15
SHM Book page 354 - 361 Β©cgrahamphysics.com 2016

SHM Book page 354 - 361 - · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

Embed Size (px)

Citation preview

Page 1: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

SHM Book page 354 - 361 Β©cgrahamphysics.com 2016

Page 2: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

Recall

β€’ π‘Ž ∝ to displacement from EQLB position

β€’ π‘Ž is directed towards the EQLB position

β€’ 𝐹 = βˆ’π‘˜π‘₯ = π‘šπ‘Ž

β€’ π‘Ž = βˆ’π‘˜

π‘šπ‘₯ and πœ” =

π‘˜

π‘š= 2πœ‹π‘“ =

2πœ‹

𝑇

β€’ Since T =1

𝑓=

2πœ‹

πœ”= 2πœ‹

π‘š

π‘˜ and 𝑓 =

πœ”

2πœ‹=

1

2πœ‹

π‘˜

π‘š

β€’ π‘Ž = βˆ’πœ”2π‘₯

Β©cgrahamphysics.com 2016

Page 3: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

Circular motion and SHM

β€’ Suppose P is rotating the perimeter of a circle

β€’ Because rate of rotation is constant, angle πœƒ or πœ”π‘‘ is ∝ to time

β€’ If we draw y vs t instead, 2πœ‹ π‘Žπ‘›π‘‘ πœ‹ are replaced by T and 𝑇

2

Angular speed = πœ” =πœƒ

𝑑

πœƒ = πœ”π‘‘ 𝑦 = 𝑅𝑠𝑖𝑛 πœƒ π‘₯ = π‘…π‘π‘œπ‘  πœƒ

The variation of the vertical motion with time is a sine curve

Β©cgrahamphysics.com 2016

Page 4: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

Finding a solution to SHM π‘Ž = βˆ’πœ”2π‘₯ β€’ π‘£π‘Žπ‘£ =

βˆ†π‘ 

βˆ†π‘‘, where s(t) is the position function

‒𝑑𝑠

𝑑𝑑 is the first derivative s’(t) = v(t) = velocity

‒𝑑𝑣

𝑑𝑑=

𝑑"(𝑠)

𝑑𝑑 is the acceleration a(t)

β€’ π‘Ž 𝑑 = 𝑣′ 𝑑 = 𝑠"(𝑑) =𝑑2𝑠

𝑑𝑑 is the 2nd derivative

β€’ 𝑠 𝑑 = 𝑑2 + 2𝑑 + 12 𝑣 𝑑 = 2𝑑 + 2 π‘Ž 𝑑 = 2

β€’ Hence a(t)=βˆ’πœ”2π‘₯ or 𝑑2π‘₯

𝑑𝑑= βˆ’ πœ”2π‘₯

Β©cgrahamphysics.com 2016

Page 5: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

SHM can be represented using sine or cosine curves

𝒙 = π’™πŸŽπ’”π’Šπ’ 𝜽

β€’ π‘₯ = π‘₯0𝑠𝑖𝑛 πœƒ

β€’ π‘₯ = π‘₯0π‘ π‘–π‘›πœ”π‘‘

β€’ 𝑣 𝑑 = π‘₯0πœ” cos πœ”π‘‘

β€’ π‘Ž 𝑑 = βˆ’π‘₯0πœ”2π‘ π‘–π‘›πœ”π‘‘

𝒙 = π’™πŸŽπ’„π’π’” 𝜽

β€’ π‘₯ = π‘₯0π‘π‘œπ‘  πœƒ

β€’ π‘₯ = π‘₯0π‘π‘œπ‘ πœ”π‘‘

β€’ 𝑣 𝑑 = βˆ’π‘₯0πœ” sin πœ”π‘‘

β€’ π‘Ž 𝑑 = βˆ’π‘₯0πœ”2π‘π‘œπ‘ πœ”π‘‘

Where π’™πŸŽ = R = A = max displacement and ΞΈ = πœ”π‘‘ = π‘Žπ‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦

Β©cgrahamphysics.com 2016

Page 6: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

Relation between SHM and sine curve

β€’ Sin and cos oscillate between + 1 and – 1 β€’ Max value for π‘₯ = π‘₯0π‘π‘œπ‘ πœ”π‘‘ when π‘π‘œπ‘ πœ”π‘‘ = 1

π‘₯π‘šπ‘Žπ‘₯ = π‘₯0 β€’ Max value for 𝑣 𝑑 = βˆ’π‘₯0πœ” sin πœ”π‘‘ when sin πœ”π‘‘ = 1

π‘£π‘šπ‘Žπ‘₯ = βˆ’π‘₯0πœ” β€’ Max value for π‘Ž 𝑑 = βˆ’π‘₯0πœ”2π‘π‘œπ‘ πœ”π‘‘ when cπ‘œπ‘ πœ”π‘‘ = 1

π‘Ž0 = βˆ’π‘₯0πœ”2, which is the defining equation for SHM

Β©cgrahamphysics.com 2016

Page 7: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

Keeping in mind that πœ”π‘‘ varies between 0 and 2πœ‹

β€’ sin πœ”π‘‘:

β€’ Negative for πœ”π‘‘ from πœ‹ π‘‘π‘œ 2πœ‹

β€’ cos πœ”π‘‘:

β€’ Negative for πœ”π‘‘ from πœ‹

2

to 3πœ‹

2

This means

When displacement from EQLB is positive

then v is negative and so directed towards EQLB

This means

When displacement from EQLB is negative

then v is positive and so directed away from EQLB Β©cgrahamphysics.com 2016

Page 8: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

Graphical representation

Β©cgrahamphysics.com 2016

Page 9: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

Using trig relationships β€’ 𝑠𝑖𝑛2πœƒ + π‘π‘œπ‘ 2πœƒ = 1

sin πœƒ = 1 βˆ’ π‘π‘œπ‘ 2πœƒ

β€’ ΞΈ = πœ”π‘‘

β€’ sin πœ”π‘‘ = 1 βˆ’ π‘π‘œπ‘ 2πœ”π‘‘

β€’ π‘₯ = π‘₯0π‘π‘œπ‘ πœ”π‘‘ π‘₯

π‘₯0= π‘π‘œπ‘ πœ”π‘‘

β€’ sin πœ”π‘‘ = 1 βˆ’π‘₯2

π‘₯02

β€’ We know that 𝑣 𝑑 =βˆ’π‘₯0πœ” sin πœ”π‘‘

β€’ 𝑣 𝑑 = βˆ’π‘₯0πœ” 1 βˆ’π‘₯2

π‘₯02

= βˆ’πœ” π‘₯02 βˆ’ π‘₯2

β€’ Since v can be positive and negative, we need to write

𝑣 𝑑 = Β± πœ” π‘₯02 βˆ’ π‘₯2

πœ” = angular speed or frequency, π‘₯0 = 𝐴 = max displacement, x = position at specific instant This equation is useful for finding velocity at any particular position when knowing amplitude and period or f or πœ” Β©cgrahamphysics.com 2016

Page 10: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

Example β€’ An object oscillates with SHM with frequency 60Hz

and amplitude 25mm. Find the velocity at a displacement of 8mm

Solution

β€’ πœ” = 2πœ‹π‘“ = 2πœ‹ Γ— 60 = 120πœ‹

β€’ π‘₯0 = 25 Γ— 10βˆ’3π‘š

β€’ π‘₯ = 8 Γ— 10βˆ’3π‘š

β€’ 𝑣 𝑑 = Β± πœ” π‘₯02 βˆ’ π‘₯2

= Β±120πœ‹ 25 Γ— 10βˆ’3 2 βˆ’ 8 Γ— 10βˆ’3 2 = Β±8.9π‘šπ‘ βˆ’1

Β©cgrahamphysics.com 2016

Page 11: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

Boundary conditions

β€’ When displacement π‘₯ = π‘₯0, max displacement

β€’ At t=0 the solution is π‘₯ = π‘₯0π‘π‘œπ‘ πœ”π‘‘

β€’ An example is a simple pendulum or an harmonic oscillator

β€’ When displacement x = 0 at EQLB

β€’ At t=0 the solution is π‘₯ = π‘₯0π‘ π‘–π‘›πœ”π‘‘

β€’ The solutions are essential

the same, they differ by πœ‹

2

Β©cgrahamphysics.com 2016

Page 12: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

General solution to SHM equation β€’ π‘₯ = π‘₯0π‘π‘œπ‘ πœ”π‘‘ + π‘₯0π‘ π‘–π‘›πœ”π‘‘

β€’ There are actually 3 solutions principle of superposition: one of the solutions to the equation is the sum of all the other solutions

β€’ The physical quantities that πœ” will depend on is determined by the particular system

Β©cgrahamphysics.com 2016

Page 13: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

Weight oscillating at vertical spring

β€’ A vertical spring with spring constant k

β€’ πœ” =π‘˜

π‘š and T = 2πœ‹

π‘š

π‘˜

Β©cgrahamphysics.com 2016

Page 14: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

A simple pendulum β€’ πœ” =

𝑔

𝑙 and T = 2πœ‹

𝑙

𝑔

Proof β€’ F = ma

β€’ π‘Ž = βˆ’πœ”2π‘₯ β€’ F = βˆ’π‘šπœ”2π‘₯ β€’ Pendulum in EQLB when

T = mg cos πœƒ β€’ mg sin πœƒ β‰  in EQLB and provides

restoring force F β€’ F = mg sin πœƒ β€’ For small angles πœƒ, s = x

β€’ π‘ π‘–π‘›πœƒ~πœƒ =π‘₯

𝐿

mg sin πœƒ = ma

mg π‘₯

𝐿 = ma

Restoring force: - m 𝑔

𝑙π‘₯ = π‘šπ‘Ž π‘Ž = βˆ’

𝑔

𝑙π‘₯

Hence by comparing to SHM

πœ”2 =𝑔

𝑙

Β©cgrahamphysics.com 2016

Page 15: SHM Book page 354 - 361 -   · PDF fileGraphical representation ©cgrahamphysics.com 2016 . Using trig relationships ... Hence by comparing to SHM

Example β€’ A loudspeaker cone vibrates in SHM at a frequency of 262Hz. The

amplitude at the center of the cone is A = 1.5Γ— 10βˆ’4π‘š and at t = 0, x = A.

β€’ A) what equation describes the motion of the center of the cones?

β€’ B) what are the velocity and acceleration as a function of time?

β€’ C) what is the position of the cone at t = 1ms?

Solution

A) πœ” = 2πœ‹π‘“ = 2πœ‹ Γ— 262 = 1646π‘Ÿπ‘Žπ‘‘π‘ βˆ’1 π‘₯ = 𝐴 cos πœ”π‘‘ = 1.5Γ— 10βˆ’4 cos 1646𝑑

B) 𝑣0 = πœ”π΄ = 1646 Γ— 1.5Γ— 10βˆ’4 = 0.25π‘šπ‘ βˆ’1 𝑣 = βˆ’π‘£π‘šπ‘Žπ‘₯ sin πœ”π‘‘ = βˆ’0.25 sin 1646𝑑

π‘Žπ‘šπ‘Žπ‘₯ = πœ”2𝐴 = 1646 2 Γ— 1.5Γ— 10βˆ’4 = 406π‘šπ‘ βˆ’2 π‘Ž = βˆ’π‘Ž0 cos πœ”π‘‘ = βˆ’406 cos 1646𝑑

C) π‘₯ = 𝐴 cos πœ”π‘‘ = 1.5Γ— 10βˆ’4 cos 1646 Γ— 1 Γ— 10βˆ’3 = βˆ’1.3 Γ— 10βˆ’5π‘š Β©cgrahamphysics.com 2016