14
工程科学学报 DOI: 铜掺杂对于硫化镍精矿制备高效异相类 Fenton 化剂(Ni,Mg,Cu)Fe 2 O 4 的影响 1 刘雅贤,陈婷,韩星,张梅,郭敏 北京科技大学冶金与生态工程学院,北京 100083 通信作者,E-mail: [email protected] 本文以硫化镍精矿为原料,采用共沉淀 - 煅烧法成功制备出铜掺杂尖晶石铁氧体 (Ni,Mg,Cu)Fe2O4 异相类 Fenton 催化剂。利用 X 射线衍射(XRD)、扫描电子显微镜(SEM)X 射线光电子能谱(XPS)等手段系统研究了铜掺杂量 对所制备产物微观结构、形貌及催化性能的影响 ;确立了最优催化体系为光助类 Fenton 催化体系“(Ni,Mg,Cu)Fe2O4 催化剂/H2O2/可见光”,揭示了 Cu 掺杂对(Mg,Ni)Fe2O4 催化活性的增强机制。结果表明:在选定的实验条件下,制 备得到的产物均为纯相立方尖晶石铁氧体。当 Ni Cu 摩尔比为 1:1 时,合成的(Ni,Mg,Cu)Fe2O4 在可见光照 180 min 条件下浓度为 10 mg/L 罗丹明 B(RhB)溶液的降解率可达 94.5%。究其主要原因为:随着 Cu 掺杂量的增加,占据 (Ni,Mg,Cu)Fe2O4 八面体位的 Fe 3+ Cu 2+ 的相对含量增加,即裸露于铁氧体表面的 Fe 3+ Cu 2+ 数量增多,以及两者的 协同作用,加速了羟基自由基(·OH)反应的发生,最终使得 RhB 溶液的降解效率从 73.1%提高至 94.5%关键词 硫化镍精矿; 铜掺杂量; 尖晶石铁氧体(Ni,Mg,Cu)Fe2O4异相类 Fenton 催化剂;煅烧 分类号 TF803.21TB34 Copper Doping Effect on the preparation of efficient Heterogeneous Fenton-like Catalyst (Ni,Mg,Cu)Fe 2 O 4 from Nickel Sulfide Concentrate LIU Ya-xian, CHEN Ting, HAN Xing, ZHANG Mei, GUO Min School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China Corresponding author, E-mail: [email protected] ABSTRACT Organic contaminants such as dyes and antibiotics have become the focus of research in water treatment in recent years due to their complex composition, high toxicity and difficulty in biodegradation. Spinel ferrite heterogeneous Fenton-like catalysts MFe2O4 (MFe2O4, M is a divalent metallic cation or its combination, and the divalent cation is generally Ni, Zn, Mn, Co, Cu, Mg, etc.) have attracted much attention because of their excellent structural stability and good magnetic recovery performance. However, the catalytic activity of these catalysts is not ideal and almost all the reported catalysts are 1 收稿日期:2020-00-00 基金项目:国家自然科学基金资助项目(U1810205);山西低附加值煤基资源高值利用协同创新中心资助项目 《工程科学学报》录用稿,https://doi.org/10.13374/j.issn2095-9389.2020.06.18.002 ©北京科技大学 2020 录用稿件,非最终出版稿

化剂 2O4的影响1 录用稿件,非最终出版稿

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

100083
E-mail: [email protected]
FentonX(XRD)(SEM)X(XPS)
/H2O2/” Cu(Mg,Ni)Fe2O4
Ni Cu 1:1(Ni,Mg,Cu)Fe2O4 180 min
10 mg/L B(RhB) 94.5% Cu
(Ni,Mg,Cu)Fe2O4 Fe3+ Cu2+ Fe3+ Cu2+
(·OH) RhB 73.1% 94.5%
(Ni,Mg,Cu)Fe2O4 Fenton
TF803.21 TB34
Fenton-like Catalyst (Ni,Mg,Cu)Fe2O4 from Nickel Sulfide Concentrate
LIU Ya-xian, CHEN Ting, HAN Xing, ZHANG Mei, GUO Min
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Corresponding author, E-mail: [email protected]
ABSTRACT Organic contaminants such as dyes and antibiotics have become the focus of research in water treatment in
recent years due to their complex composition, high toxicity and difficulty in biodegradation. Spinel ferrite heterogeneous
Fenton-like catalysts MFe2O4 (MFe2O4, M is a divalent metallic cation or its combination, and the divalent cation is generally
Ni, Zn, Mn, Co, Cu, Mg, etc.) have attracted much attention because of their excellent structural stability and good magnetic
recovery performance. However, the catalytic activity of these catalysts is not ideal and almost all the reported catalysts are
1:2020-00-00 :(U1810205)

synthesized by pure chemical reagents, which restrict their industrial application. Therefore, the preparation of highly
efficient heterogeneous Fenton-like catalysts with low cost becomes the key to the treatment of refractory organic
wastewater. In this study, copper doped spinel ferrite (Ni,Mg,Cu)Fe2O4 was successfully synthesized from nickel sulfide
concentrate by a coprecipitation-calcination method. The effect of copper doping amount on the structure, micro-morphology
and catalytic performance of as-prepared samples was systematically investigated by means of X-ray diffraction, scanning
electron microscopy and X-ray photoelectron spectroscopy. The optimal catalytic system was established as the photo-
assisted Fenton-like catalytic system “(Ni,Mg,Cu)Fe2O4 catalyst/H2O2/visible light”, and the enhancement mechanism of
copper doping on the catalytic activity of (Mg,Ni)Fe2O4 was revealed. Results showed that all formed products were pure
spinel ferrites under the selected preparing conditions. When the molar ratio of Ni to Cu was 1:1, the formed
(Ni,Mg,Cu)Fe2O4 catalyst achieved 94.5% degradation efficiency for 10 mg/L RhB solution under the condition of visible
light irradiation for 180 min. This case may be mainly ascribed to that the relative contents of Fe3+ and Cu2+ ions at octahedral
site increased, namely, the amount of Fe3+ and Cu2+ exposed on the surface of ferrite increased with copper doping, as well as
the synergetic effect between them, accelerated the reaction of hydroxyl radical (·OH), thus improved the degradation
efficiency of RhB solution from 73.1% to 94.5%.
KEY WORDS nickel sulfide concentrate; copper doping amount; spinel ferrite (Ni,Mg,Cu)Fe2O4; heterogeneous Fenton-
like catalyst; calcination
2/3 90%[1-2]


H2O CO2
pH2.53.5
Fenton Fe2+
pH[6-8] Fenton
MFe2O4M
NiZnMnCoMg
Wang [9] Fe3O460 min
B RhB 90% Roonasi [10]
Fe3O4ZnFe 2O4MnFe2O4 CuFe2O4
CuFe2O4 175 min 78%Wang[11]-
MnFe2O4180 min 90.6%
Fe3+ Fe2+ Fe3+/Fe2+
Fenton
Fe3O4A Fe3O4
Sharma[13]-MFe2O4M=CuZnNi
Co CuFe2O4Huang [14] Cu2+

Fe2.88Cu0.12O4 Fenton B
Cu2+ H2O2 ·OH Cu+ Fe3+ Fe2+ Cu2+/Cu+=0.166
VFe3+/Fe2+=0.770 V Fe2+
Jacobs[15]
Fenton·OH
CuFe2O4Cu2+

[16]
Fenton


90 ºC 24 h 20075 μm
X X-ray FluorescenceXRF X X-ray
diffractionXRD XRD
1 1 FeSiSNiCuMgAlO
(Fe,Ni)9S8FeS2CuFeS2
SiO2
1 X
Table 1 Chemical compositions of nickel sulfide concentrate analyzed by XRF
Components Fe S Si Ni Mg Cu Al Ca Co
Weight Content / (%) 14.06 12.12 7.88 6.28 6.25 1.37 1.14 1.09 0.16
Components K Ti Na Cr Zn Mn Pb Cl O and others
Weight Content / (%) 0.11 0.08 0.10 0.07 0.08 0.04 0.03 0.02 49.12
1 XRD
FeCl3•6H2ONaOHH2O2
HClCuCl2·2H2OBC28HClN2O3

1.2
1.2.1
[19]FeCl30.8 molL-1HCl
0.75 moll-120:1 mLg-190 ºC7 h12.5 g
500 mL90 ºC
250 mLFeCl3HCl
Inductively coupled plasma atomic emission spectrometerICP-OES
2FeNiMgCu
(Ni,Mg,Cu)Fe2O4
2 ICP-OES
Table 2 The main metal elements in the leaching solution of nickel sulfide concentrate by ICP-OES analysis
Metal element Fe Ni Mg Cu Co Al Ca Ti K Cr Zn Mn
concentration / (gL-1) 40.84 3.305 0.965 0.698 0.023 0.210 0.275 0.005 0.016 0.009 0.009 0.007
concentration / (molL-1) 0.729 0.056 0.040 0.011 0.001 0.008 0.007 <0.001 <0.001 <0.001 <0.001 <0.001
1.2.2 (Ni,Mg,Cu)Fe2O4
MFe2O4 Fe3+ 2 Fe
Ni+Cu+Mg 2 FeNi+Cu+Mg
6.76 2 Fe pH
Fe3+ Fe(OH)3 FeNi+Cu+Co 2
CuCl2·2H2O Cu
Ni Cu 1:0.6MNi:Cu=1:0.6MNi:Cu=1:1
Cu

2 15 mL Fe2+
Fe3+ 5 molL-1NaOH pH 2.40
NaOH 5000 rmin-1 5 min
3 0.180 g 0.353 g CuCl2·2H2O
MNi:Cu=1:0.6MNi:Cu=1:1 CuCl2·2H2O
5 molL-1NaOH pH 12.0 NaOH
5000 rmin-1 5 min
4 3-5
1000 ºC 2 h
(Ni,Mg,Cu)Fe2O4
(Ni,Mg,Cu)Fe2O4 Fenton RhB
200 mL 10 mgL-1 RhB 250 mL
0.20 g 30 min-
1.0% H2O2
10 cm 30 min 5 mL1:1 V/V
·OH 5000 r·min-1 5 min 2 mL
-TU-1901 RhB1 RhB
Fenton
0 0= 1 / 100% = 1 / 100% (1)t tη A A C C
η RhB%A0At t 554 nm RhB
AbsC0Ct t RhBmgL-1
1.3
2500Rigaku(Ni,Mg,Cu)Fe2O4
Image JXX-
ray FluorescenceXRFXRF-1800(Ni,Mg,Cu)Fe2O4
XX-ray photoelectron spectroscopyXPSAXIS U1tra
DLDKratos(Ni,Mg,Cu)Fe2O4
absorption spectraUV-VisAL-104RhB
F-7000FL2-
425 nm315 nm
2(A) Cu

(110)(220)(311)(222)(400)(422)(511)(440)
(311) 2(B) Cu2θ
a Cu
2[20] 3 Cu
a 0.4285 nm 0.4289 nm Cu2+
Ni2+Mg2+Cu2+ B
Cu2+ 0.073 nm Ni2+Mg2+ 0.069 nm 0.072 nm
Cu2+
θ aλX1.50562θXRD
2θ(hkl)XRD(hkl)(311)
2 CuXRD(A)(311) 2θ(B). a:
; b: MNi:Cu=1:0.6; c: MNi:Cu=1:1
Fig.2 XRD patterns of Cu-doped samples (A) and Enlarged views of 2θ angle shift corresponding to the strongest peaks
of the (311) crystal planes. (a: undoped; b: MNi:Cu=1:0.6; c: MNi:Cu=1:1)
3 Cu(Ni,Mg,Cu)Fe2O4
Table 3 Chemical formula and unit cell parameters of (Ni,Mg,Cu)Fe2O4 with different Cu contents
MNi:Cu (molar ratio) Chemical formula a / nm
undoped Ni0.63Mg0.30Cu0.07Fe2O4 0.4285
1:0.6 Ni0.48Mg0.21Cu0.31Fe2O4 0.4287
1:1 Ni0.24Mg0.15Cu0.61Fe2O4 0.4289
Ni0.63Mg0.30Cu0.07Fe2O4Ni0.48Mg0.21Cu0.31Fe2O4Ni0.24Mg0.15Cu0.61Fe2O4 Cu
Cu2+[21]
Cu
Ni0.24Mg0.15Cu0.61Fe2O4 CuNi0.24Mg0.15Cu0.61Fe2O4


3 Cu SEM(A)(D): ; (B)(E): MNi:Cu=1:0.6; (C)(F):
MNi:Cu=1:1
Fig.3 SEM images and particle size distributions of Cu-doped samples ((A) and (D): undoped; (B) and (E): MNi:Cu=1:0.6; (C)
and (F): MNi:Cu=1:1)
Cu
238±75 nm271±87 nm 217±47 nm 3(D-
F)MNi:Cu=1:1
Cu XPS 4(A)
Cu FeNiMgCuO 4(B) Cu
Fe 2pFe 2p3/2~710.6~713.3 eV Fe3+
FeOct 3+ Fe3+FeTet
3+Fe 2p1/2~725.0 eV Fe3+
[24] 4(C)Mg 2pMg 2p~48.9~49.6 eV
Mg2+MgOct 2+Mg2+MgTet
2+[24] 4(D)Ni 2pNi
2p3/2~854.8 ~856.5 eV Ni2+NiOct 2+ Ni2+
NiTet 2+~861.6 eVNi2+[25] 4(E) Cu 2p
~934.1eV~935.5 eV Cu 2p3/2 B Cu2+CuOct 2+ A
Cu2+CuTet 2+ Cu 2p3/2~941.7 eV Cu2+[26]
XPS XRDXRF
(Ni,Mg,Cu)Fe2O4

4 CuXPS(A)(B) Fe 2p; (C) Mg 2p; (D) Ni 2p; (E) Cu 2p. (a): ;
(b): MNi:Cu=1:0.6; (c): MNi:Cu=1:1
Fig.4 Full XPS spectra of copper-doped ferrites (A) and high resolution XPS spectra of (B) Fe 2p; (C) Mg 2p; (D) Ni 2p; (E)
Cu 2p. (a: undoped; b: MNi:Cu=1:0.6; c: MNi:Cu=1:1)
2.2
5(A) RhB10 mgL-1
“+” 180 min RhB 1.7%
Fenton“+H2O2” 180 min RhB
10.7% H2O2
0.20 g 1.0 % H2O2
Fenton“/H2O2/”RhB 73.1%
Fenton RhB RhB
“(Ni,Mg,Cu)Fe2O4/H2O2/”
·OH 5(B) 2-
120 minPL

·OH Fenton“(Ni,Mg,Cu)Fe2O4
/H2O2/”·OH RhB
(B)
Fig.5 The degradation curves of RhB solutions in different catalytic reaction systems (A) and Fluorescence spectra of 2-
hydroxyterephthalic acid produced by the catalytic system of Ni0.63Mg0.30Cu0.07Fe2O4/H2O2/vis capturing ·OH radicals
2.3 CuRhB
CuFentonRhB
10 mg/LCuRhB6Cu
MNi:Cu = 1:1RhB30-180 min
MNi:Cu = 1:0.6Cu
·OH
6 Cu RhB(A) ; (B) MNi:Cu=1:0.6; (C) MNi:Cu=1:1
Fig.6 Absorbance curves of RhB solution degraded by catalysts with different Cu doping (A) undoped; (B) MNi:Cu=1:0.6; (C)
MNi:Cu=1:1
η 7(A) CuRhB180 min
Cu RhB 73.1% CuMNi:Cu=1:06 1:1
RhB 88.8% 94.5% Cu
RhB RhB
3[21]kappmin-1 7(B) Cu
MNi:Cu=1:1 RhB kapp 0.01424 min-1
7(A)

0 appIn / = (3)tC C k t
C0 RhB(mgL-1)Ct t RhB(mgL-1)kapp
(min-1)
7 Cu RhB(A)(B)
Fig.7 RhB degradation by samples with different Cu doping amounts (A) and kinetic characteristics (B)
2.4 Cu(Ni,Mg,Cu)Fe2O4
Fenton“(Ni,Mg,Cu)Fe2O4/H2O2” RhB
4-6[27-29]
3+ 2+ + -3 -1 -1 2 2 2Fe +H O Fe + +H 2.00 10 (OH M s 4)=k
2+ 3+ - -1 -1 2 2Fe +H O Fe + +OH 76 OH = M s (5)k
2 2RhB CO +H O degradation products OH+ (6)
XPS 4 Fe3+
Fe3+≡Fe3+ H2O2 Fe2+≡Fe2+ HO2·
4≡Fe2+H2O2·OH5·OH RhB
CO2H2O6 Fenton
45≡Fe3+ H2O2≡Fe2+
·OH
≡Fe3+/≡Fe2+ RhB 10.7% 5
≡Fe3+≡Fe2+H2O2·OH Fenton

(Ni,Mg,Cu)Fe2O4(eCB -)(Ni,Mg,Cu)Fe2O4(hVB
+)
7 eCB - Fe3+≡Fe2+8≡Cu2+
≡Cu+9≡Cu+≡Fe3+≡Fe2+10[30-32]
≡Fe3+≡Fe2+ Fenton
H2O2·OH≡Cu+ H2O2·OH11
RhB eCB - H2O2·OH
12 hVB +H2O·OH13 RhB
“(Ni,Mg,Cu)Fe2O4/H2O2/”
8

- 2 4 2 4 CB VB (Ni,Mg,Cu)Fe O (Ni, (7)Mg,Cu)Fe O ( h )
hv
e
2+ - 2
3+ + 2+2+Fe + (1Fe + Cu Cu 0)
+ 2+ - 2 2Cu +H O Cu + OH+OH (11)
- 2 4 CB 2 2 OH OH (Ni,Mg ,Cu)Fe O ( ) H (12)Oe
+ 2 4 VB 2 OH H (Ni,M g,Cu)Fe O ( h ) H (O 13)
8 “(Ni,Mg,Cu)Fe2O4/H2O2/”
Fig.8 Reaction mechanism diagram of catalytic system “(Ni,Mg,Cu)Fe2O4 catalyst/H2O2/visible light”
Cu XPS

H2O2·OH RhB
4(B-E) Cu Fe 2pMg 2pNi 2p Cu 2pXPS
CuFeOct 3+ 72.4%
84.6%CuOct 2+ 32% 65.5%MgOct
2+ 53.6%
48.0%NiOct 2+ 77.1% 67.3% CuMg2+Ni2+
Cu2+Ni2+Mg2+
9

9 Cu
Fig.9 The percentages of metal ion octahedral positions in ferrites with different copper doping amounts
XPS“(Ni,Mg,Cu)Fe2O4/H2O2/” Cu
(Ni,Mg,Cu)Fe2O4 Fe3+ Cu2+ Fenton
·OH Cu2+/Cu+Eθ(Cu2+/
Cu+)=0.166 V Fe3+/Fe2+Eθ(Fe3+/Fe2+)=0.770 V≡Cu2+ Fenton
≡Cu+≡Fe3+≡Fe2+ Cu2+
Fe3+·OHRhB
73.1% 94.5% 7
3
(Ni,Mg,Cu)Fe2O4 Fenton Cu
(2) “(Ni,Mg,Cu)Fe2O4/H2O2/” RhB
25 ºC 1.00 gL-1 H2O2 1.0 % 180 mWcm-2
MNi:Cu=1:1 10 mgL-1 RhB 94.5%
(3) Cu CuOct 2+ FeOct
3+MgOct 2+
NiOct 2+ Cu2+ Fe3+
(Ni,Mg,Cu)Fe2O4/H2O2/·OH Cu


[1] Mudd, G M. Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geol Rev, 2010,
38(1-2): 9
[2] Elshkaki A, Reck B K, Graedel T E. Anthropogenic nickel supply, demand, and associated energy and water use.
Resour Conserv Recycl, 2017, 125: 300
[3] Mu W N, Huang Z P, Xin H X, et al. Extraction of Copper and Nickel from Low-Grade Nickel Sulfide Ore by Low-
Temperature Roasting, Selective Decomposition and Water-Leaching Process. JOM, 2019, 71(12): 4647
[4] Zhao K L, Yan W, Wang X H, et al. Effect of a novel phosphate on the flotation of serpentine-containing copper-nickel
sulfide ore. Miner Eng, 2020, 150

[5] Elkacmi Reda, Bennajah Mounir. Advanced oxidation technologies for the treatment and detoxification of olive mill
wastewater: a general review. J Water Reuse Desalin, 2019, 9(4): 463
[6] Tian Q W, Ran M, Fang G G, et al. ZnAl2O4/BiPO4 composites as a heterogeneous catalyst for photo-Fenton treatment
of textile and pulping wastewater. Sep Purif Technol, 2020, 239
[7] Macarena Munoz, Zahara M.de Pedro, Jose A.Casas, et al. Preparation of magnetite-based catalysts and their
application in heterogeneous Fenton oxidation – A review. Appl Catal B: Environ, 2015, 176: 249
[8] Zan J, Song H, Zuo S Y, et al. MIL-53(Fe)-derived Fe2O3 with oxygen vacancy as Fenton-like photocatalysts for the
elimination of toxic organics in wastewater. J Cleaner Prod, 2020, 246
[9] Wang N, Zhu L H, Wang D L, et al. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic
nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason Sonochem, 2010, 17(3): 526
[10] Roonasi P, Nezhad A Y. A comparative study of a series of ferrite nanoparticles as heterogeneous catalysts for phenol
removal at neutral pH. Mater Chem Phys, 2016, 172: 143
[11] Wang G, Zhao D Y, Kou F Y, et al. Removal of norfloxacin by surface Fenton system (MnFe 2O4/H2O2): Kinetics,
mechanism and degradation pathway. Chem Eng J, 2018, 351: 747
[12] Zhong Y H, Liang X L, Tan W, et al. A comparative study about the effects of isomorphous substitution of transition
metals (Ti, Cr, Mn, Co and Ni) on the UV/Fenton catalytic activity of magnetite. J Mol Catal A: Chem, 2013, 372: 29
[13] Sharma R, Bansal S, Singhal S. Tailoring the photo-Fenton activity of spinel ferrites (MFe 2O4) by incorporating
different cations (M=Cu, Zn, Ni and Co) in the structure. RSC Adv, 2015, 5(8): 6006
[14] Huang X L, Xu C, Ma J P, et al. Ionothermal synthesis of Cu-doped Fe3O4 magnetic nanoparticles with enhanced
peroxidase-like activity for organic wastewater treatment. Adv Powder Technol, 2018, 29(3): 796
[15] Jacobs J P, Maltha A, Reintjes J G H, et al. The surface of catalytically active spinels. J Catal, 1994, 147(1): 294
[16] López-Ramón M V, Alvarez M A, Moreno-Castilla C, et al. Effect of calcination temperature of a copper ferrite
synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic
acid from water. J Colloid Interface Sci, 2018, 511: 193
[17] Sun Y J, Diao Y F, Wang H G, et al. Synthesis, structure and magnetic properties of spinel ferrite (Ni, Cu, Co)Fe2O4
from low nickel matte. Ceram Int, 2017, 43(18): 16474
[18] Han X, Yan Z K, Chen T, et al. Phase transformation and catalytic performance of metal-doped MgFe2O4 prepared from
saprolite lateri. Chin J Eng, 2019, 41(05): 600
, , , . MgFe2O4. ,
2019, 41(05): 600
[19] Chen J G, Wang H G, Zhang M, Guo M. High efficient extraction of Ni, Cu and Co from low nickel matte. Chin J
Nonferrous Met, 2017, 27(09): 1936
, , , . NiCuCo. , 2017, 27(09): 1936
[20] Cullity B D. Elements of X-rays Diffraction. 2nd Ed. Philippines: Addison-Wesley Publishing Co., 1978
[21] Feng Y, Liao C Z, Shih K. Copper-promoted circumneutral activation of H2O2 by magnetic CuFe2O4 spinel
nanoparticles:Mechanism, stoichiometric efficiency, and pathway of degrading sulfanilamide. Chemosphere, 2016, 154:
573
[22] Yu D Y, Ni H G, Wang L L, et al. Nanoscale-confined precursor of CuFe2O4 mediated by hyperbranched polyamide as
an unusual heterogeneous Fenton catalyst for efficient dye degradation. J Cleaner Prod, 2018, 186:146
[23] Vinosha P A, Xavier B, Krishnan S, et al. Investigation on zinc substituted highly porous improved catalytic activity of
NiFe2O4 nanocrystal by co-precipitation method. Mater Res Bull, 2018, 101:190
[24] Yan Z K, Gao J M, Li Y, et al. Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from
saprolite laterite. RSC Adv, 2015, 5(112): 92778

[25] Zhang L H, Zhu J, Jiang X R, et al. Influence of nature of precursors on the formation and structure of Cu-Ni-Cr mixed
oxides from layered double hydroxides. J Phys Chem Solids, 2006, 67(8): 1678
[26] Zhao Y L, Lin C P, Bi H J, et al. Magnetically separable CuFe2O4/AgBr composite photocatalysts: Preparation,
characterization, photocatalytic activity and photocatalytic mechanism under visible light. Appl Surf Sci, 2017, 392: 701
[27] Li Y, Chen D, Fan S S, et al. Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite
nanosphere prepared from metal-rich industrial wastewater. J Taiwan Inst Chem E, 2019, 96: 185
[28] Chen H B, Liu W X, Qin Z Z. ZnO/ZnFe2O4 nanocomposite as abroadspectrum photo-Fenton-like photocatalyst with
near-infrared activity. Catal Sci Technol, 2017, 7(11): 2236
[29] Guo X J, Wang K B, Xu Y N. Tartaric acid enhanced CuFe2O4-catalyzed heterogeneous photo-Fenton-like degradation
of methylene blue. Mater Sci Eng B: Adv, 2019, 245: 75
[30] Wang Y B, Zhao H Y, Li M F, et al. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst
for the degradation of imidacloprid. Appl Catal B: Environ, 2014, 147: 534
[31] Guo X J, Wang K B, Li D, et al. Heterogeneous photo-Fenton processes using graphite carbon coating hollow CuFe2O4
spheres for the degradation of methylene blue. Appl Surf Sci, 2017, 420: 792
[32] Qin Q D, Liu Y H, Li X C, et al. Enhanced heterogeneous Fenton-like degradation of methylene blue by reduced
CuFe2O4. RSC Adv, 2018, 8(2): 1071

Fenton(Ni,Mg,Cu)Fe2O4