48
SS2016 Modern Neural Computation Lecture 1: Single Neurons Hirokazu Tanaka School of Information Science Japan Institute of Science and Technology

JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Embed Size (px)

Citation preview

Page 1: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

SS2016 Modern Neural Computation

Lecture 1: Single Neurons

Hirokazu TanakaSchool of Information Science

Japan Institute of Science and Technology

Page 2: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Neuron as a computational unit of the brain.

In this lecture we will learn:• Basic anatomy and physiology of neuron

- morphology- membrane properties

• Phenomenological models with subthreshold dynamics- Integrate-and-fire model, Quadratic-and-fire model, Resonate-and-fire model

• Biophysical models with spiking mechanism- Ion channels, master equations- Hodgkin-Huxley model

• Phase plots and bifurcation analysis- Saddle-node bifurcation, Andronov-Hopf bifurcation- FitzHugh-Nagumo model, Hindmarsh-Rose model

• Modern single-neuron models- Izhikevich model, Adaptive-exponential model

Page 3: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Neurons composed of dendrites, soma and axon.

Figure 3.1, Fundamental Neuroscience, 3rd Edition

Page 4: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Morphology: Neurons take various shapes.

Figure 2.1, Fundamental of Computational Neuroscience

Page 5: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Cortical neurons receive cortico-cortical and thalamo-cortical inputs.

Figure 3.2, Fundamental Neuroscience, 3rd Edition

Pyramidal cell in layer II/III

Apical dendrites

Basal dendrites

Page 6: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Lipid-bilayer membrane insulates a neuron

Ruye Wang, http://fourier.eng.hmc.edu/e180/lectures/signal1/node2.html

Page 7: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Physiology: Neurons are electrically excitable.

Figure 2.2, Neuroscience 3rd Edition

Page 8: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Physiology: Neurons take various spiking patterns.

Izhikevich (2004) IEEE Neural Networks

Page 9: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Leaky Integrate-and-fire model (LIF)

( ) ( )( ) ( )m L

dv tv t E RI t

dtτ = − − +

( ) ( )f

f

j

j jj t

I t w t tα= −∑∑

( )fthv t V=

( )freset .v t V←

Leaky integration Fire (spike)If the potential reaches the threshold voltage,

then, add a spike and reset the potential to the reset voltage.

Figure 3.1, Fundamental of Computational Neuroscience

Lapicque (1907)For English translation, see:

Brunel & van Rossum (2007)

Page 10: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Analytical solution of LIF model with constant current.

( ) ( )m

dv tv t RI

dtτ = − +

( ) ( ) m m0 1 t t

tv t v e RI e RIτ τ

− −

→∞

= + − →

Figure 3.2, Fundamental of Computational Neuroscience

( ) ( )( ) const.

Lv t v t E

I t I

← −

= =

subtracting the equilibrium potential.

considering a time-invariant current.

Page 11: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

f-I curve of LIF model.

Figure 3.3, Fundamental of Computational Neuroscience

( )L r

ref mL th

1

lnf I

RI E VRI E V

τ τ=

+ −+ + −

Page 12: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Quadratic-and-fire model

( ) ( )2dv tI v t

dt= +

( ) ( )thresholdif , then resetv t v v t v≥ ←

( ) ( , )dv t

F v Idt

=

In general, the dynamics for membrane potential has a general form:

Quadratic-and-fire (QIF) model: F is quadratic in terms of v and linear in terms of I.

For LIF model, F is linear in terms of both v and I.

( , )F v I v I= − +

Page 13: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Quadratic-and-fire model

Figure 3.35, Dynamical Systems in Neuroscience

Page 14: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Resonate-and-fire model: oscillatory sub-threshold dynamics.

( ) ( )( ) ( )

( ) ( )( ) ( )

leak leak

1/2

dv tC I g v t E w t

dtv t vdw t

w tdt k

= − − −

−= −

For some neurons, the sub-threshold dynamics exhibits an oscillatory behavior:

Resonate-and-fire model: two-dimensional model of membrane potential (v) and the recovery variable (w).

Whole-cell recording of an olivary neuron

Hutcheon & Yarom (2000) Trends Neurosci

Page 15: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Resonate-and-fire model.

Izhikevich (2001) Neural Networks

spike

spikeno spike

no spike

Page 16: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Ion channels: Nernst equation.

Figure 6.3, Fundamental of Computational Neuroscience

[ ][ ]

oution in out

in

ionln

ionRTE E EzF

≡ − =

EoutEin Nernst equation

[ ][ ]

( )out

out in

in

out

in

ionion

zF E zFRT E ERT

zF ERT

e ee

−− −

= =

in[ ] 140mMK + = out[ ] 3mMK + =[ ][ ]

out

in

3ln 61.5ln 102mV140K

KRTEF K

= = = −

Potassium ion

Page 17: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Ion channels: Goldman-Hodgkin-Katz equation.

Figure 6.3, Fundamental of Computational Neuroscience

K Na Clout out inm out in

K Na Clin in out

K Na Clln

K Na Cl

p p pRTV V VF p p p

+ + −

+ + −

+ + = − = + +

Goldman-Hodgkin-Katz equation

K Na Cl: : 1.00 : 0.04 : 0.45p p p =

Permeability

For T=293K (20°C), the equilibrium potential is

m out in 62mVV V V= − = −

Page 18: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Ion-channel kinetics: voltage-dependent ion channels

: activation variablen

( )( ) ( )1n ndn V n V ndt

α β= − −Inactive Active

( )n Vα

( )n Vβ

( )activeP n=( )inactive 1P n= −

Master equation

( ) ( )ndnV n V ndt

τ ∞= −

( ) ( ) ( )1

mn n

VV V

τα β

=+

( ) ( )( ) ( )

n

n n

Vn V

V Vα

α β∞ =+

time constant

asymptotic value

Gating equation

Page 19: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Hodgkin-Huxley model: potential and gating dynamics.

( ) ( ) ( )4 3K K Na Na L L

dVC g n E V g m h E V g E V Idt

= − − − − − − +

( ) ( )ndnV n V ndt

τ ∞= −

( ) ( )mdmV m V mdt

τ ∞= −

( ) ( )hdhV h V hdt

τ ∞= −

Membrane-potential dynamics

Gating equations

Figure 5.10, Theoretical Neuroscience

Page 20: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Hodgkin-Huxley model: activation and inactivation variables.

( ) ( ) ( )4 3K K Na Na L L

dVC g n E V g m h E V g E V Idt

= − − − − − − +

( ) ( )ndnV n V ndt

τ ∞= −

( ) ( )mdmV m V mdt

τ ∞= −

( ) ( )hdhV h V hdt

τ ∞= −

Membrane-potential dynamics

Gating equations m: Na+ activation variableh: Na+ inactivation variablen: K+ activation variable

Figure 2.8, Dynamical Systems in Neuroscience

m=0h=1

m=1h=1

m=1h=0

Page 21: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Hodgkin-Huxley model reproduces spike waveform.

Figure 5.10, Theoretical Neuroscience Figure 4.3, Neuroscience 3rd Edition

Page 22: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Hodgkin-Huxley model reproduces spike waveform.

Figure 2.15, Dynamical Systems in Neuroscience

Page 23: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Phase-plane plot: one-dimensional case

( ),dV F V Idt

=

*( , ) 0 fixed pointF V I = →( )( )

*

*

, 0 stable (attractive) fixed point

, 0 unstable (repulsive) fixed point

F V I

F V I

′ < →

′ > →

Figure 3.10, Dynamical Systems in Neuroscience

Phase-plane plot: schematic method for capturing qualitative behaviors of differential equations without solving.

Figure 3.18, Dynamical Systems in Neuroscience

Page 24: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Bifurcation: Saddle-node bifurcation

( )dV F V Idt

= +

Figure 3.25, Dynamical Systems in Neuroscience

Page 25: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Phase-plane plot: two-dimensional case

( )( )

,,

V F V ww G V w = =

Phase-plane plot: vector field (dV/dt, dw/dt) on the two dimensional plane.

Figure 4.3, Dynamical Systems in Neuroscience

1, 0x y= = 0, 1x y= =

, x x y y= − = − , x y y x= − = −

Page 26: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Phase-plane plot: Nullclines

( )( )

,,

V F V ww G V w = =

Nullclines: the curves of F(V,w)=0 and G(V,w)=0.

Figure 4.3, Dynamical Systems in Neuroscience

Page 27: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Phase-plane plot: linear stability analysis

( )( )

,,

V F V ww G V w = =

Phase-plane plot: vector field (dV/dt, dw/dt) on the two dimensional plane.

Dynamical Systems with Applications using MATLAB

Stable node Unstable node Saddle point

Unstable focus Stable focus Center

Page 28: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Phase-plane plot: Separatrix

( )( )

,,

V F V ww G V w = =

Phase-plane plot: vector field (dV/dt, dw/dt) on the two dimensional plane.

Figure 4.24, Dynamical Systems in Neuroscience

Separatrix: the boundary separating two modes of behaviour in a differential equation.

Page 29: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Bifurcation: Saddle-node bifurcation

Figure 4.26, 28, 30, Dynamical Systems in Neuroscience

Page 30: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Bifurcation: (supercritical) Andronov-Hopf bifurcation

Figure 4.26, 28, 30, Dynamical Systems in Neuroscience

Page 31: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Class I and II neurons and bifurcation type

Figure 7.3, Dynamical Systems in Neuroscience

Class I: Continuous F-I curve, Saddle-node bifurcationClass II: Discontinuous F-I curve, Andronov-Hopf bifurcation

Page 32: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Two-dim. model: FitzHugh-Nagumo model

( )

3

30.08 0.8 0.7

vv v w I

w v w

= − − +

= − +

FitzHugh (1961) Biophysical J; “FitzHugh-Nagumo Model” (2015) Encyclopedia of Comp Neuro

stable unstable

*I I< *I I<

Page 33: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Two-dim. model: FitzHugh-Nagumo model

( )3

, 0.08 0.8 0.73vv v w I w v w= − − + = − +

FitzHugh (1961) Biophysical J; “FitzHugh-Nagumo Model” (2015) Encyclopedia of Comp Neuro

All-or-nothing response Post-inhibitory spike

Page 34: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Two-dim. model: Hindmarsh-Rose model

( )( )

v f v u I

u g v u

= − +

= −

( ) ( )3 2 2,f v av bv g v c dv= − + = − +

Hindmarsh & Rose (1982) Nature; (1984) Proc R Soc Lond B

Page 35: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Izhikevich model: quadratic and linear nullclines.

thresholdif 1, then and .v v v c u u d≥ = ← ← +

Quadratic v-nullcline and linear u-nullcline can describe both saddle-node and Andronov-Hopf bifurcations.

Figure 5.23, Dynamical Systems in Neuroscience

( )

2v v u Iu a bv u= − +

= −

Page 36: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Izhikevich model reproduces various spiking patterns.

( )( )

20.04 5 140v v v u I t

u a bv u

= + + − +

= −

thresholdif 30, then and .v v v c u u d≥ = ← ← +

Izhikevich (2003) IEEE Trans Neural Networks

Page 37: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Izhikevich model reproduces various spiking patterns.

Izhikevich (2003) IEEE Trans Neural Networks

Page 38: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Adaptive-exponential model

( ) ( )

( )

T

T

V V

m L T L T

w L

dVC g V V g e w I tdtdw a V E wdt

τ

−∆= − − + ∆ − +

= − −

Brette & Gerstner (2005) J Neurophysiol

The adaptive-exponential model are popular to neurophysiologists because …

- It has a form similar to conventional two-dimensional models

- Its parameters are physiologically interpretable.

Page 39: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

What we left out: Neuron morphology (shape) does influence physiology (function)!

Mainen & Sejnowski (199) Nature

250 μm

100 ms

25 mV

Page 40: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

What we left out: Neuron morphology (shape) does influence physiology (function)!

Branco et al. (2010) Science

Page 41: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Cable equation describes spike propagation.

“Cable Equation” (2015) Encyclopedia of Computational Neuroscience

Page 42: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Rall model reduces to equivalent cylinder model.

“Equivalent Cylinder Model” (2015) Encyclopedia of Computational Neuroscience

With a set of assumptions about the morphological and electrical properties of dendrites, the complex branching structure of a dendritic tree can be reduced to a simple conductive cylinder.

2 23 3

1 22

30

GR d d

d

+=

If GR=1, then the cylinders 1 and 2 can be reduced to a single cylinder.

Page 43: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Conclusions

- Neurons have a wide range of morphology (shapes) and physiology (functions).

- Many fundamental properties of subthreshold dynamics and spiking patterns can be captured by low-dimensional models.

- Models vary in their complexities: from a simple LIF model (just integrating and thresholding) to biophysically detailed Hodgkin-Huxley model.

- Phase-plane and bifurcation analyses are the powerful tool for understanding qualitative behaviors of a dynamical system without an explicit solution.

Page 44: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Exercise

1. Read the following paper and derive a low-dimensional neuron model from a detailed HH-type model by linearizing around the resting potential.

Richardson et al. (2003) “From subthreshold to firing-rate resonance,” J Neurophysiol 89, 2538-2554.

2. Examine a qualitative behavior of the Izhikevich model by plotting a phase portrait:

a=0.02, b=0.2, c=-65, d=6, I=14 (constant).Then confirm your phase-plane analysis with the matlab code provided from Izhikevich’s site:http://www.izhikevich.org/publications/whichmod.htm#izhikevich

Page 45: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Exercise

1. Simulate an integrate-and-fire model using the Euler method and evaluate how accurate the solution is. The Euler method is the simplest numerical integration method.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., ... & Zirpe, M. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of computational neuroscience, 23(3), 349-398.

2. Simulate the Izhikevich model using standard parameters. Then plot the phase portraits in two dimensions.

( ) ( ) ( )( )m

v t RIv t v t

tt

τ− +

+∆

=∆+

Page 46: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

(0.02, 0.2, -65, 8) (0.02, 0.2, -55, 4) (0.02, 0.2, -50, 2) (0.1, 0.2, -65, 2)

(0.02, 0.25, -65, 0.05) (0.02, 0.2, -65, 0.05) (0.1, 0.26, -65, 8) (0.02, 0.25, -65, 2)

Page 47: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

% params for RS neuron:a = 0.02; b = 0.20; c = -65.; d = 8;

dt = 1/1000; % integration time step (s)T = 50.; % total simulation time (s)t0 = 0:dt:T; % time steps

%%v = zeros(length(t0),1); % voltage variableu = zeros(length(t0),1); % recovery variableI = zeros(length(t0),1); % input currentI(t0>1000/1000) = 150; spikes = zeros(length(t0),1); % spike timings

v(1) = -80; % initial voltageu(1) = 0; % initial recovery

for n=1:length(t0)-1v(n+1) = v(n) + dt*(0.04*v(n)^2+5*v(n)+140-u(n)+I(n));

% v(n+1) = v(n) + dt/2*(0.04*v(n)^2+5*v(n)+140-u(n)+I(n));% v(n+1) = v(n+1) + dt/2*(0.04*v(n+1)^2+5*v(n+1)+140-u(n)+I(n));

u(n+1) = u(n) + dt*a*(b*v(n)-u(n));

if v(n+1)>30v(n+1) = c;u(n+1) = u(n+1) + d;spikes(n+1) = 1;

end

end

figure(1); clf; subplot(211); plot(t0, v, 'k');subplot(212); plot(t0, u, 'k');

Page 48: JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

References

• Squire et al. (2008) “Fundamental Neuroscience,” Academic Press.

• Purves et al. (2004) “Neuroscience,” Sinauer Associates.

• Trappenberg (2010) “Fundamentals of Computational Neuroscience,” Oxford University Press, Chapters 2 & 3.

• Dayan & Abbott (2000) “Theoretical Neuroscience,” MIT Press, Chapter 5.

• Izhikevich (2007) “Dynamical Systems in Neuroscience,” MIT Press, Chapters 3 & 4.