72
Lecture 5 Differential and Multistage Amplifiers Thawatchai Thongleam Program in Electronics Engineering Faculty of Science and Technology Nakhon Pathom Rajabhat University

Thawatchai Thongleam Program in Electronics …pws.npru.ac.th/thawatchait/data/files/Lecture 5 Differential and... · Faculty of Science and Technology NakhonPathomRajabhatUniversity

  • Upload
    vominh

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Lecture 5 Differential and Multistage Amplifiers

Thawatchai Thongleam

Program in Electronics Engineering

Faculty of Science and Technology

Nakhon Pathom Rajabhat University

Outline

• The BJT Differential Pair

• Small Signal Operation of The BJT Differential Amplifier

• Other Nonideal Differential Amplifier

• Biasing in BJT Integrated Circuit

• BJT Differential Amplifier

•MOS Differential Amplifiers

•Multistage Amplifiers

5.1 Introduction

5.1 Introduction

5.1 Introduction

รูปที� 5.2 การใชว้งจรขยาย CE สองภาคเพื�อกาํจดัผลกระทบของริปเปิล

5.1 Introduction

5.1 Introduction

VSS

vin1

RD

M1 M2

vout1

RSS

RD

vout2

P

RD

VDD

M3 M4

vout3

RSS

RD

vout4

P

vin2

5.2 Signal

• สัญญาณโหมดผลต่าง (Differential mode signal) คือ ระดบัของสัญญาณที�วงจรที�มีค่าแตกต่างกนั

• สัญญาณโหมดร่วม (Common mode signal) คือ ระดบัของสัญญาณที�วงจรใชร้่วมกนั

5.2 Differential Mode Signals

5.3 Common Mode Signals

5.3 Common Mode Signals

5.4 Differential pair

รูปที� 5.6 วงจรขยายคู่ผลต่าง (ก) ไบโพล่า (ข) มอสเฟต

5.5 Input CM Noise with Ideal Tail Current

5.6 Input CM Noise with Non-ideal Tail Current

5.7 Comparison

• As it can be seen, the differential output voltages for both cases are the same. So for small input CM noise, the differential pair is not affected.

MOSFET Differential Amplifier.

• Signal analysis of differential amplifier

• differential mode signal analysis

• common mode signal analysis

Fig 5.12 The basic MOS differential-pair

configuration.

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

Differential Response

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

in inV V−1 2

2

in inV V−1 2

2

in inV V+1 2

2in inV V+1 2

2

Differential Response

in inV V−1 2

2

in inV V−1 2

2

in inV V+1 2

2in inV V+1 2

2

Differential Response

RD1

VDD

M1 M2

voutd1

RD2

voutd2

ISS

X Y

vid

2

vid

2

RD1

VDD

M1 M2

voutc1

RD2

voutc2

ISS

X Y

vic

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

Differential Response

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

V∆

VIN1 – VIN2

ID

ISS

ID2

ISS

2

V∆−

Differential Response

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

V∆

VIN1 – VIN2

ID

ISS

ID2

ISS

2

V∆−

Differential Response

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RDVIN1 – VIN2

VDD

Vout

Vout1

Vout2

ISS

2VDD - RD

Differential Response

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

VIN1 – VIN2

+RDISS

-RDISS

Vout = VOUT1 – VOUT2

Differential Response

RD1

VDD

M1 M2

voutd1

RD2

voutd2

ISS

X Y

vid

2

vid

2

P

Differential Response

RD1

VDD

M1 M2

voutd1

RD2

voutd2

ISS

X Y

vid

2

vid

2

P

MOS Differential Pair’s Large-Signal Response

( ) ( )in

SSD D n ox in in in

n ox

W II I C V V V VWL C

L

µµ

− = − − −2

21 2 1 1 2

1 4

2

in in GS GSV V V V− = −1 2 1 2

1 21 2

2 2D Din in TH TH

n ox n ox

I IV V V VW W

C CL L

µ µ

− = + − +

MOS Differential Pair’s Small-Signal Response

out out out D D DV V V I I R= − =− −1 2 1 2( )

out out out D D DV V V I I R= − =− −1 2 1 2( )

out DD D DV V I R= −1 1 out DD D DV V I R= −2 2

( ) ( )in

SSout n ox in in in D

n ox

W IV C V V V V RWL C

L

µµ

=− − − −

2

21 1 2

1 4

2

MOS Differential Pair’s Large-Signal Response

( ) ( )in

SSD D n ox in in in

n ox

W II I C V V V V

WL CL

µµ

− = − − −2

21 2 1 1 2

1 4

2

Differential Response

Avd

and Avc

0ic

outdvd

id V

VA

V =

=

outd outd outd vd idV V V A V= − =1 2

id

outcvc

ic V

VA

V =

= 1,2

0

Small-Signal Analysis of MOS Differential Pair

1 12id

outd m DV

V g R= − 2 22id

outd m DV

V g R = − −

-gm1RD

voutd2

vid

2

vid

2

vid

2

Virtual Ground and Half Circuit

1 2m m m n ox SSW

g g g C IL

µ= = =

outdvd m D

id

VA g R

V= = −

outd outd outd m D idV V V g R V= − = −1 2

-gm1RD

voutd2

vid

2

vid

2

vid

2

Small-Signal Response

• Similar to its bipolar counterpart, the MOS differential pair exhibits the same virtual ground node and small signal gain.

vd m DA g R= −RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

MOS Differential Pair Half Circuit Example I

1 3 1

3

0

1|| ||v m O O

m

A g r rg

λ ≠

= −

MOS Differential Pair’s Common-Mode Response

• Similar to its bipolar counterpart, MOS differential pair produces zero differential output as V

CMchanges.

SSX Y DD D

IV V V R= = −

2

outc outc outcV V V= =1 2

1 2outc X outc YV V ,V V= =

Common-Mode Response, ACM-DM

CS Stage with Degeneration

Common-Mode Response, ACM-DM

1 21 2

m Doutc outc ic

m SS

g RV V V

g R= ≅ −

+

Common-Mode Response

1 2outc m D

vcic m SS

V g RA

V g R= ≅ −

+

BJT Differential Amplifier.

• Differential Amplifier analysis • differential mode signal

analysis

• common mode signal analysis

Fig. 7.12 The basic BJT

differential-pair configuration.

Large Signal Analysis

Small Signal Analysis

Contrast Between MOS and Bipolar Differential Pairs

• In a MOS differential pair, there exists a finite differential input voltage to completely switch the current from one transistor to the other, whereas, in a bipolar pair that voltage is infinite.

MOS Bipolar

The effects of Doubling the Tail Current

• Since ISS is doubled and W/L is unchanged, the equilibrium overdrive voltage for each transistor must increase by to accommodate this change, thus ∆Vin,max increases by as well. Moreover, since ISS is doubled, the differential output swing will double.

2

2

The effects of Doubling W/L

• Since W/L is doubled and the tail current remains unchanged, the equilibrium overdrive voltage will be lowered by to accommodate this change, thus ∆Vin,max will be lowered by as well. Moreover, the differential output swing will remain unchanged since neither ISS nor RD has changed

2

2

Common Mode Response

1 2outc m C

vcCM m EE

V g RA

V g R= ≅ −

+

Common Mode Rejection Ratio : CMRR

• Common mode rejection ratio (CMRR) คือ อตัราการกําจดั

สญัญาณโหมดร่วม

vd

vc

ACMRR

A=

1 2 m SSCMRR g R= +

MOSFET BJT

1 2 m EECMRR g R= +

Ex 7.1 VDD=VSS=1.5 V, RD

= 2.5 k and M1= M2 has KN

= 2 mA/V2

VTH

= 0.5 V and ISS

= 0.4 mA Find Vout

Ex 7.2 VDD

=VSS

=1.5 V, RD

= 2.5 k and M1= M2 has KN

= 2 mA/V2

VTH

= 0.5 V and ISS

= 0.4 mA Find Vout

Ex 7.3 VDD=VSS=1.5 V, RD

= 2.5 k and M1= M2 has KN

= 2 mA/V2

VTH

= 0.5 V and ISS

= 0.4 mA Find Vout

Offset Voltage to compensate

Figure 7.25 (a) The MOS differential pair with both inputs grounded.

Owing to device and resistor mismatches, a finite dc output voltage VO

results. (b) Application of a voltage equal to the input offset voltage

VOS

to the terminals with opposite polarity reduces VO

to zero.

• สาเหตุที�เกิดแรงดนัออฟเซตคือค่าความตา้นทานของโหลด และค่า KN

และ VTH

ของมอสที�เป็นคู่ผลต่างไม่เท่ากนั

Active Loads

• Active load maintains bias current I

• Active load has high impedance

VDD

M1 M2

MC1

P

ISS

vIN2vIN1

M3 M4vOUT

VB

VDD

M1 M2

MC1

P

ISS

vIN2vIN1

M3 M4vOUT

VB

( )1,2 3 2

0

||vd m O OA g r r

λ ≠

= −( )( )1,2 3 2

1,2 3 2

0

||

1 || 2

m O O

vc

m O O SS

g r rA

g r r R

λ ≠

−=

+

Active Load

• Active Load in Saturation

• Without any input

Active Load

• The current generated by differential input will only flow to the load

Active Load

• In practice, leakage from Drain to Source

Reference

1. Adel S. Sedra, Kenneth C. Smith “Microelectronic Circuit”

2. Pual R. Gray and Robert G. Mayer “Analysis and Design of Integrated Circuit”