115

Click here to load reader

第三章 恒定电流的电场和磁场

Embed Size (px)

DESCRIPTION

第三章 恒定电流的电场和磁场. § 3.1 恒定电流的电场 . 分类: 传导电流 与 运流电流. 传导电流 是导体中的自由电子(或空穴)或者是电解液中的离子运动形成的电流 。. 运流电流 是电子、离子或其它带电粒子在真空或气体中运动形成的电流。. 设垂直通过 Δ S 的电流为 Δ I ,则该点处的电流密度 为. 一、 电流分布. 1 、( 体)电流密度. 电流密度 与流过任意面积 S 的电流强度 I 的关系:. 载流导体内每一点都有一个电流密度,构成一个矢量场,称这一矢量场为 电流场 。电流场的矢量线叫做 电流线 。. - PowerPoint PPT Presentation

Citation preview

Page 1: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

第三章 恒定电流的电场和磁场

§ 3.1 恒定电流的电场 分类:传导电流与运流电流

传导电流是导体中的自由电子(或空穴)或者是电解液中的离子运动形成的电流。

运流电流是电子、离子或其它带电粒子在真空或气体中运动形成的电流。

Page 2: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

一、 电流分布

1 、( 体)电流密度 J

设垂直通过 ΔS 的电流为 ΔI ,则该点处的电流密度 为 J

0limS

I dIJ n n

S dS

Page 3: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

cosS S

I J dS J dS

载流导体内每一点都有一个电流密度,构成一个矢量场,称这一矢量场为电流场。电流场的矢量线叫做电流线。

通过面积 S 的电流等于电流密度在 S 上的通量

电流密度 与流过任意面积 S 的电流强度 I 的关系:J

Page 4: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

0limSS

I dIJ n n

l dl

2 、( 面)电流密度 SJ

设垂直通过 ΔL 的电流为 ΔI ,则该点处的电流密度 为 sJ

Page 5: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

二、 电流连续性方程

S

dqJ dS

dt

在电流场中有一闭合曲面 S ,由电荷守恒定律

电流连续性方程

Page 6: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

0V

J dVt

S VJ dS dV

t

V

S V

q dV

dq dJ dS dV

dt dt

Page 7: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

要该积分对任意的体积 V 均成立,必须有被积函数为零

0Jt

电流连续性方程微分形式

S

dqJ dS

dt

电流连续性方程积分形式

0V

J dVt

Page 8: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

0J

0S

J dS

恒定电场的电流连续性方程

0 ( 0)dq

dt t

若电荷分布恒定,即

Page 9: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

三、 欧姆定律的微分形式 电功率密度

J E

一段载流 I 导体,端电压为U ,电阻为 R ,由欧姆定律

U IR

( 1/ )

LR U EL I JS

SJ E

欧姆定律微分形式

Page 10: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

电导率为无限大的导体称为理想导电体。在理想导电体中,无需电场推动即可形成电流,所以在理想导电体中是不可能存在恒定电场的,否则,将会产生无限大的电流,从而产生无限大的能量。但是,任何能量总是有限的。 电导率为零的媒质,不具有导电能力,这种媒质称为理想介质。理想介质内无电流存在。

电导率不为零的媒质,具有导电能力,这种媒质称为导电介质。

Page 11: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

71017.6 71080.5 310

71010.4 510

71054.3 1110

71057.1 1210

710 1510

媒 质 电导率 (S/m) 媒 质 电导率 (S/m)银 海 水 4

紫 铜 淡 水

金 干 土

铝 变压器油

黄 铜 玻 璃

铁 橡 胶

表 常用材料的电导率

Page 12: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

按电导率 对介质的分类

0

0

理想导体

理想介质(绝缘介质)

导电媒质

与介质的极化特性一样,媒质的导电性能也表现出均匀与非均匀,线性与非线性以及各向同性与各同异性等特点,这些特性的含义与前相同。上述公式仅适用于各向同性的线性媒质。

Page 13: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

J v

运流电流的电流密度并不与电场强度成正比,而且电流密度的方向与电场强度的方向也可能不同。可以证明运流电流的电流密度 与运动速度 的关系为

J

v

式中 为电荷密度。

Page 14: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

焦耳定律 电功率密度 当导体两端的电压为 U ,流过的电流为 I 时,则在单位时间内电场力对电荷所作的功——电功率

UIP

在导体中,沿电流线方向取一长度为 ΔL 、截面为 ΔS 的体积元,该体积元内消耗的功率为

( )( )P U I E L J S EJ V

Page 15: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

载流导体内任一点的热功率密度为

2

0lim EEJ

V

Pp

V

2p J E E

焦耳定律不适应于运流电流。因为对于运流电流而言,电场力对电荷所作的功转变为电荷的动能,而不是转变为电荷与晶格碰撞的热能。

焦耳定律的微分形式

Page 16: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

四、 恒定电流场的基本方程 电位方程

载流导电媒质中恒定电场的基本方程(不包括电源)

0

0

S

l

J dS

E dl

积分形式

0

0

J

E

微分形式

本构关系 J E

Page 17: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

电位及电位方程

0

0

( ) 0

E E

J J E

2 0 对于均匀的导电媒质

恒定电场的电位满足拉普拉斯方程

Page 18: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

例 设一段环形导电媒质,其形状及尺寸如图示。计算两个端面之间的电阻。

U

y

x

t

ab

r

0

(r,)

0

解 选用圆柱坐标系。设两个端面之间的电位差为 U ,且令

当角度 时,电位 。0 01

当角度 时,电位 。2

U2

0d

d2

2

此式的通解为 21 CC

Page 19: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

利用给定的边界条件,求得

U2

2 UJ E e e

r r

导电媒质中的电流密度 J 为

由 的端面流进该导电媒质的电流 I 为 2

)d (π

2d rt

r

UI

S

eeSJS

a

bUt

r

rUt b

aln

π

2d

π

2

该导电块的两个端面之间的电阻 R 为

ab

tI

VR

ln2

π

Page 20: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

五、 恒定电流场的边界条件

0

0

S

l

J dS

E dl

由积分形式

可得恒定电流场中不同导电媒质分界面的边界条件

Page 21: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2 1

2 1

( ) 0

( ) 0

n E E

n J J

即 1 2 1 1 2 2

1 21 2

1 2

n n n n

t tt t

J J E E

J JE E

恒定电流场的边界条件为

恒定电流场中不同导电媒质分界面两侧的电场强度切向分量连续,但其法向分量不连续;而电流密度的法向分量连续,但其切向分量不连续。

Page 22: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

在恒定电场中, 分界面处用电位表示的边界条件为

21 nn

2

21

1

应用边界条件,可得分界面处的折射定理

2

1

2

1

tan

tan

Page 23: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

讨论:1) 两种导电媒质

当一种导电媒质为不良导体 ,另一种导电媒质为良导体,若电导率 ,如同轴线的内外导体通常由电导率很高 (107 数量级 ) 的铜或铝制

2 1

成,填充在两导体间的材料不可能是理想的绝缘电介质 , 总有很小的漏电导存在,如 聚乙烯的电导率为 10 -10 数量级,由

10172 2

71 1

tan 1010

tan 10

2( 0)

Page 24: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

当 σ1>>σ2 ,第一种媒质为良导

体时,第二种媒质为不良导体时,

只要 θ1≠π/2, θ2≈0 ,即在不良导体

中, 电力线近似地与界面垂直,这

时可将良导体的表面近似地看作等

位面。

1017 172 2

2 171 1

tan 1010 , tan 10 tan

tan 10

Page 25: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2 )理想介质与良导体

2 1 2 1 1 10 0n n n tJ J J J J J

2 2 2 2/ 0 / 0 0n n nE J E

Page 26: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

可知 E2 不垂直导体表面 , 导体表面不是等位面 , 导体也不

是等位体 , 这是由于 σ1 有限 , 导体中沿电流方向存在电场。而

在静电场中 , 导体内电场强度为零 , 介质中的场强总是垂直导

体表面 , 导体是等位体 , 其表面是等位面。在这一点 , 恒定电

场与静电场有根本的区别。

由上知,在均匀导体内电流沿平行于导体表面流动。

2 22 2 2n tE E E

Page 27: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

4 )载恒定电流的均匀导电媒质内部无(体)电荷存在

0

( ) 0

0

J J E D

J D D

D

即,载恒定电流的均匀导电媒质内部无(体)电荷存在,电荷分布在载流导体的表面。

Page 28: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

1 2

11 1 1 1

1

22 2 2 2

2

2 12 1 2 1

2 1

n n n

n n n

n n n

S n n n n

J J J

J E D

J E D

D D J J

4 )有电流流过两种导电媒质分界面时界面的电荷

当恒定电流通过电导率不同的两导电媒质时 , 其电流密度和电场强度要发生突变。故分界面上必有电荷分布。

Page 29: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

分界面上的面电荷密度 2 1

2 1S nJ

当 时, 分界面上的面电荷密度为零。 1

1

2

2

可见 , 在两种导电媒质分界面上一般有一层自由电荷分布。如

果导电媒质不均匀 , 在媒质中还会有体电荷的存在。

Page 30: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

六、 恒定电流场与静电场的比拟

Page 31: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

物理量的对偶关系

E D q C

E J I G

静电场

恒定电场

Page 32: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

因此,当恒定电流场与静电场的边界条件相同时,电流密度的分布与电场强度的分布特性完全相同。根据这种类似性,可以利用已经获得的静电场的结果直接求解恒定电流场。或者由于在某些情况下,恒定电流场容易实现且便于测量时,可用边界条件与静电场相同的电流场来研究静电场的特性,这种方法称为静电比拟法。

静电比拟法的理论依据:解的唯一性定理

可利用已经获得的静电场结果可以求解恒定电流场。

Page 33: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

CR CG

利用两种场方程,可求两个电极间的电阻及电导与电容的关系为

若已知两电极之间的电容,由上述两式可求得两电极间的电阻及电导。

例如,已知面积为 S ,间距为 d 的平板电容器的电容 ,若填充的非理想介质的电导率为 ,则极板间的漏电导为

/C S d

d

S

d

SG

又如单位长度内同轴线的电容 ;

若同轴线填充介质具有的电导率为 ,则单位长度内同轴线的漏电导

)/ln(

π21 ab

C

)/ln(

π21 ab

G

Page 34: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

1 、真空中恒定磁场的基本方程

2 、矢量磁位 3 、磁偶极子 4 、磁介质中的基本方程 5、 不同磁介质分界面的边界条件

6、标量磁位 7 、互感和自感 8、磁场能量 9、虚位移法求磁场力

第三章 恒定电流的电场和磁场

Page 35: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

§ 3.2~ § 3.3 恒定磁场的基本方程

安培力的实验定律指出:

在真空中载有电流 I 1 的

回路 C1 上任一线元 对

另一载有电流 I2 的回路 C

2 上任一线元 的作用力

1 1I dl

2 2I dl

0 2 2 1 121 2 2 33

0 1 1( )

4[ ]

4

I dl I dl RdF I dl

I dl

RR

R

1 、电流产生磁场的规律

Page 36: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

电流元 受的作用实际是电流元 产生的磁场对它的作用 ,1 1I dl

2 2I dl

02 321

1 1

4[ ]dF I

I dl Rdl

R

即电流元 在电流元 处产生的磁场 为1 1I dl

2 2I dl

0 1 11 34

I dl RdB

R

上式就是熟知的毕——萨定律

1dB

Page 37: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

对于整个线电流产生的磁感应强度为

若电流是具有体分布的电流 ,则为 J

若电流是具有面分布的电流 ,则为 SJ

034C C

Idl RB dB

R

叠加原理

/

03

( ')( ) '

4 V

J r RB r dV

R

积分公式

/

03

( ')( ) '

4S

S

J r RB r dS

R

积分公式

Page 38: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

磁感应强度可用一系列有向曲线来表示。曲线上某点的切线方向为磁感应强度矢量的方向,这些曲线称为磁感线(磁力线) 。磁场线的矢量方程为

0B dl

2 、磁场的几何描述——磁感线

Page 39: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

3 、恒定磁场的基本方程

1 ) 磁通连续性原理 (磁场的高斯定理)

m SB dS

/0

34C C

I dl RB dB

R

以线电流的磁场为例,求一闭合曲面的磁通量

0 03 3

''

4 4m S C C S

IdlIdl R R dSdS

R R

Page 40: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

故上式可写为 3

1R

R R

0 ' 1

4m S C S

IdlB dS dS

R

由矢量恒定式 V S

AdV A dS

0 ' 1

4m S C V

IdlB dS dV

R

1

0R

0S

B dS

Page 41: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

0m SB dS

磁通连续性原理(磁场的高斯定理)

0S V

B dS BdV

由于上式中积分区域 V 是任意的, 所以对空间的各点, 有

0B

上式是磁通连续性原理的微分形式,它表明磁感应强度

是一个无源 (指散度源 ) 场。 B

Page 42: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2 )安培环路定理

0CB dl I

其中的电流 I为穿过以闭合曲线 C为边界的曲面上电流的代数和,即电流与闭合曲线相交链。

( )C S S

B dl B dS I J dS

0( )S S

B dS J dS

Page 43: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

因上式的积分区域 S 是任意的, 因而有

0( )S S

B dS J dS

0B J

上式是安培环路定理的微分形式,它说明磁场的涡旋源是电流。

Page 44: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

真空中恒定磁场的基本方程

微分形式积分形式

0B J

0CB dl I

0B

0S

B dS

Page 45: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

1 、定义0B B A

§ 3.4 矢 量 磁 位

定义: B A

为矢量磁位 (简称磁矢位 ) ,其单位是 T·m(特斯拉 ·

米 ) 或 Wb/m(韦伯 /米 ) 。矢量磁位是一个辅助量。A

某点磁感应强度 B 等于该点矢量磁位 A 的旋度。

Page 46: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

'A A A B

关于矢量磁位说明:

1 )对于磁矢位散度的规定

B A

因为 仅仅规定了磁矢位 的旋度,由亥姆霍兹定理知:还必须规定其散度,否则 不唯一,如:

A

A

、 具有相同的旋度,说明 不唯一,应规定其散度。A

A

/A

若有一矢量 满足 ,另一矢量

( 是一个任意标量函数), 和 是两个不同的矢量函数。

B A /A A

A

A

/A

Page 47: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

0A

规定

2 )磁通的计算可通过矢量磁位计算

m S S C

m S C

B dS A dS A dl

B dS A dl

( 库仑规定 )

C 是曲面 S 的边界线。

Page 48: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

0

0

B J B A

A J

使用矢量恒等式 2 ( )A A A

20A J

2 、矢量磁位方程

0A

由关于 散度的规定A

Page 49: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2 0A

20A J

磁矢位的泊松方程

对于无电流分布的区域 ( ) ,磁矢位满足矢量拉普拉斯方程

0J

关于磁场的求解问题,可归结为求解磁矢位的泊松方程或拉普拉斯方程的边界问题

Page 50: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

zz

yy

xx

JA

JA

JA

02

02

02

其分量方程为

每一个分量方程都是一个二阶的偏微分方程。

对于球坐标和圆柱坐标,其表达式不是这样简单。

在直角坐标系中

2 2 2 2

x x y y z z

x x y y z z

A e A e A e A

A e A e A e A

Page 51: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

关于磁矢位积分表达式

与静电场的电位方程比较,可得在直角坐标系中对于(体)电流分布,关于磁矢位的积分表达式

/

/

/

'0

'0

'0

4

4

4

xx V

yy V

zz V

JA dV

RJ

A dVRJ

A dVR

Page 52: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

将其写成矢量形式为

/

/'0 ( )

( )4 V

J rA r dV

R

若磁场由面电流 JS 产生,其磁矢位为

/

/'0 ( )

( )4

S

S

J rA r dS

R

线电流产生的磁矢位为

/

' /0 ( )

( )4 l

Idl rA r

R

Page 53: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

例 1 求长度为 l 的载流直导线的磁矢位。

解 : 用矢量磁位的叠加计算

取一电流元 ,在场点的矢量磁位 为

/Idz

dA

/ /0 0

2 / 24 4 ( )

zdA e dA

I Idz dzdA

R r z z

2

2

l

lzA e dA

Page 54: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

/ 20

2 2 1/ 2/ 2

2 2 1/ 20

2 2 1/ 2

'

4 [ ( ') ]

( / 2 ) [( / 2 ) ]ln

4 ( / 2 ) [( / 2 ) ]

l

l

I d zA

r z z

I l z l z r

l z l z r

当 l >> z 时有 2 2 1/ 2

02 2 1/ 2

/ 2 [( / 2) ]ln

4 / 2 [( / 2) ]

I l l rA

l l r

若考虑 l >> r, 即是无限长的载流导线,则有

2

0 0ln ln4 2

I Il lA

r r

Page 55: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

当电流分布在无限区域时,一般应指定一个磁矢位的参考

点, 可以使磁矢位不为无穷大。若指定 r = r0 处为磁矢位的

零点时,有

0 0ln2z

I rA e

r

2

0 0ln ln4 2z z

I Il lA e e

r r

Page 56: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

对上式, 用圆柱坐标的旋度公式,可求出

0

2

IAB A e e

r r

0 0ln2z

I rA e

r

0

2

IB e

r

Page 57: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

例 2 求一对载相同电流、但流向相反的的载流直导线的磁场。

1 2A A A

解 :

0 01

1

0 02

2

ln2

ln2

z

z

I rA e

r

I rA e

r

Page 58: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2 2 1/ 21

2 2 1/ 22

( 2 cos )

( 2 cos )

r r a ar

r r a ar

0 2

1

2 2 1/ 20

2 2 1/ 2

2 20

2 2

ln2

( 2 cos )ln

2 ( 2 cos )

2 cosln

4 2 cos

z

z

z

I rA e

r

I r a are

r a ar

I r a are

r a ar

Page 59: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

在圆柱坐标中

1r

AAB A e e

r r

2 20

2 21 2

( )sin

0z

Ia r aAB

r r r

B

2 20

2 21 2

( )sin1r

Ia r aAB

r r r

Page 60: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

例 3 用磁矢位重新计算半径为 a、载流为 I的长直圆柱导线的磁场。

解: 2

0

z

Ie

J a

r ≤ a

r > a

从电流分布可以知道磁矢位仅有 z 分量,而且它只是坐标r 的函数,即 ( )zA e A r

201

12 1

a

I

r

Ar

rrA

设在导线内磁位是 , 导线外磁位是 1A

2A

r ≤ a

Page 61: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

01 2

22

r

Ar

rrA

20

1 1 22ln

4

IrA C r C

a

2 3 4lnA C r C

r > a

因为 , A1 必须有限,有 C1 =00r

20

1 224

IrA C

a

( r > a )

( r ≤ a )

Page 62: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

可求出导线内、 外的磁场分别为

0 31 222

Ir CB e B e

a r

2

03

IC

导体外部的磁感应强度为 02 2

IB e

r

AB A e

r

常数 C3 的确定可根据在圆柱面上的边界条件计算为

Page 63: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

§3.5 磁 偶 极 子

载流为 I、半径为 a的圆电流位于 xy平面,有 ,可将圆电流称为磁偶极子,常用磁矩 描述它

a r

m

2m I a n ISn

求磁偶极子产生的远区磁场

Page 64: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

利用矢量磁位的积分公式求解

0 0

4 4C C

IIdl dlA

R R

利用矢量公式

C Sdl n dS

/ 1( )zC S

dle dS

R R

/ 02 3

1( )

R R

R R R

Page 65: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

a r因为求的是磁偶极子产生的远区磁场, ,故有2 2

0 0R r R r

3( )zC S

dl re dS

R r

因为上式积分是对圆面积进行的,即积分与 r无关,且

x y zr xe ye ze

0 0 1

x y z

z x y

e e e

e r ye xe

x y z

Page 66: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2

3 3

1( ) ( )x y x yC S

dl aye xe dS ye xe

R r r

2

0 03

( )4 4 x yC

IIdl aA ye xe

R r

2 20 0

3 2

2 20 0

3 2

sin sin4 4

sin cos4 4

x

y

I Ia aA y

r r

I Ia aA x

r r

Page 67: 第三章 恒定电流的电场和磁场

第 第 3 3 章章2

02

20

2

sin sin4

sin cos4

0

x

y

z

I aA

r

I aA

rA

矢量磁位 位于平行 xy平面内,

将其在球坐标中表示,则知仅有

分量存在

A

A

22 2 2 0

20 0 sin

4r x y z

I aA A A A A A

r

Page 68: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

220 0

2 3sin ( )

4 4 z

I a m rA e m e I a

r r

其中

2

03

sin

1

sin

sin

( 2cos sin )4

r

r

r

e re r e

B Ar r

A rA r A

mB e e

r

Page 69: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

0 03 3

( 2cos sin )4 4r

m m rB e e

r r

磁偶极子产生的远区磁场

与电偶极子产生的远区电场比较

30

( 2cos sin )4 r

pE e e

r

其场在空间的分布相同

Page 70: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

位于外磁场中的磁偶极子,会受到外磁场的作用力及其力矩,其作用力和力矩的公式分别为

( )F m B

T m B

Page 71: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

§ 3.6 磁介质中的场方程

1 )磁化强度定义 0

lim i

V

mM

V

N VmM Nm

V

式中 是体积元 ΔV内的任一分子磁矩。如在磁化介质中的体积元 ΔV 内,每一个分子磁矩的大小和方向全相同 ( 都为 ) , 单位体积内分子数是 N , 则磁化强度为

im

m

1 、介质的磁化

Page 72: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2 )磁化电流

/ /0

3

( )( )

4

M r dV RdA

R

/其中R=r- r

设磁化介质的体积为 V,表面积是 S ,磁化强度 ,计算在介质外部任一点的矢量磁位。

M

取体积元 dV ′, 将其中的介质当成一磁偶极子,其磁矩为 ,它在 处产生的磁位是/MdV

r

Page 73: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

全部磁介质在 处产生的磁矢位为

03

0

( ')'

41

'( ) '4

V

V

M r RA dV

R

M dVR

将上式改写为

0 0'' ' ( ) '

4 4V V

M MA dV dV

R R

r

A A A

Page 74: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

利用矢量恒等式 V SFdV F dS

将磁矢位的表示式变形为 /0 0'

'4 4V S

M M nA dV dS

R R

m

mS

J M

J M n

磁化(体)电流密度磁化(面)电流密度

左为磁化电流示意图。磁介质磁化后将有磁化电流存在,它是由磁介质内分子电流的有序取向形成的。磁化电流也要产生磁场,从而影响原外磁场。

Page 75: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2 、 磁场强度

0 0( ) ( )m mC SB dl I I J J dS

0 0C CB dl I M dl

0C

BM dl I

mJ M

在外磁场的作用下,磁介质内部有磁化电流,磁化电流和外传导电流 都产生磁场,应将真空中的安培环路定律修改为: I

令 0

BH M

磁场强度,单位是 A/m(安培 /米 )

Page 76: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

CH dl I

关于 安培环路定律H

与之相应的微分形式是 H J

J

为自由电流密度

3 、 磁导率 0 ( )B H M

对于线性的均匀磁介质,有关系为 mM H

式中 是一个无量纲常数,称为磁化率,顺磁介质的 , 抗磁介质的 ,且这两类介质的 量级。

m 0m 0m 5| | 10m

0 0 0( ) (1 )m rB H M x H H H

Page 77: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

0 0(1 )m rB x H H H

式中 是介质的相对磁导率,是一个无量纲数。而 ,

是介质的磁导率,单位和真空磁导率相同,为 H/m(亨 / 米 ) 。

铁磁材料的 和 的关系是非线性的,且不是的单值函数,

会出现磁滞现象,其磁化率 的变化范围很大,可以达到 106

量级。

1r m

0 r

B

H

m

Page 78: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

磁导率为无限大的媒质称为理想导磁体。在理想导磁体中不可能存在磁场强度,因为由式 可见,将有无限大的磁感应强度。产生无限大的磁感应强度需要无限大的电流,因而需要无限大的能量,显然这是不可能的。

HB

边界上磁场强度的切向分量是连续的,因此,在理想导磁体表面上不可能存在磁场强度的切向分量,即磁场强度必须垂直于理想导磁体表面。

H

Page 79: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

例、 在具有气隙的环形磁芯上紧密绕制 N 匝线圈,如图示。当线圈中的恒定电流为 I 时,若忽略散逸在线圈外的漏磁通,试求磁芯及气隙中的磁感应强度及磁场强度。

解 忽略漏磁通,磁感应强度的方向沿环形圆周。

由边界条件知,气隙中磁感应强度 Bg 等于磁芯中的

磁感应强度 Bf ,即 fg0fg HHBB

围绕半径为 r0 的圆周,利用媒质中的安培环路定律,且考虑到 r0

>> a , 可以认为线圈中磁场均匀分布,则由安培环路定理有

g f0

0

(2π )B B

d r d NI

0g f

0 0

(2π )

NIB B e

d r d

Page 80: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

气隙中的磁场强度 Hg 为

gg

0 0 0

(2π )

B NIH

d r d

磁芯中的磁场强度 Hf 为

0ff

0 0

(2π )

NIBH

d r d

0

1gr

f

H

H

Page 81: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

4 、 磁介质中恒定磁场基本方程

0B

H J

0

S

C

B dS

H dl I

2 A J

B H

微分形式 积分形式:

各向同性的均匀磁介质

对于均匀介质 ( 为常数 ) , 满足矢量泊松方程 A

Page 82: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

例 半径为 a、高为 L的磁化介质柱 ( 如图所示 ) ,磁化强度为 M0(M0 为常矢量,且与圆柱的轴线平行 ) ,求磁化电流 J

m 和磁化面电流 JmS 。 解:取圆柱坐标系的 z 轴和磁介质柱的中轴线重合, 磁介质的下底面位于 z=0 处,上底面位于 z=L 处。

0( ) 0m zJ M M e

Page 83: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

0 ( ) 0mS z zJ M n M e e

0 0mS z zJ M n M e e

0 0mS z rJ M n M e e M e

在界面 z=0 上, zn e

在界面 z=L 上, zn e

在界面 r=a 上, rn e

Page 84: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

§ 3.5 磁场的边界条件

1 、 法向分量边界条件

2 1 2 1

2 2 1 1

( )

cos cos 0S

B dS B n S B n S n B B S

B B

0S

B dS

Page 85: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

磁感应强度矢量的法向分量的矢量形式的边界条件为

2 1( ) 0 (1)n B B

2 1n nB B

由 有B H

2 2 1 1n nH H

Page 86: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2 、 切向分量边界条件

l SH dl J dS

Page 87: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2 1

2 1

2 1

2 1

( )

( )

( )

lH dl H l l H l l

l H H l

b n H H l

b n H H l

因为 h→0 ,如果分界面的薄层内有自由电流, 则为面电流,在回路所围的面积上

0lim s SS h

J dS J b l J b l

2 1( ) Sb n H H J b

Page 88: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2 1( ) Sb n H H J b

2 1( ) (2)Sn H H J

2 1t t SH H J

如果分界面处没有自由面电流,则 2 1t tH H

即 2 1

2 1

t tB B

Page 89: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2 1

2 1

( ) 0

( ) 0

n H H

n B B

若两种介质分界面不存在电流,则在分界面处的边界条件为

相应的标量形式为 1 2 1 2t t n nH H B B

1 1

2 2

tan

tan

分界面处的折射定理

Page 90: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

折射定理表明,磁力线在分界面上通常要改变方向。

若介质 1 为铁磁材料,介质 2 为空气,此时 μ2 «μ1, 有

θ2 « θ1 ,及 B2 « B1

假如 μ1=1000μ0, μ2=μ0 ,在这种情况下,当 θ=87° 时, θ2

=1.09° , B2 / B1=0.052 。由此可见,铁磁材料内部的磁感应强

度远大于外部的磁感应强度,同时外部的磁力线几乎与铁磁材料表面垂直。

1 1

2 2

tan

tan

Page 91: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

§ 3.8 标 量 磁 位

由恒定磁场的基本方程,在无自由电流 (J=0) 的区域里有

mH

称为磁场的标量磁位(磁标位 ) , 单位为 A(安培 ) 。 m

0H

磁场强度 是无旋的,磁场强度可表为一个标量函数的负梯度H

• 上式中的负号是为了与静电位对应而人为加入的。• 标量磁位不具有磁场力作功的含义。• 关于解决标量磁位的多值问题。

1 、标量磁位的定义

Page 92: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

1 )、在均匀磁介质中 2 、标量磁位满足的方程

mH

2

( ) 0

( ) 0m m

B H

2 0m 在均匀磁介质中,若所研究的区域内无传导电流存在,稳恒磁场的求解问题可归结为求解标量磁位的拉普拉斯方程的边值问题。

Page 93: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

用微分方程求磁标位时,也同静电位一样,是求拉普拉斯方程的解。分界面处的边界条件用磁标位表示时,为

2 12 1 2 1

2 1 2 1

m mn n

t t m m

B Bn n

H H

磁标位在求解永磁体的磁场问题时比较方便 ( 因其内无传导电流 ) 。永磁体的磁导率远大于空气的磁导率,因而永磁体表面是一个等位 ( 磁标位 ) 面,这时可以用静电比拟法来计算永磁体的磁场。

Page 94: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

对于非均匀介质,在无源区 (J=0)

mm 2

令 ,称其为“ 磁荷 ”m M

2 )、非均匀磁介质

引入磁荷的概念后,磁标位满足泊松方程,即

0

20 0 0

( )

( ) 0

m

m

B H M H

B H M M

Page 95: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

§ 3.9 互 感 和 自 感

•在线性磁介质中,任一回路在空间产生的磁场与回路电流成正

比,因而穿过任意的固定回路的磁通量 Φ 是与电流成正比。

•如果回路由细导线绕成 N匝,则总磁通量是各匝的磁通之和。

称总磁通为磁链,用 Ψ 表示。对于密绕线圈,可近似认为各匝

的磁通相等, 有 Ψ=NΦ 。

Page 96: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

一个回路的自感定义为回路的磁链与回路电流之比, 即

LI

•自感的单位是 H(亨利 ) 。

•自感的大小仅决定于回路的尺寸、形状以及介质的磁导率。

•自感与回路是否载流无关。

1 、自感 L

Page 97: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2121

1

MI

1212

2

MI

同样,载流回路 C2 的磁场在回路 C1 上产生的磁链 Ψ12 与电流 I2

的比来定义互感M12

2 、互感 M两相邻回路,载流回路C1 的磁场在回路C2 上产生的磁链Ψ21

与电流 I1 的比来定义互感 M 21

Page 98: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

• 互感的单位与自感相同。• 可以证明: M12=M21=M 。• 互感的大小仅取决于回路的尺寸、形状、介质的磁导率、回路的匝数以及相互位置。• 互感与回路是否载流无关。

2121

1

MI

12

122

MI

Page 99: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

证明:设两个回路均只有一匝。当回路 C1 载有电流 I1 时, C2

上的磁链为 2 2

21 21 1 2 21 2S CB dS A dl

1 2 1

2 1

0 1 121 21 2

021

0 1 1

1 221

1

[ ]4 4

4

C C C

C C

I dlA dl

R

dl dlM

d

R

I l

I

R

以两线形回路为例(当导线的直径远小于回路的尺寸,且也远小于两个回路之间的相互距离时,两回路都可以用轴线的几何回路代替,即线形回路),证明M12=M21=M 。

同理,可得1 2

012 2 112

2 4 C C

dl dlM

I R

Page 100: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

MMM 2112

1 2

0 1 2

4 C C

dl dlM

R

因为以上两积分式与计算次序无关,得

2 1

021 1 221

1 4 C C

dl dlM

I R

1 2

012 2 112

2 4 C C

dl dlM

I R

诺伊曼公式

Page 101: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

例、 求无限长平行双导线 ( 如图 所示 ) 单位长外自感。

解:设导线中电流为 I ,由无限长导线的磁场公式,两导线之间轴线所在的平面上的磁感应强度为

)(2200

xd

I

x

IB

Page 102: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

)(2200

xd

I

x

IB

磁场的方向与导线回路平面垂直。单位长度上的外磁链为

a

adn

IBdx

ad

a

10

单位长外自感为 0 1

d aL n

I a

0 1d

d a L na

Page 103: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

§ 3.10 磁场能量

对磁场能量,有两种观点:载流系统具有的磁能;磁能存在于磁场所在的空间,即磁场具有磁能。 本节的目的要建立磁场能量表达式。

1 、载流系统具有的磁能

载流系统具有的磁能来自在建立电流系统的过程中,外源反抗电路中的感应电动势所作的功。 先以两个分别载流 和 的电流回路系统所储存的磁场能量为例计算。

1I 2I

Page 104: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

1 )计算两个分别载流 I1 和 I2 的电流回路系统所储存的磁能

假定回路的形状、相对位置不变,同时忽略焦耳热损耗。在电流建立的过程中, t 时刻两回路的电流分别为 i1(t) 和 i2(t) , t=

0 时 i1=0 、 i2=0 ,电流建立后 i1=I1 、 i2=I2 。 在这一过程中,电源反抗电路中的感应电动势所作的功转变成磁场能量。

首先求仅出回路 1 中的电流 i1从零增加到 I1 时,电源作的功 A

1 ;再计算当回路 1 中的电流 I1 不变时,回路 2 中的电流从零增

加到 I2 时电源作的功 A2 。在这一过程中,电源对整个回路系统

作的总功 A=A1+A2 。

Page 105: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

1 11 1 1 1 1dA i dt L i di

当回路 1 中的电流 i1 在 dt 时间内有一个增量 di1, 周围空间

的磁场将发生改变,回路 1 的磁通有增量 dΨ11 ,在回路 1 中要

产生自感电势

自感电势的方向总是阻止电流增加。因而,为使回路 1 中的

电流得到增量 , 外电源必须反抗回路 1 中的自感电势作功,在 d

t 时间里,电源作功为

11 111 1

d diL

dt dt

当回路 1 的电流从零到 I1 的过程中,电源作功为

1 21 1 1 1 1 1 10

1

2

IA dA L i di L I

Page 106: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

计算当回路 1 的电流 I1保持不变时,使回路 2 的电流从零

增到 I2 ,且回路 2 的电流流向与 I1相同,计算电源作的功 A2 。

考虑到在 i2建立过程中,外电源既要克服回路 2 的自感电势,

又要克服回路 1 的互感电势,在 dt 时间内,外电源作功为2 2 2 1 2dA L i dt MI di

当回路 2 的电流从零到 I2 的过程中,电源作功为

2 22 2 2 21 1 2 2 2 21 1 20

1( )

2

IA L i M I di L I M I I

Page 107: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

电源对两个电流回路系统所作的总功为

2 22 1 2 1 1 2 2 21 1 2

1 1

2 2A A A L I L I M L I

2 21 2 1 1 2 2 2 1

1 1

2 2mW A A L I L I M I I

因为载流系统的总磁能量只与系统最终的状态有关, 与建立状态的方式和次序的先后无关,以及由功能关系知,电源对两个电流回路系统所作的总功为载流系统具有的磁能,其表达式为

Page 108: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2 21 1 2 2 2 1

1 1 21 2 1 12 1 2 2 2

11 21 1 12 22 2

1 1 2 2

1 1

2 21 1

( ) ( )2 21 1

( ) ( )2 2

1 1

2 2

m

m

W L I L I M I I

L I M I I M I L I I

I I

W I I

其中 和 分别为回路 1 、 2 的磁链。1 2

Page 109: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

将以上结果推广到 N 个电流回路系统, 其磁能为

N

iiim IW

12

1

式中 1 1

N N

i ji ji jj j

j i

M I

1

1

2 i

N

m i iCi

W I A dl

1

2m VW J AdV

ii ic

A dl

对于分布电流,用 代入上式,得 i iI dl JdV

Page 110: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

类似于静电场的能量可以用电场矢量 D 和 E 表示,磁场能量也可用磁场矢量 B 和 H 表示。

1 1( ) [ ( ) ( )]

2 21 1

( )2 2

m V V

V S

W A H dV H A H dV

H BdV A H dS

在上式中当积分区域 V趋于无穷时,面积分项为零 ( 理由同静电场能量里的类似 ) ,得磁场能量为 1

2m VW H BdV

磁场能量密度为 21 1

2 2mw B H H

Page 111: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

例 1 、 求无限长圆柱导体单位长度的内自感。

解:设导体半径为 a ,通过的电流为 I ,则距离轴心 r 处的磁感应强度为

02

( )2

IrB r a

a

单位长度的磁场能量为 2

0

22 0

00

1 1

2 2

12

2 16

m

a

W B HdV B dV

IB rdr

单位长度的内自感为 00 2

2

8mW

LI

Page 112: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

§ 3.11 磁 场 力

mF r W

写成矢量形式,有 mF W

1. 磁链不变

当磁链不变时,各个回路中的感应电势为零,所以电源不作功。磁场力作的功必来自磁场能量的减少。如将回路 C1受到的磁场力记为 ,它作的功为 F

F r

mr

WF

r

Page 113: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

2211 IIWb

)(2

12211 IIWm磁场能量的变化为

b m

m

m I

W W F r

F r W

F W

2. 电流不变

当各个回路的电流不变时,各回路的磁链要发生变化,在各回路中会产生感应电势,电源要作功。回路产生位移 , 电源作功为

r

Page 114: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

例 设两导体平面的长为 l ,宽为 b, 间隔为 d ,上、下面分别有方向相反的面电流 JS0( 如图所示 ) 。设 b >> z , l >> z ,求上面一片导体板面电流所受的力。

Page 115: 第三章 恒定电流的电场和磁场

第 第 3 3 章章

解: 考虑到间隔远小于其尺寸,故可以看成无限大面电流。由安培回路定律可以求出两导体板之间磁场为 B=exμ0JS0 ,导体外磁场为零。当用虚位移法计算上面的导体板受力时,假设两板间隔为一变量 z 。磁场能为

lbzJBHVW Sm2

000 2

1

2

1

假定上导体板位移时,电流不变,

lbJez

WeF Sz

mz

2002

1

这个力为斥力。