, The Netherlands

    Bob Maron, CiDRA Minerals Processing, USA

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    2/20

    Objective• Client motivation: Water and land reclamation from existing tailings

    impoundment

    • CiDRA motivation: develop on-line rheology “measurement” with existingtechnology

    2

    Mature Fine Tailings,

    non-Newtonian slurry

    flocculant

    Newtonian slurry, large

    solids + water carrier fluid

    Recovered

    water

    solids

    Short pipe “reactor”

    • Technical Goal: 

    • Constraints:

    • velocity high enough for throughput, adequate mixing of flocculant, and...

    • velocity low enough to NOT break down flocks after they form, and...

    • Correct flocculant dosage to achieve agglomeration

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    3/20

    On-line rheology measurement

    methods investigated

    1. Monitor velocity profile change

    2. Measure wall shear rate from velocity profile, assume

    rheological model, cross plot vs wall shear stress from

    pressure drop

    3. Monitor degree of turbulence from energy spectrum of

    vorticity

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    4/20

    Key concept

    length scales and flow

    4

    Solid particlesVortical structures

    If...

    Vortical Structure size>>

      solid particle size

    ...Then

    NO INTERACTION 

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    5/20

    Key concept

    length scales and flow

    5

    Solid particlesVortical structures

    If...

    Vortical Structure size ≈ solid particle size

    ...Then

    INTERACTION !! 

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    6/20

    Length scales and energy propagationKolmogorov Theory of homogeneous isotropic turbulence

    Max vortical

    length scale,

    pipe diameter

    ≥ vortical

    length scalerange 

    Min vortical

    length scale,

    Kolmogorov

    length scale,

    ~200 um

    ≥  >> 

    Constant  bulk velocity, energy propagation

    Turbulent vortices transport energy from larger to shorter length scales (vortices)

    heatmechanical

    energy

    6

    1000 100 10 1 0.1 0.01

    Length scale (mm)

    Particle size,

    fines

    ~ 40 um max

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    7/20

    7

    Amplifiers and

    Digitizers

    Sensor Array

    ∆  ∆  ∆  ∆  ∆  ∆  ∆ 

    ∆ 

    ∆  ∆ 

    ∆  ∆ 

    ∆ 

    ∆ 

    L = Velocity

    ∆T 

    Velocity

    Measurement via

    Tracking of

    VorticalStructures

    Vortical Structures - use in SONARtrac

    Volumetric Flow Measurement

    Rev 10

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    8/20

    Slope of RidgeDetermines Flow

    Velocity

    Size2Velocity/Length2

    Size3Velocity/Length3

    1/λ1

    U/λ1

    U/λ3

    1/λ3/λ2

    U/λ2

    Wave Number

       F   r   e   q   u   e   n   c   y

    Temporal / Spatial Decomposition

    Wavenumber-frequency (K-ω

    plot 

    Each spatial wavelength has a discrete

    temporal frequency ( Frequency= Velocity/ Length -> f=U/λ 

    Size1Velocity/Length1

    Frequency

    Sonar Array Processing for Volumetric Flow

    8

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    9/20

    Kolmogorov Theory predicts Vortical power spectra...

    is measured by Sonar array

    9

    =   

    ⁄ *  

    ⁄  

       =1

     ∗    ∗ ( ) 

    Where,

    Sonar array infers (by direct measurement) Power Spectra vs wavenumber, therefore...

    Can evaluate energy dissipation (i.e. rheology information) rate without differential pressure

    Wavenumber k (1/ft)

       F   r   e   q   u   e   n   c   y    (   H   z    )

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    10/20

    Kolmogorov Theory

    Vortical power spectra

    10

    = 2

    3� −5

    3�  Wavenumber k (rad/ft)

       P   o   w   e   r    (    d   B    )

       r   e   2   0   u   P   a

    Wavenumber k (rad/ft)

    Power vs wavenumber spectra follow Kolmogorov Theory

       F   r   e   q   u   e   n   c   y    (   H   z    )

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    11/20

    Sonar array measures Vortical Power Quality

    11

    High Vortical

    Power Quality =

    low loss

    propagation of

    coherent power

    Rev 10

    Same velocities, but different Power Quality Spectra vs Wavenumber

    Low Vortical

    Power Quality =

    high loss

    propagation of

    coherent power

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    12/2012

    Sonar flow profile meter

    Vortical Power Quality (and flow) at 5 heights 

    Coherent StCoherent StV 90° 

    V 180° 

    V 0° 

    V 45°

     

    V 135° 

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

    CAUDAL (m/seg)

       A   L   T   U   R   A

       (   N   O   R   M

       A   L   I   Z   A   D   A

     profile

    Reference flow rate

    profile side sensor 

    V 0° 

    V 45° 

    V 90° 

    V 135° 

    V 180° 

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    13/20

    Test setup

    Velocity profile,

    non-Newtonian

    Bingham flow, Velocity profile,

    Newtonian 

    Turbulent flow,

    with agglomerated

    solids

    Mature Fine Tailings

    Non-settling fines

    agglomerationLarge flocks in water-

    based carrier fluid

    water

    solids

    mixer

    flowShort pipe “reactor”

    13

    Sonar

    flow

    profile

    Sonar

    flow

    profile

    Sonar

    flow

    profile

    Flocculant

    injection

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    14/20

    14

    NO flocculant, non-Newtonian flow

    Non-Newtonian Bingham flow

    No velocity profile change 

    With flocculant, Newtonian flow

    NO velocity profile change top-bottom 

    time

       V   e    l   o   c   i   t   y   P   r   o    f   i    l   e    (   m    /   s    )

    Pipe bottom

    Pipe top

    Sonar array & Velocity Profile

    Rev 10

    Stop

    flocculent

    Pipe bottom

    Pipe top

    ----- upstream

    ----- midstream

    ----- downstream

    time

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    15/20

    15

    NO flocculant, non-Newtonian flow

    Non-Newtonian Bingham flow

    No velocity profile change 

    With flocculant, Newtonian flow

    NO velocity profile change top-bottom 

    time

       V   e    l   o   c   i   t   y   P   r   o    f   i    l   e    (   m    /   s    )

    Pipe bottom

    Pipe top

    Sonar array & Velocity Profile

    Rev 10

    Stop

    flocculent

    Pipe bottom

    Pipe top

    ----- upstream

    ----- midstream

    ----- downstream

    time

    Upstream Midstream Downstream

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    16/20

    16

    NO flocculant, non-Newtonian flow

    Non-Newtonian Bingham flow

    No velocity profile change 

    With flocculant, Newtonian flow

    NO velocity profile change top-bottom 

    time

       V   e    l   o   c   i   t   y   P   r   o    f   i    l   e    (   m    /   s    )

    Pipe bottom

    Pipe top

    Sonar array & Velocity Profile

    Rev 10

    Stop

    flocculent

    Pipe bottom

    Pipe top

    ----- upstream

    ----- midstream

    ----- downstream

    time

    Upstream Midstream Downstream

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    17/20

    17

    NO flocculant

    Non-Newtonian Bingham flow

    Low-loss energy propagation

    With flocculant

    Newtonian flow

    High-loss energy propagation

       V   o   r   t   i   c   a    l   P   o   w   e   r   Q   u   a    l   i   t   y

    Pipe bottom

    Pipe top

    Sonar array & Vortical Power Quality

    Rev 10

    Stop

    flocculent

    ----- upstream

    ----- midstream

    ----- downstream

    time

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    18/20

    up-stream mid-stream down-stream

    Histograms, Vortical Power Quality

       c   o   u   n   t

    18

    Vortical Power Quality (VPQ) changes with rheology

       V

       o   r   t   i   c   a    l   P   o   w   e   r   Q   u

       a    l   i   t   y

    agglomerationLarge flocks in water-

    based carrier fluid

    water

    mixer

    Sonar

    VPQSonar

    VPQ

    time

    solids

    MFT flocculantSonar

    VPQ

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    19/20

    Possible ImplementationMeasuring real-time rheology change with Sonar Array Flow Meter

    19

    Sonar

    flow

    meter

    Sonar

    flow

    meter

    Sonar

    flowmeter

    up-stream mid-stream down-stream

    Histograms, Vortical Power Quality (VPQ)

       c   o   u   n   t

    VPQ VPQ VPQ

  • 8/9/2019 S1_11_10_Robert_Maron_rev.pdf

    20/20

    SummaryMeasuring rheology change with Sonar Array Flow Meter

    20

    • Agglomeration → Rheology change → Length scale change (particle size change) 

    • Length scale → Vortical Energy Transport (Kolmogorov Theory)

    • Sonar array measures Vortical Energy Transport (power vs. wavenumber)

    • Power vs. wavenumber “integrated” into Vortical Power Quality (standard measurement)

    • rheology change → Change in Sonar Vortical Power Quality → real-time measurement

    • Future work: move from “integrated” Vortical Power Quality figure of merit...to (better?)

    spectrum measurement