43
Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1. Teooria: Boole’i differentsiaalvõrrand 2. Teooria: Binaarsed otsustusdiagrammid Rike Test Testi süntees Diagnostika sõnastik Testi analüüs – rikete simuleerimine Stiimul Digitaa l- süsteem Reaktsioon Diagnoos 1 2 3 4

Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Embed Size (px)

Citation preview

Page 1: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Technical University Tallinn, ESTONIA

1

2. Sissejuhatus teooriasse

1. Teooria: Boole’i differentsiaalvõrrand

2. Teooria: Binaarsed otsustusdiagrammid

Rike

Test

Testi süntees

Diagnostika sõnastik

Testi analüüs – rikete simuleerimine

Stiimul

Digitaal- süsteem Reaktsioon

Diagnoos12

3

4

Page 2: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Technical University Tallinn, ESTONIA

2

Fault Propagation Problem

&

1

Path activation

Fault “Stuck-at-1”

0

Fault activation

Correct signal

Error

1 0

Logic gate

1

Path activation

Fault Stuck-at-0

Fault activation

Correct signal

Error

1 0 x1 x2

x3 = 1 x4 x5 x6 x7

y

0

0

0 F (X)

Logic circuit

Page 3: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Technical University Tallinn, ESTONIA

3

Boolean derivatives

Boolean function:

Y = F(x) = F(x1, x2, … , xn)

Boolean partial derivative:

),...,...(),...,...()(

11 ninii

xxxFxxxFx

XF

),...1,...(),...0,...()(

11 ninii

xxxFxxxFx

XF

Page 4: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Technical University Tallinn, ESTONIA

4

Boolean Derivatives

Useful properties of Boolean derivatives:

These properties allow to simplify the Boolean differential equation

to be solved for generating test pattern for a fault at xi

If F(x) is independent of xi

ii x

XGXF

x

XGXF

)()(

)()(

ii x

XGXF

x

XGXF

)(

)()()(

)( 323241 xxxxxx

41)( xxXF 3232)( xxxxXG

Näide:

ix

XGxx

x

XGXF

)()()(41

2

Page 5: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Technical University Tallinn, ESTONIA

5

Boolean derivatives

- if F(x) is independent of xi

- if F(x) depends always on xi

0)(

ix

XF

1)(

ix

XF

Examples:

:)()( 32321 xxxxxXF 0)(

21213

xxxx

x

XF

:)( 21 xxXF 1)(

221

xx

x

XF

),...1,...(),...0,...()(

11 ninii

xxxFxxxFx

XF

Page 6: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Technical University Tallinn, ESTONIA

6

Boolean vector derivatives

If multiple faults take place independent of xi

Example:

&

&

1

x1x2

x3x4

),...,,...(),...,,...(),(

)(11 njinji

ji

xxxxFxxxxFxx

XF

43214321 ),,,( xxxxxxxxFy

)(),(

)(3232414141

32

xxxxxxxxxxxx

XF

Page 7: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Technical University Tallinn, ESTONIA

7

Boolean vector derivatives

Calculation of the vector derivatives by Carnaugh maps:

1)(),(

)(3232414141

32

xxxxxxxxxxxx

XF

43214321 ),,,( xxxxxxxxFy x2

x1

1 1

111

11

x3

x4

4321 xxxx

x2

x1

1 1

11

1 11

x3

x4

4321 xxxx

x2

x1

1 1

1

11

11

x3

x4

1

1

1

=

Page 8: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Technical University Tallinn, ESTONIA

8

Boolean vector derivatives

Interpretation of three solutions:

1)(),(

)(3232414141

32

xxxxxxxxxxxx

XF

141 xx

Two paths activated

&

&

1

x1x2

x3x4

yFault

1

1

141 xx

Single path activated

&

&

1

x1x2

x3x4

yFault

1

0

Page 9: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Technical University Tallinn, ESTONIA

9

Derivatives for complex functions

Boolean derivative for a complex function:

i

j

j

k

i

jk

x

F

F

F

x

XXFF

)),((

Additional condition:

03

2

x

x

y

x2

x1x3x44

3

3

1

14 x

x

x

x

x

y

x

y

Example:

Page 10: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Topological Idea of Test Generation

1

Path activation

Fault Stuck-at-1

Fault activation

Correct signal

Error

0 1 x1 x2

x3 = 0 x4 x5 x6 x7

y

0

0

0 F (X)

10

7654321 )( xxxxxxxy

1

0

0

x1

x2

y

x3

x4 x5

x6 x7

0

11

x1

x2

y

x3

x4 x5

x6 x7

0

10 1

0

Page 11: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

&

&

&

1

&

x1x2

x3x4

y

x11

x21

x12x31

x13

x22x32

x5

x6

x7

x8

Each node in SSBDD represents a signal path:

Mapping Between Circuit and SSBDD

x11y x21

x12 x31 x4

x13x22 x32

0

1

0

1

11

Signal path

Node x11 in SSBDD represents the path (x1, x11, x6, y ) in the circuitThe SAF-0(1) fault at the node x11 represents the SAF faults on the lines x11, x6, y in the circuit fault collapsing32 faults (16 lines) in the circuit 16 faults (8 nodes) in SSBDD

Page 12: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Technical University Tallinn, ESTONIA

12

316254142321 ))((( xxxxxxxxxxxxy

1...

)()())((

)()()(

2341

62414233121

5

562414233121

5

xxxx

xxxxxxxxxxx

x

xxxxxxxxxxxx

x

y

x1 x2y

x3 x2 x4

x1 x4

x5

x2 x6

x1 x2

1

0

Test Generation with BD and BDD

BD:BDD:

x1 x2 x3 x4 x5 x6 y

0 1 - 0 D - D

Test pattern:

Page 13: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Algorithm:1. Determine the activated path to find the fault candidates2. Analyze the detectability of the each candidate fault

(each node represents a subset of real faults)

Fault Analysis with SSBDDs

x11y x21

x12 x31 x4

x13x22 x32

0

1

0

1

13

&

&

&

1

&

x1

x2

x3x4

y

x11

x21

x12

x31

x13

x22x32

0

1

0 001

00

Page 14: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

14

Test Generation with SSBDDs

&

&

&

1

&

x1

x2

x3x4

y

Test generation for:

x11

x21

x12

x31

x13

x22x32

x110

10

1

00

0

0

10

10

0

x11y x21

x12 x31 x4

x13x22 x32

11 1

10

Structural BDD:

x1y x2

x4 x3

x2

Functional BDD:

0

11

10

1

1

x1 x2 x3 x4 y

1 1 0 -

Test pattern:

1 0

Page 15: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Functional Synthesis of BDDs

Shannon’s Expansion Theorem: 01)()()(

kk xkxk XFxXFxXFy

2432 )( xxxx

43xx

43124321 ))(( xxxxxxxxy

011

)(x

XFx

x1y43 xx x2 1

x3

x4

xky1

)(kx

XF

0)(

kxXF

Using the Theoremfor BDD synthesis:

1

0

x3 x4 1

0

Page 16: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Functional Synthesis of BDDs

Shannon’s Expansion Theorem: 01)()()(

kk xkxk XFxXFxXFy

43124321 ))(( xxxxxxxxy

x1y x2 1

x3

x4

x3 x4 1

0

x1y

x3

x2 1

x3

x4

0

Page 17: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

BDDs for Logic GatesElementary BDDs:

1

x1

x2

x3

y x1 x2 x3

NOR

1x2

x3

y x1

x1

x2

x3

ORx1

x2

x3

y

x1 x2 x3

& AND

1

0

&

1

1x1

x2

x3

x21

x22y

a

b

SSBDD synthesis:SSBDDs for a given circuit are built by superposition of BDDs for gates

Given circuit:

17

1

0

Page 18: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Synthesis of SSBDD for a Circuit

&

1

1x1

x2

x3

x21

x22y

a

b

))((& 322211 xxxxbay

a by

a x1

x21

Superposition of BDDs:

Superposition of Boolean functions:

Given circuit:

Compare to

Structurally Synthesized BDD:

b x22

x3

ay x22

x3

b

x3

y x22x1

x21

a 18

Page 19: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

19

Generation of BDDs for

321 xxxy

Logic Operation with BDDs

Page 20: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Boolean Operations with SSBDDs

20

1

&

&x1

x2

x3

x21

x22

y

a

b

1

&

&x5

x6

x51

x52

c

d

x4

g

e

AND-operation:

y = e g x3

x1

x21

x22

x6

x4

x51

x52

y

OR-operation:

x3

x1

x21

x22y

x6

x4

x51

x52

y = e g

Page 21: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

21

Boolean function: y = x1x2 x3 (x4 x5x6)

1-nodes of a 1-path representa term in the DNF: x3x5x6 = 1

Properties of SSBDDs

x1y x2 #1

#0

x3 x4

x5 x6

y

0-nodes of a 0-path represent a term in the CNF: x1x4x5 = 0

x2 #1

x3

x6

#0

x1

x4

x5

Page 22: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Boolean Operations with SSBDDs

22

Boolean function:

y = x1x2 x3

y x1 x2

x3

Dual function:

y*

y*= (x1 x2) x3

x1 x3

x2

Inverted dual function:

y * = x1x2 x3

y * x1

x3

x2

Inverted function (DeMorgan):

y = x1x2 x3 = ( x1 x2) x3

y x1 x3

x2

Page 23: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Transformation Rules for SSBDDs

23

Commutative law:

y = x1 x2= x2 x1

BOOLEAN ALGEBRASSBDD

Idempotent law:Node passing:

y y y = x1 x1 x2 = = x1 x2=

x2x2

x1

x1

x1

x2

Exchange of nodes:

y y

=x1

x2

x2

x1

Page 24: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

24

Properties of SSBDDs

Boolean function:

y = x1x2 x3 (x4 x5x6)

x1y x2 #1

#0

x3 x4

x5 x6

y x1 #1

x3

x5

#0

x2

x4

x6

Exchange of nodes:

y y

=x1

x2

x2

x1

Page 25: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

25

Properties of SSBDDs

Boolean function:

y = x1x2 x3 (x4 x5x6)

x1y x2 #1

#0

x3 x4

x5 x6

Exchange of subgraphs:

y y

=

x3y x4 #1

#0

x1 x2

x5 x6

G1

G2

G2

G1

Page 26: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Transformation Rules for SSBDDs

26

Absorption law:

BOOLEAN ALGEBRASSBDD

Node passing:

y = x1 x1x2 = x1y y=

x1

x1

x1

x2 x1 x2

Distributive law:y

=y

y = x1x2 x1x3= = x1(x2 x3)

x1

x1

x2

x3

x2

x3

x1

x1

Page 27: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Transformation of SSBDDs to BDDs

x11y x21

x12 x31 x4

x13x22 x32

SSBDD:

x1y x2

x12 x31 x4

x13x22 x32

x1y x2

x12 x3 x4

x13x22 x32

x1y x2

x4 x3

x2

Optimized BDD:

x1y x2

x4 x3

x2 x3

BDD:

27

Page 28: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Transformation Rules for SSBDDs

28

Assotiative law:

BOOLEAN ALGEBRASSBDD

y = x1 (x2 x3) = = (x1 x2) x3

Superposition:

y

z

x1

z

x2

x3

y

z=

x1

x2

z

x3

=

y

x2

x3

x1

Page 29: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Properties of SSBDDsGraph related properties: SSBDD is

planar asyclic traceable (Hamiltonian path) for every internal node there

exists a 1-path and 0-path homogenous

x11y x21

x12 x31

x4

x13x22 x32

0

1

0 0

1

1

1

1

Page 30: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

BDDs for Flip-Flops

30

D

C

q c

q’

D

Elementary BDDs

D Flip-FlopJK Flip-Flop

c

q’

S

R q’

S

J

q

R

C

KK

JS

C

q

R

0

')'(

SR

qcRqScq

c

q’

S

R q’

R

U

RS Flip-Flop

U - unknown value

Page 31: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

31a

a b

c

Y

Fan-out stems

SSBDD4

SSBDD5

SSBDD3

SSBDD2

SSBDD1

A

B

CY1

Y2

D

E

FFR

FFR

FFR

FFR

FFR

C

From circuit to set of SSBDDs

Mapping Between Circuit and SSBDD

Page 32: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Advantages of SSBDDs

Linear complexity: a circuit is represented as a system of SSBDDs, where each fanout-free region (FFR) is representred by a separate SSBDD

32

One-to-one correspondence between the nodes in SSBDDs and signal paths in the circuit

This allows easily to extend the logic simulation with SSBDDs to simulation of faults on signal paths

Page 33: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Shared SSBDDs - S3BDD

Extension of superposition procedure beyond the fan-out nodes of the circuit

33

Merging several functions in the same graphs by introducing multiple roots

Superpositioning of FFRs Node of SSBDD signal path up to fan-out stem Input of SSBDD circuit down to primary inputs

Page 34: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

34

18

9 8

21

6 10 16 13

14 11

7

19

15 12 17

3 4 14 11

17

16

20

18

2

5 1 15 12 10

13

S3BDDs and Fault Collapsing

&

&

&

1

1

1

1

1

&

&

&

&

1

1

1

12

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Fault collapsing: From 84 faults to 36 faultsFor SSBDD: 50 faults

Page 35: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

35

SSSBDD for 19

Node Path

14 140-19 (3)

11 110-19 (4)

7 7-19 (4)

15 150-170-19 (3)

12 120-141-170-19 (4)

3 3-111-141-170-19 (5)

4 4-111-141-170-19 (5)

14 11

7

19

15 12 17

3 4 14 11

Shared SSBDDs

&

&

&

1

1

1

1

1

&

&

&

&

1

1

1

12

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Each node represents different paths (path segments) in the circuit

Page 36: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Synthesis of S3BDD for a Circuit

Given circuit C17Superposition of BDDs:

G1 X1 11

G1

3

Y1

3

Y1 X1 11

3 X2 213

Y1 X1 11 Y1 X1 X3

3 X2 21

Y1 X1 X3

3 X2 21 2 12

X4

Y1 X1 X3

3 X2 X3

2X41

Each node in the SSMIBDD represents a signal path in the circuit

Testing a node in SSMIBDD means testing a signal path in the circuit

Page 37: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Synthesis of S3BDD for a Circuit

Given circuit C17

Two-output circuit is represented by a single SSBDD with shared

subgraphs

37

Superposition of BDDs:

G4 X5 2

Y2

G4

3 Y2 3

X5 2

Y1 X1 X3

3 X2 X3

2X4

2

Y2 3

X5

Y2 3

X5

Y1 X1 X3

3 X2 X4

X3

Page 38: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

38

1

1 T13

2

&

13 1

11

&1

1

16

8

&1 & 26

1

12

T3

T2

4

5

6

79

10

14

15

1718

19

20

21

22

23

24

25

Sequentional S3BDDs

1

12

T222 258

T2

&

13 1

11

&1

1

16

8

&1 & 26

T3

4

5

6

1417

18

19

20

21 23

24

9

T3

T3

T2

14

1

1 T1

3

2

7 9

10

15 T1

T1

3 2

T1

T1

9

T2T3

26

9

14

4

T3 1

14 8

8T2

25 nodes,50 stuck-at faults

10 nodes,20 stuck-at faults,

2,5 times less

GAIN: 2,5 times

in logic simulation, 2,5 2 = 6,25 times in fault simulation

Page 39: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

39

G Nodes Signal paths L 

GT1

3 3 – 15 – T1 32 2 – 9 – 10 – 15 – T1 5T1 T1 – 7 – 9 – 10 – 15 – T1 6

Structured Interpretation of S3BDDs

3 2

T1

T1

91

1 T1

3

2

7 9

10

15 T1

T1

Each node in the S3BDD represents a signal path in the circuit

S3BDD represents two subcircuits

Page 40: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

40

G Nodes Signal paths LGT2 8 8 – 12 – 25 – T2 4

  

G26

T2 T2 – 5 – 21 – 23 – 26 59 9 – 11 – 18 – 20 – 21 – 23 – 26 7

14 14 – 17 – 18 – 20 – 21 – 23 – 26 74 4 – 19 – 20 – 21 – 23 – 26 6T3 T3 – 6 – 14 – 16 – 19 – 20 – 21 – 23 – 26 91 1 – 8 – 13 – 14 – 16 – 19 – 20 – 21 – 23 – 26 10

Structured Interpretation of S3BDDs

1

12

T222 258T2

&

13 1

11

&1

1

16

8

&1 & 26

T3

4

5

6

1417

18

19

20

21 23

24

9

T3T3

T2

14

Page 41: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

Optimization (by ordering of nodes): BDDs for a 2-level AND-OR circuit

BDDs and Complexity

2n nodes 22n - 2 nodes

BDD optimization:We start synthesis:•from the most repeated variable

Page 42: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

BDDs for an 8-bit data selector

BDDs and Complexity

Page 43: Technical University Tallinn, ESTONIA 1 2. Sissejuhatus teooriasse 1.Teooria: Boole’i differentsiaalvõrrand 2.Teooria: Binaarsed otsustusdiagrammid Rike

Research in ATI© Raimund Ubar

BDDs and Complexity

43

D

C

q c

q’

D

Elementary BDDs

D Flip-FlopJK Flip-Flop

c

q’

S

R q’

S

J

q

R

C

KK

JS

C

q

R

0

')'(

SR

qcRqScq

c

q’

S

R q’

R

U

RS Flip-Flop

U - unknown value

BDD optimization:We start synthesis:• from the most important variable, or•from the most repeated variable