Seminar05 MPE

Embed Size (px)

Citation preview

  • 8/13/2019 Seminar05 MPE

    1/7

  • 8/13/2019 Seminar05 MPE

    2/7

    1.1 Example

    kinematic boundary conditions: v(0) = 0

    v(L) = 0

    natural boundary conditions: v (0) = 0

    v (L) = 0

    1. a11(x) =Z1(x) =A0+A1x+A2x2

    kinematic boundary conditions: Z1(0) != 0 A0= 0

    Z1(L) != 0 A2= A1

    1

    L

    Z1(x) =A1 x

    1

    x

    L= a11(x) (4)

    2. a22(x) =Z2(x) =A3x3 +A4x

    4

    kinematic boundary conditions: Z2(0) != 0 fulfilled

    Z2(L) != 0 A4= A3

    1

    L

    Z2(x) =A3 x3

    1

    x

    L

    = a22(x) (5)

    3. to n. all other parts analogously

    yN(x) =i=1

    aii(x) =x

    1 x

    L

    a1+a2x2 +a3x

    4 +a4x6 +

    (6)

    in case of complete series: strict fulfilment of equilibrium conditions(in every point of body = local)

    in case of abortion: weak fulfilment of equilibrium conditions(only in weighted integral mean value)

    2

  • 8/13/2019 Seminar05 MPE

    3/7

    1.2 Discretization

    p(x)

    S0

    s(x)

    x, u

    y, v

    L

    p0

    L1

    L2

    L3

    x1

    x2

    x3I3

    I2

    I1

    discretization e.g. by

    mean value

    Ii=I(xi= 0) +I(xi= Li)

    2

    integral mean value

    Ii=

    Li0

    I(xi) dxi

    Li

    ansatz function for each section

    vN(x1) = a0+a1x1+a2x2

    1

    vN(x2) = b0+b1x2+b2x2

    2

    vN(x3) = c0+c1x3+c2x2

    3

    boundary/matching condtions

    v(x1= 0) = 0; v(x1= L1) =v(x2= 0) ; v(x2= L2) =v(x3= 0) ;

    v (x1= 0) = 0; v (x1= L1) =v

    (x2= 0) ; v (x2= L2) =v

    (x3= 0) ;

    e.g. for L1= L2= L3

    vN(x1) = a2x2

    vN(x2) = a2

    3L

    1

    3L+ 2x

    +b2x

    2

    vN(x3) = a2

    3L (L+ 2x) +

    b2

    3L+c2x

    2

    internal potential (without axial strain energy)

    i=3

    k=1

    12

    EIk

    Lk0

    vN(xk)2

    dxk

    external potential (1st order theory)

    ex= 3

    k=1

    Lk0

    p (xk) vN(xk) dx

    3

  • 8/13/2019 Seminar05 MPE

    4/7

    2 Minimum potential energy of a plate

    x

    y

    LX

    p(x,y) LY

    w(x,y)

    applied load p (x, y)

    displacement field w (x, y)

    plate stiffness B= Et3

    12(1 2)

    potential of internal energy for a plate (derived in lecture)

    i= B

    2

    A

    (wxx+wyy)

    2 2 (1 )

    wxxwyy w

    2

    xy

    dx dy (7)

    whereaswxx=

    2w

    x2, wyy =

    2w

    y2 and wxy=

    2w

    xy

    potential of external energy

    e=

    A

    p (x, y) w (x, y) dx dy (8)

    2.1 Example 1

    p (x, y) =p0 sin

    xLx

    sin

    yLy

    E, , t, p0= const.

    ansatz-function

    boundary conditions

    w (x= 0, y) = 0 and w (x, y= 0) = 0

    w (x= Lx, y) = 0 w (x, y= Ly) = 0

    4

  • 8/13/2019 Seminar05 MPE

    5/7

    strong solution (Fourier series)

    w (x, y) =a sin

    x

    Lx

    sin

    y

    Ly

    (9)

    approximate solution (power series)

    wN(x, y) =a

    xLx 2 x

    3

    L3x+ x

    4

    L4x

    yLy 2 y

    3

    L3y+ y

    4

    L4y

    (10)

    strong solution

    derivations of displacement function

    wx(x, y) = a

    Lx cos

    x

    Lx

    sin

    y

    Ly

    wy(

    x, y) =

    a

    Ly

    sinx

    Lx

    cosy

    Ly

    wxx(x, y) = a

    Lx

    2 sin

    x

    Lx

    sin

    y

    Ly

    wyy(x, y) = a

    Ly

    2 sin

    x

    Lx

    sin

    y

    Ly

    wxy(x, y) = a 2

    LxLy cos

    x

    Lx

    cos

    y

    Ly

    (11)

    internal potential

    i = B

    2

    A

    w2xx+ 2wxxwyy+ w

    2

    yy 2 (1 )

    wxxwyy w2

    xy

    dx dy

    = B

    2 [I1+ 2I3+I2 2 (1 ) (I3 I4)] (12)

    integral I1

    I1 =

    A

    w2xxdx dy = a2

    Lx

    4

    A

    sin2

    x

    Lx

    sin2

    y

    Ly

    dx dy

    = a2

    Lx

    4

    12

    xLx4

    sin

    2 Lx

    x

    Lx

    0

    12

    y Ly4

    sin

    2 Ly

    y

    Ly

    0

    = a2

    Lx

    41

    4LxLy (13)

    Integral I2

    I2=

    A

    w2yy dx dy = a2

    Ly

    41

    4LxLy (14)

    5

  • 8/13/2019 Seminar05 MPE

    6/7

    Integral I3

    I3 =

    A

    wxx wyy dx dy = a2

    4

    L2xL2y

    A

    sin2

    x

    Lx

    sin2

    y

    Ly

    dx dy

    = a2 4

    L2

    xL2

    y

    1

    4

    LxLy (15)

    Integral I4

    I4 =

    A

    w2xydx dy = a2

    4

    L2xL2y

    A

    cos2

    x

    Lx

    cos2

    y

    Ly

    dx dy

    = a2 4

    L2xL2y

    1

    2x+

    Lx

    4sin

    2

    Lxx

    Lx

    0

    1

    2y+

    Ly

    4sin

    2

    Lyy

    Ly

    0

    = a2 4

    L2xL2y

    1

    4LxLy (16)

    finally

    i = a2

    4

    4LxLy

    B

    2

    1

    L4x+

    2

    L2xL2y

    + 1

    L4y 2 (1 )

    1

    L2xL2y

    1

    L2xL2y

    = a24

    8LxLyB

    1

    L2x+

    1

    L2y

    2(17)

    external potential

    a = A

    p (x, y) w (x, y) dx dy = p0aA

    sin2

    xLx

    sin2

    yLy

    dx dy

    = p0a 1

    4LxLy (18)

    complete potential

    =1

    4LxLy

    a24

    B

    2

    1

    L2x+

    1

    L2y

    2p0a

    (19)

    minimisation principal

    a = 0 =

    1

    4LxLy

    2a4

    B

    2

    1

    L2x+

    1

    L2y

    2p0

    (20)

    determination of unknown parameter a

    a= p0

    B4

    1

    L2x+ 1

    L2y

    2 (21)

    6

  • 8/13/2019 Seminar05 MPE

    7/7

    2.2 Example 2

    ansatz-function

    boundary conditions

    w (x= 0, y) = 0 and w (x, y= 0) = 0

    w (x= Lx, y) = 0 w (x, y= Ly) = 0

    w (x= 0, y) = 0

    approximate solution (power series)

    wN(x, y) =a

    x2

    L2x

    x3

    L3x

    y

    Ly 2

    y3

    L3y+

    y4

    L4y

    (22)

    3 Comparison of strong and approximate solution (Ritz)

    structure/system stiffness of approximate solution higher than reality

    strong approx

    (w) (wN) (23)

    displacements of approximate solution lower than reality

    w wN (24)

    w

    n

    strong solution

    approximatesolution

    with displacement w and number of coordinate functions n

    7