48
Сверхмощные лазеры - инструмент для исследования свойств вакуума Н.Б. Нарожный Национальный Исследовательский Ядерный Университет МИФИ 100-лет со дня рождения И.Я. Померанчука ИТЭФ 5-6 июня 2013

Сверхмощные лазеры - инструмент для исследования свойств вакуума

Embed Size (px)

DESCRIPTION

100-лет со дня рождения И . Я . Померанчука ИТЭФ 5-6 июня 2013. Сверхмощные лазеры - инструмент для исследования свойств вакуума. Н.Б . Нарожный. Национальный Исследовательский Ядерный Университет МИФИ. Extreme Light Road Map. G. Mourou. F. Sauter. Vacuum Polarization. IZEST C 3. - PowerPoint PPT Presentation

Citation preview

Сверхмощные лазеры - инструмент для исследования

свойств вакуума

НБ Нарожный

Национальный Исследовательский

Ядерный Университет МИФИ

100-лет со дня рождения ИЯ ПомеранчукаИТЭФ 5-6 июня 2013

Vacuum Polarization IZEST C3

Extreme Light Road MapF Sauter

G Mourou

HERCULES Petawatt Laser

Center for Ultrafast Optical Science (CUOS) Michigan USA

Victor Yanovsky

He directs the HERCULES laser - the highest intensity laser in the world and is interested in high intensity laser physics ultrahigh-intensity intensity interactions with solids particle acceleration and X-ray generation in laser-matter interaction

NIF (LLNL US) UFL-2M (VNIIEF RF)LMJ (France)

HiPER (GB)

ELI XCELS (RF)

Most powerful facilities under construction or planning

Laser Fusion

High Field Sciense

240 beams 2MJ 192 beams 18MJ 192 beams 28MJ

I amp I L = 1023W=cv2I L =1023

ПЛАНИРУЕТСЯ

1 Создание TiSa лазера генерирующего импульсы длительностью 10 - 15-fs с энергией в районе 700 J (50 to 70 PW)

2 Активный фазовый контроль усиленных пучков и использование оптики с большой апертурой позволит получить интенсивность порядка

3 Комбинация10 одиночных 50 ndash 70-PW пучков приведет к пиковой мощности 500 ndash 700 PW и соответствующей интенсивности на мишени порядка или больше

(Proposal for an European Extreme Light Infrastructure wwwextreme-light-infrastructureeu)

ELI-Ultra High Field Facility

Место строительства еще дбопределено

laquoМеждународный центр исследованийэкстремальных световых полейraquo (ЦИЭС)

Комплекс будет включать 12 одинаковых каналов в каждом из которых будет генерироваться импульс с энергией 300-400 Дж длительностью 20-30 фс

максимальной интенсивностью при фокусировке более 10^23 Втсм2

F Sauter 1931W Heisenberg H Euler 1936J Schwinger 1951

QED is a nonlinear science at

The only experiment on Nonlinear QED ndash E144 (SLAC 1996 -1997)

Nonlinear Compton scattering

CBula et al PRL 76 3116 (1996)CBamber et al PRD 60 092004(1999)

schematic drawing of the experiment

IP1 ndash interaction pointECAL ndash silicon-tungsten calorimeterCCM1 ndash gas Čerenkov monitor

Final Focus Test Beam at SLAC

The multiphoton version of Breit-Wheeler process was observed

DLBurke et al PRL 79 1626 (1997)CBamber et al PRD 60 092004(1999)

Pair production two-step process

This was the first (and the only) laboratory evidence for inelastic light-by-light scattering involving only real photons

Laser λ=1054μm (infrared) and λ=0527μm (green) The laser intensity could be varied the maximum focused intensity

Electron beam

Parameters of E144 experiment

The field was close to a monochromatic plane wave field

Two Lorentz and gauge invariant parameters

Dimensionless intensity parameter

Dynamical parameter

(classical nonlinearity parameter)

(quantum nonlinearity parameter)

At the proper frame of electron

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Vacuum Polarization IZEST C3

Extreme Light Road MapF Sauter

G Mourou

HERCULES Petawatt Laser

Center for Ultrafast Optical Science (CUOS) Michigan USA

Victor Yanovsky

He directs the HERCULES laser - the highest intensity laser in the world and is interested in high intensity laser physics ultrahigh-intensity intensity interactions with solids particle acceleration and X-ray generation in laser-matter interaction

NIF (LLNL US) UFL-2M (VNIIEF RF)LMJ (France)

HiPER (GB)

ELI XCELS (RF)

Most powerful facilities under construction or planning

Laser Fusion

High Field Sciense

240 beams 2MJ 192 beams 18MJ 192 beams 28MJ

I amp I L = 1023W=cv2I L =1023

ПЛАНИРУЕТСЯ

1 Создание TiSa лазера генерирующего импульсы длительностью 10 - 15-fs с энергией в районе 700 J (50 to 70 PW)

2 Активный фазовый контроль усиленных пучков и использование оптики с большой апертурой позволит получить интенсивность порядка

3 Комбинация10 одиночных 50 ndash 70-PW пучков приведет к пиковой мощности 500 ndash 700 PW и соответствующей интенсивности на мишени порядка или больше

(Proposal for an European Extreme Light Infrastructure wwwextreme-light-infrastructureeu)

ELI-Ultra High Field Facility

Место строительства еще дбопределено

laquoМеждународный центр исследованийэкстремальных световых полейraquo (ЦИЭС)

Комплекс будет включать 12 одинаковых каналов в каждом из которых будет генерироваться импульс с энергией 300-400 Дж длительностью 20-30 фс

максимальной интенсивностью при фокусировке более 10^23 Втсм2

F Sauter 1931W Heisenberg H Euler 1936J Schwinger 1951

QED is a nonlinear science at

The only experiment on Nonlinear QED ndash E144 (SLAC 1996 -1997)

Nonlinear Compton scattering

CBula et al PRL 76 3116 (1996)CBamber et al PRD 60 092004(1999)

schematic drawing of the experiment

IP1 ndash interaction pointECAL ndash silicon-tungsten calorimeterCCM1 ndash gas Čerenkov monitor

Final Focus Test Beam at SLAC

The multiphoton version of Breit-Wheeler process was observed

DLBurke et al PRL 79 1626 (1997)CBamber et al PRD 60 092004(1999)

Pair production two-step process

This was the first (and the only) laboratory evidence for inelastic light-by-light scattering involving only real photons

Laser λ=1054μm (infrared) and λ=0527μm (green) The laser intensity could be varied the maximum focused intensity

Electron beam

Parameters of E144 experiment

The field was close to a monochromatic plane wave field

Two Lorentz and gauge invariant parameters

Dimensionless intensity parameter

Dynamical parameter

(classical nonlinearity parameter)

(quantum nonlinearity parameter)

At the proper frame of electron

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

HERCULES Petawatt Laser

Center for Ultrafast Optical Science (CUOS) Michigan USA

Victor Yanovsky

He directs the HERCULES laser - the highest intensity laser in the world and is interested in high intensity laser physics ultrahigh-intensity intensity interactions with solids particle acceleration and X-ray generation in laser-matter interaction

NIF (LLNL US) UFL-2M (VNIIEF RF)LMJ (France)

HiPER (GB)

ELI XCELS (RF)

Most powerful facilities under construction or planning

Laser Fusion

High Field Sciense

240 beams 2MJ 192 beams 18MJ 192 beams 28MJ

I amp I L = 1023W=cv2I L =1023

ПЛАНИРУЕТСЯ

1 Создание TiSa лазера генерирующего импульсы длительностью 10 - 15-fs с энергией в районе 700 J (50 to 70 PW)

2 Активный фазовый контроль усиленных пучков и использование оптики с большой апертурой позволит получить интенсивность порядка

3 Комбинация10 одиночных 50 ndash 70-PW пучков приведет к пиковой мощности 500 ndash 700 PW и соответствующей интенсивности на мишени порядка или больше

(Proposal for an European Extreme Light Infrastructure wwwextreme-light-infrastructureeu)

ELI-Ultra High Field Facility

Место строительства еще дбопределено

laquoМеждународный центр исследованийэкстремальных световых полейraquo (ЦИЭС)

Комплекс будет включать 12 одинаковых каналов в каждом из которых будет генерироваться импульс с энергией 300-400 Дж длительностью 20-30 фс

максимальной интенсивностью при фокусировке более 10^23 Втсм2

F Sauter 1931W Heisenberg H Euler 1936J Schwinger 1951

QED is a nonlinear science at

The only experiment on Nonlinear QED ndash E144 (SLAC 1996 -1997)

Nonlinear Compton scattering

CBula et al PRL 76 3116 (1996)CBamber et al PRD 60 092004(1999)

schematic drawing of the experiment

IP1 ndash interaction pointECAL ndash silicon-tungsten calorimeterCCM1 ndash gas Čerenkov monitor

Final Focus Test Beam at SLAC

The multiphoton version of Breit-Wheeler process was observed

DLBurke et al PRL 79 1626 (1997)CBamber et al PRD 60 092004(1999)

Pair production two-step process

This was the first (and the only) laboratory evidence for inelastic light-by-light scattering involving only real photons

Laser λ=1054μm (infrared) and λ=0527μm (green) The laser intensity could be varied the maximum focused intensity

Electron beam

Parameters of E144 experiment

The field was close to a monochromatic plane wave field

Two Lorentz and gauge invariant parameters

Dimensionless intensity parameter

Dynamical parameter

(classical nonlinearity parameter)

(quantum nonlinearity parameter)

At the proper frame of electron

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

NIF (LLNL US) UFL-2M (VNIIEF RF)LMJ (France)

HiPER (GB)

ELI XCELS (RF)

Most powerful facilities under construction or planning

Laser Fusion

High Field Sciense

240 beams 2MJ 192 beams 18MJ 192 beams 28MJ

I amp I L = 1023W=cv2I L =1023

ПЛАНИРУЕТСЯ

1 Создание TiSa лазера генерирующего импульсы длительностью 10 - 15-fs с энергией в районе 700 J (50 to 70 PW)

2 Активный фазовый контроль усиленных пучков и использование оптики с большой апертурой позволит получить интенсивность порядка

3 Комбинация10 одиночных 50 ndash 70-PW пучков приведет к пиковой мощности 500 ndash 700 PW и соответствующей интенсивности на мишени порядка или больше

(Proposal for an European Extreme Light Infrastructure wwwextreme-light-infrastructureeu)

ELI-Ultra High Field Facility

Место строительства еще дбопределено

laquoМеждународный центр исследованийэкстремальных световых полейraquo (ЦИЭС)

Комплекс будет включать 12 одинаковых каналов в каждом из которых будет генерироваться импульс с энергией 300-400 Дж длительностью 20-30 фс

максимальной интенсивностью при фокусировке более 10^23 Втсм2

F Sauter 1931W Heisenberg H Euler 1936J Schwinger 1951

QED is a nonlinear science at

The only experiment on Nonlinear QED ndash E144 (SLAC 1996 -1997)

Nonlinear Compton scattering

CBula et al PRL 76 3116 (1996)CBamber et al PRD 60 092004(1999)

schematic drawing of the experiment

IP1 ndash interaction pointECAL ndash silicon-tungsten calorimeterCCM1 ndash gas Čerenkov monitor

Final Focus Test Beam at SLAC

The multiphoton version of Breit-Wheeler process was observed

DLBurke et al PRL 79 1626 (1997)CBamber et al PRD 60 092004(1999)

Pair production two-step process

This was the first (and the only) laboratory evidence for inelastic light-by-light scattering involving only real photons

Laser λ=1054μm (infrared) and λ=0527μm (green) The laser intensity could be varied the maximum focused intensity

Electron beam

Parameters of E144 experiment

The field was close to a monochromatic plane wave field

Two Lorentz and gauge invariant parameters

Dimensionless intensity parameter

Dynamical parameter

(classical nonlinearity parameter)

(quantum nonlinearity parameter)

At the proper frame of electron

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

I amp I L = 1023W=cv2I L =1023

ПЛАНИРУЕТСЯ

1 Создание TiSa лазера генерирующего импульсы длительностью 10 - 15-fs с энергией в районе 700 J (50 to 70 PW)

2 Активный фазовый контроль усиленных пучков и использование оптики с большой апертурой позволит получить интенсивность порядка

3 Комбинация10 одиночных 50 ndash 70-PW пучков приведет к пиковой мощности 500 ndash 700 PW и соответствующей интенсивности на мишени порядка или больше

(Proposal for an European Extreme Light Infrastructure wwwextreme-light-infrastructureeu)

ELI-Ultra High Field Facility

Место строительства еще дбопределено

laquoМеждународный центр исследованийэкстремальных световых полейraquo (ЦИЭС)

Комплекс будет включать 12 одинаковых каналов в каждом из которых будет генерироваться импульс с энергией 300-400 Дж длительностью 20-30 фс

максимальной интенсивностью при фокусировке более 10^23 Втсм2

F Sauter 1931W Heisenberg H Euler 1936J Schwinger 1951

QED is a nonlinear science at

The only experiment on Nonlinear QED ndash E144 (SLAC 1996 -1997)

Nonlinear Compton scattering

CBula et al PRL 76 3116 (1996)CBamber et al PRD 60 092004(1999)

schematic drawing of the experiment

IP1 ndash interaction pointECAL ndash silicon-tungsten calorimeterCCM1 ndash gas Čerenkov monitor

Final Focus Test Beam at SLAC

The multiphoton version of Breit-Wheeler process was observed

DLBurke et al PRL 79 1626 (1997)CBamber et al PRD 60 092004(1999)

Pair production two-step process

This was the first (and the only) laboratory evidence for inelastic light-by-light scattering involving only real photons

Laser λ=1054μm (infrared) and λ=0527μm (green) The laser intensity could be varied the maximum focused intensity

Electron beam

Parameters of E144 experiment

The field was close to a monochromatic plane wave field

Two Lorentz and gauge invariant parameters

Dimensionless intensity parameter

Dynamical parameter

(classical nonlinearity parameter)

(quantum nonlinearity parameter)

At the proper frame of electron

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

laquoМеждународный центр исследованийэкстремальных световых полейraquo (ЦИЭС)

Комплекс будет включать 12 одинаковых каналов в каждом из которых будет генерироваться импульс с энергией 300-400 Дж длительностью 20-30 фс

максимальной интенсивностью при фокусировке более 10^23 Втсм2

F Sauter 1931W Heisenberg H Euler 1936J Schwinger 1951

QED is a nonlinear science at

The only experiment on Nonlinear QED ndash E144 (SLAC 1996 -1997)

Nonlinear Compton scattering

CBula et al PRL 76 3116 (1996)CBamber et al PRD 60 092004(1999)

schematic drawing of the experiment

IP1 ndash interaction pointECAL ndash silicon-tungsten calorimeterCCM1 ndash gas Čerenkov monitor

Final Focus Test Beam at SLAC

The multiphoton version of Breit-Wheeler process was observed

DLBurke et al PRL 79 1626 (1997)CBamber et al PRD 60 092004(1999)

Pair production two-step process

This was the first (and the only) laboratory evidence for inelastic light-by-light scattering involving only real photons

Laser λ=1054μm (infrared) and λ=0527μm (green) The laser intensity could be varied the maximum focused intensity

Electron beam

Parameters of E144 experiment

The field was close to a monochromatic plane wave field

Two Lorentz and gauge invariant parameters

Dimensionless intensity parameter

Dynamical parameter

(classical nonlinearity parameter)

(quantum nonlinearity parameter)

At the proper frame of electron

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Комплекс будет включать 12 одинаковых каналов в каждом из которых будет генерироваться импульс с энергией 300-400 Дж длительностью 20-30 фс

максимальной интенсивностью при фокусировке более 10^23 Втсм2

F Sauter 1931W Heisenberg H Euler 1936J Schwinger 1951

QED is a nonlinear science at

The only experiment on Nonlinear QED ndash E144 (SLAC 1996 -1997)

Nonlinear Compton scattering

CBula et al PRL 76 3116 (1996)CBamber et al PRD 60 092004(1999)

schematic drawing of the experiment

IP1 ndash interaction pointECAL ndash silicon-tungsten calorimeterCCM1 ndash gas Čerenkov monitor

Final Focus Test Beam at SLAC

The multiphoton version of Breit-Wheeler process was observed

DLBurke et al PRL 79 1626 (1997)CBamber et al PRD 60 092004(1999)

Pair production two-step process

This was the first (and the only) laboratory evidence for inelastic light-by-light scattering involving only real photons

Laser λ=1054μm (infrared) and λ=0527μm (green) The laser intensity could be varied the maximum focused intensity

Electron beam

Parameters of E144 experiment

The field was close to a monochromatic plane wave field

Two Lorentz and gauge invariant parameters

Dimensionless intensity parameter

Dynamical parameter

(classical nonlinearity parameter)

(quantum nonlinearity parameter)

At the proper frame of electron

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

F Sauter 1931W Heisenberg H Euler 1936J Schwinger 1951

QED is a nonlinear science at

The only experiment on Nonlinear QED ndash E144 (SLAC 1996 -1997)

Nonlinear Compton scattering

CBula et al PRL 76 3116 (1996)CBamber et al PRD 60 092004(1999)

schematic drawing of the experiment

IP1 ndash interaction pointECAL ndash silicon-tungsten calorimeterCCM1 ndash gas Čerenkov monitor

Final Focus Test Beam at SLAC

The multiphoton version of Breit-Wheeler process was observed

DLBurke et al PRL 79 1626 (1997)CBamber et al PRD 60 092004(1999)

Pair production two-step process

This was the first (and the only) laboratory evidence for inelastic light-by-light scattering involving only real photons

Laser λ=1054μm (infrared) and λ=0527μm (green) The laser intensity could be varied the maximum focused intensity

Electron beam

Parameters of E144 experiment

The field was close to a monochromatic plane wave field

Two Lorentz and gauge invariant parameters

Dimensionless intensity parameter

Dynamical parameter

(classical nonlinearity parameter)

(quantum nonlinearity parameter)

At the proper frame of electron

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

The only experiment on Nonlinear QED ndash E144 (SLAC 1996 -1997)

Nonlinear Compton scattering

CBula et al PRL 76 3116 (1996)CBamber et al PRD 60 092004(1999)

schematic drawing of the experiment

IP1 ndash interaction pointECAL ndash silicon-tungsten calorimeterCCM1 ndash gas Čerenkov monitor

Final Focus Test Beam at SLAC

The multiphoton version of Breit-Wheeler process was observed

DLBurke et al PRL 79 1626 (1997)CBamber et al PRD 60 092004(1999)

Pair production two-step process

This was the first (and the only) laboratory evidence for inelastic light-by-light scattering involving only real photons

Laser λ=1054μm (infrared) and λ=0527μm (green) The laser intensity could be varied the maximum focused intensity

Electron beam

Parameters of E144 experiment

The field was close to a monochromatic plane wave field

Two Lorentz and gauge invariant parameters

Dimensionless intensity parameter

Dynamical parameter

(classical nonlinearity parameter)

(quantum nonlinearity parameter)

At the proper frame of electron

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Nonlinear Compton scattering

CBula et al PRL 76 3116 (1996)CBamber et al PRD 60 092004(1999)

schematic drawing of the experiment

IP1 ndash interaction pointECAL ndash silicon-tungsten calorimeterCCM1 ndash gas Čerenkov monitor

Final Focus Test Beam at SLAC

The multiphoton version of Breit-Wheeler process was observed

DLBurke et al PRL 79 1626 (1997)CBamber et al PRD 60 092004(1999)

Pair production two-step process

This was the first (and the only) laboratory evidence for inelastic light-by-light scattering involving only real photons

Laser λ=1054μm (infrared) and λ=0527μm (green) The laser intensity could be varied the maximum focused intensity

Electron beam

Parameters of E144 experiment

The field was close to a monochromatic plane wave field

Two Lorentz and gauge invariant parameters

Dimensionless intensity parameter

Dynamical parameter

(classical nonlinearity parameter)

(quantum nonlinearity parameter)

At the proper frame of electron

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

The multiphoton version of Breit-Wheeler process was observed

DLBurke et al PRL 79 1626 (1997)CBamber et al PRD 60 092004(1999)

Pair production two-step process

This was the first (and the only) laboratory evidence for inelastic light-by-light scattering involving only real photons

Laser λ=1054μm (infrared) and λ=0527μm (green) The laser intensity could be varied the maximum focused intensity

Electron beam

Parameters of E144 experiment

The field was close to a monochromatic plane wave field

Two Lorentz and gauge invariant parameters

Dimensionless intensity parameter

Dynamical parameter

(classical nonlinearity parameter)

(quantum nonlinearity parameter)

At the proper frame of electron

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

This was the first (and the only) laboratory evidence for inelastic light-by-light scattering involving only real photons

Laser λ=1054μm (infrared) and λ=0527μm (green) The laser intensity could be varied the maximum focused intensity

Electron beam

Parameters of E144 experiment

The field was close to a monochromatic plane wave field

Two Lorentz and gauge invariant parameters

Dimensionless intensity parameter

Dynamical parameter

(classical nonlinearity parameter)

(quantum nonlinearity parameter)

At the proper frame of electron

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Laser λ=1054μm (infrared) and λ=0527μm (green) The laser intensity could be varied the maximum focused intensity

Electron beam

Parameters of E144 experiment

The field was close to a monochromatic plane wave field

Two Lorentz and gauge invariant parameters

Dimensionless intensity parameter

Dynamical parameter

(classical nonlinearity parameter)

(quantum nonlinearity parameter)

At the proper frame of electron

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Parameters of E144 experiment

What we will have with new facilities

Fms optical pulses

Electrons

What does it mean experimentally

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

1 harmonics are undistinguishablelaser field works as a constant crossed field

2

e-m cascades will be observed

The effect was observed at SLAC experimentmultiplicity = 002

Analogue of cosmic-ray air showers

It could be the first experiment on laboratory astrophysics

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

3 Fms optical pulses

Electrons

Expansion parameter of perturbation theory at

Narozhny PRD 1980

Perturbation theory does not work

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Nonlinear QED vacuum polarization effects have never been observed

Is it possible with new facilities

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Vacuum in the presence of an external e-m field isa non-linear optical medium

Hans Heinrich Euler (1909ndash1941) Werner Karl Heisenberg (1901-1976)

The start of ldquoNonlinear Optics in Vacuumrdquo

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

ldquoThis polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the one hand and on the otherrdquo

F Sauter ZS f Phys 69 742 1931

permeability of vacuumpermittivity of vacuum

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Vacuum polarization effects

1 Birefringence and dichroism of vacuumR Baier P Breitenlohner Acta Phys Austr 25 212 1967NB Narozhnyi Zh Eksp Teor Fiz 55 714 (1968) [Sov Phys JETP 28 371 1969]SL Adler Ann Phys (NY) 67 599 (1971) IA Batalin AE Shabad Zh Eksp Teor Fiz 60 894 (1971) [Sov Phys JETP 33 483 1971]

2 Photon splittingSL Adler Ann Phys (NY) 67 599 (1971)Z Bialynicka-Birula I Bialynicka-Birula PhysRev D 2 2341 (1971) VO Papanyan VI Ritus Zh Eksp Teor Fiz 61 2231 (1971) [Sov Phys JETP 33 483 1971]

3 Cherenkov radiation

T Erber Rev Mod Phys 38 626 1966VI Ritus Zh Eksp Teor Fiz 57 2176 (1969) [Sov Phys JETP 30 1181 (1970)]IM Dremin Pisrsquoma Zh Eksp Teor Fiz 76 185 (2002) [JETP Lett 76 151 (2002)]

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

4 Self-focusing in vacuum

M Soljacˇicacute and M Segev Phys Rev A 62 043817 (2000)D Kharzeev and K Tuchin Phys Rev A 75 043807 (2007)

NN Rozanov JETP 86 284 (1998)

5 Light-by-light scattering

A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)B E Lundstroumlm et alPhys Rev Lett 96 083602 (2006)

6 Harmonics generation

AE Kaplan and YJ Ding Phys Rev A 62 043805 (2000)A Di Piazza KZ Hatsagortsyan CH Keitel Phys Rev D 72 085005 (2005)AMFedotov NB Narozhny Phys Lett A 362 1 (2007)

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

7 Pair creation by e-m field in vacuum

W Heisenberg and H Euler Zeitschr Phys 98 714 (1936)J Schwinger PhysRev 82 664 (1951)NB Narozhny AI Nikishov Yad Fiz 11 1072 (1970)NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

The most promising nonlinear vacuum effect is

PAIR PRODUCTION BY LASER FIELD

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

pair creation by a laser field in vacuum becomes observable at intensities

J Schwinger PhysRev 82 664 (1951)

The probability for vacuum to stay vacuum in a constant electric field

- the Heisenberg-Euler correction to em field Lagrangian

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Laser pulse

- focal spot radius- pulse duration

at

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Распространенная ошибка

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

The number of pairs created by an electromagnetic field

NB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)

In the reference frame where

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Pair production by a single focused pulseNB Narozhny SS Bulanov VS Popov VD Mur PLA 330 1 (2004)AM Fedotov Las Phys 19 214 (2009)

Δ=01

Δ=005 Δ=01

41027 016 4010-11 4610-42 9610-23

11028 025

24 3110-19 2010-7

21028

035 30107

1410-7

16

61028

062 841013

19105 34109

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Compare the total energy of produced pairs

with the energy of the laser pulse

COLLAPSE OF THE LASER PULSE

PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY

Number of pairs is growing very fast after the threshold value of intensity

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Collision geometry (linear polarization)

n=2 n=4

n=8 n=16

The threshold can be lowered essentially at the expense of

MULTIPLE PULSES TECHNOLOGY

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

The number of created pairs and threshold energy

for different number of colliding pulses

S S Bulanov VD Mur NB Narozhny et al PRL 104 220404 (2010)

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower

than the critical (Sauter) field ES

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

What will happen after creation of a single pair

Particles are accelerated by the field and hellipMeeting

A R Bell and J G Kirk Phys Rev Lett 101 200403 (2008)AM Fedotov and NB Narozhny in Extreme Light Infrastructure Report on the GC Meeting 27-28 April 2009 Paris httpwwwextreme-light-infrastructureeuA M Fedotov N B Narozhny GMourou and G Korn Phys Rev Lett 105 080402 (2010)

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Cascade can be self-sustained if the field accelerates charged particles

It is not the case for PWF or constant electromagnetic field

where is an integral of motion

The self-sustained cascade can arise only in a focused laser fieldor for colliding laser pulses

Acceleration

Vacuum instability initiated by a seed particle

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Estimation

An electron can be accelerated by the field many times for 1 period

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

The electron (positron) radiation lifetime (mean free pathc)

The photon lifetime

The escape time

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

The following hierarchy of time scales

should be respected for occurrence of electromagnetic cascade

(for optical frequencies)

- determines a natural threshold for electromagnetic cascades

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

The difference the laser field is not only a target for primary particles

but also an accelerator for slow particles

The self-sustaining e-m cascades strongly differ from cosmic ray air showers

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

FIG 2 Pair production as a function of The solid curve corresponds to the number of pairs produced by a single cascade process The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses The branching point corresponds to the threshold value of where the spontaneous pair production begins The dash line shows the limit for determined by the energy of the laser pulse The laser frequency ћω = 1 eV The inset shows the magnified region of intersection of the curves

Fedotov A M Narozhny N B Mourou G Korn GPRL 105 080402 (2010)

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes

depletion of the initiating laser pulses

This confirms the N Bohrrsquos conjecture that the critical QED field strength can be never attained for a pair

creating electromagnetic field

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

QED cascade stops when the laser energy is almost completely converted into the cascade energy

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

Development of e-m cascade by itself leads to depletion of the laser pulse

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48

СПАСИБО ЗА ВНИМАНИЕ

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48