# ВЕКТОРНОЕ ПРЕДСТАВЛЕНИЕ АССОЦИАТИВНЫХ ПРОИЗВЕДЕНИЙ СОПРЯЖЕННЫХ КВАТЕРНИОННЫХ МАТРИЦ

• View
217

3

Embed Size (px)

Transcript

• 4

- 1/4 ( 49 ) 2011

-

512.643.8:531.3

. . ,

. . , 19, . , , 49027 .: 067-72-607-72

. .

* .: 050-321-14-60

. .

* .: 067-921-10-67; (056) 713-58-03*

.

. , 2, . , , 49010

- - . , - - -

: , , ,

- - . , - - -

: -, , - , -

Using mathematical induction the procedu-re of vector representation of adjoint quatern-ionic matrices associative products were built. Some symbolic formulas that shows an equiv-alence of associative products of quaternion-ic matrices and multiplicative compositions of vector algebra

Key words: quaternionic matrices, multipli-cative compositions, associative products, vec-tor presentation

[3], -, , [1, 8], , - -[2]. -- [5, 6]. - . -

, - , - .

a b, , a b c, , , a b c d, , , , A At0 0, ( a0 0= ). -

• 5

-

, , , - .

a b a b a b a b1 1 2 2 3 3+ + = , .. a a ab

b

b

a b1 2 3

1

2

3

=

a b a b a b2 3 3 2 1 = ( )a b a b a b3 1 1 3 2 = ( )a b a b a b1 2 2 1 3 = ( ) ,

..[7]

0

0

0

3 2

3 1

2 1

1

2

3

1

2

3

=

( )( )( )

= a a

a a

a a

b

b

b

a b

a b

a b

a b

:

A b

a b

a b

a b

a b

0 0

1

2

3

( )( )( )

, A b

a b

a b

a b

a b

t0 0

1

2

3

( ) ( ) ( )

,

[5]

A ba b

a b0 0

, A b

a b

a bt0 0

( ) ,

A At0 0, - a0 0= :

A

a a a

a a a

a a a

a a a

0

1 2 3

1 3 2

2 3 1

3 2 1

0

0

0

0

=

, A

a a a

a a a

a a a

a a a

t0

1 2 3

1 3 2

2 3 1

3 2 1

0

0

0

0

=

.

- a b c, , - [5]:

A B c A B c0 0 0 0 0 0 ( ) = ( ) ,

A B c A B ct t0 0 0 0 0 0 ( ) = ( ) ,A B c A B ct t0 0 0 0 0 0 ( ) = ( ) ,A B c A B ct t t t0 0 0 0 0 0 ( ) = ( ) ,

:

:

A B ca b c

a b c a b c0 0 0 ( )

( ) ( ) + ( ) .

[5]:

A B ca b c

a b c a b c

A B ca b c

a b

t

t

0 0 0

0 0 0

( ) ( ) ( ) ( )

( ) ( )

,

( ) ( ) ( ) ( )

( ) + ( )

c a b c

A B ca b c

a b c a b ct t

,

.0 0 0

A B c0 0 0( ) [4], :

A B

a b a b a b a b

a b a b a b a b

a0 0

1 2 3

1 3 2 =

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

b a b a b a b

a b a b a b a b

2 3 1

3 2 1

.

A B c

a b c a b c a b c

a b c a b c a b0 0 0

1 1 2 2 3 3

1 3 2( ) =

( ) + ( ) + ( ) ( ) ( ) + (( ) ( ) + ( ) ( ) ( ) ( ) + ( )

2 3

2 3 1 1 3

3 2 1 1 2

c

a b c a b c a b c

a b c a b c a b c

A B ca b c

a b c a b c0 0 0( )

( ) ( ) + ( ) .

A B ct0 0 0( ) [4],

A B c

a a a

a a a

a a a

a a a

b c

b c

b c0 0 0

1 2 3

1 3 2

2 3 1

3 2 1

1

0

0

0

0

( ) =

( )( ))( )

=

( ) + ( ) + ( ) ( ) ( ) +

2

3

1 1 2 2 3 3

1 3 2 2

b c

a b c a b c a b c

a b c a b c a b cc

a b c a b c a b c

a b c a b c a b c

( ) ( ) + ( ) ( ) ( ) ( ) + ( )

3

2 3 1 1 3

3 2 1 1 2

A B

a b a b a b a b

a b a b a b a bt

0 0

1 2 3

1 1 12

=

( ) ( ) ( ) ( ) ( ) ( ) ( )

33 2 1 2 3 1

2 3 1 2 2 2 1

2 2

2 2

( ) ( ) ( ) ( ) ( )

a b a b a b

a b a b a b a b a b a b 22

2 2 2

3 2

3 2 1 3 1 2 3 3 3

a b

a b a b a b a b a b a b a b ( ) ( ) ( ) ( )

• 6

- 1/4 ( 49 ) 2011

:

, , :

A B c

a b c

a b c a c a c a c b a b ct

0 0 0

1 1 1 2 2 3 3 12( ) =

( )( ) + +( ) + ( ) ( ) + +( ) + ( ) ( ) +

1

2 1 1 2 2 3 3 22

3 1 1

2

2

a b c a c a c a c b a b c

a b c a c a22 2 3 3 33

c a c b a b c+( ) + ( ) .. :

A B ca b c

a b c a c b a b ct

0 0 02

( ) ( )( ) ( ) + ( ) .

:

A B ca b c

a b c a c b a b c

A B ca

t

t t

0 0 0

0 0 0

2( ) ( )

( ) ( ) + ( )

( )

,

bb c

c a b a b c

( ) ( ) + ( ) .

- a b c d, , , - - [5, 6]:

1. A B C d A B C d A B C d

A

0 0 0 0 0 0 0 0 0 0 0 0

0

( ) = ( ) = ( ) == BB C d A B C d0 0 0 0 0 0 0( ) = ( ) ( ),

2. A B C d A B C d A B C dt t t0 0 0 0 0 0 0 0 0 0 0 0 ( ) = ( ) = ( ) == AA B C d A B C dt t0 0 0 0 0 0 0 0 ( ) = ( ) ( ),

3. A B C d A B C d A B C dt t t0 0 0 0 0 0 0 0 0 0 0 0 ( ) = ( ) = ( ) == AA B C d A B C dt t0 0 0 0 0 0 0 0 ( ) = ( ) ( ),

4. A B C d A B C d A B C dt t t t t t0 0 0 0 0 0 0 0 0 0 0 ( ) = ( ) = ( ) 00

0 0 0 0 0 0 0 0

=

= ( ) = ( ) ( )A B C d A B C dt t t t ,

5. A B C d A B C d A B C dt t t0 0 0 0 0 0 0 0 0 0 0 0 ( ) = ( ) = ( ) == AA B C d A B C dt t0 0 0 0 0 0 0 0 ( ) = ( ) ( ),

6. A B C d A B C d A B C dt t t t t t0 0 0 0 0 0 0 0 0 0 0 ( ) = ( ) = ( ) 00

0 0 0 0 0 0 0 0

=

= ( ) = ( ) ( )A B C d A B C dt t t t ,

7.

A B C d A B C d

A B C

t t t t

t t

0 0 0 0 0 0 0 0

0 0 0

( ) = ( ) == ( ) dd A B C d

A B C d

t t

t t

0 0 0 0 0

0 0 0 0

= ( ) == ( ) ( ),

8.

A B C d A B C d

A B C

t t t t t t

t t t

0 0 0 0 0 0 0 0

0 0 0

( ) = ( ) == ( ) = ( ) == ( ) ( )

d A B C d

A B C d

t t t

t t t

0 0 0 0 0

0 0 0 0 ,

- - , - . A B C d0 0 0 0 ( ) , - :

A B C d

a a a

a a a

a a a

a a a

b c d

0 0 0 0

1 2 3

1 3 2

2 3 1

3 2 1

10

0

0

0

( ) =

=

(( ) + ( ) + ( ) ( ) ( ) + ( ) ( ) +

1 2 2 3 3

1 3 2 2 3

2

b c d b c d

b c d b c d b c d

b c d b33 1 1 3

3 2 1 1 2

c d b c d

b c d b c d b c d

( ) ( ) ( ) ( ) + ( )

:

A B C d

a b c d a b c d a b c d

a

0 0 0 0

1 1 11

2 2

2

( ) =

=

( ) + ( ) ( ) ++

bb c d a b c d a b c d

a b c d a b c d

( ) ( ) + ( )

( ) (

23 3 3

3

1 1 1 1 2)) ( ) + ( )

( ) ( ) + 2 1 3 3 3 2

32

2 3 2

a b c d a b c d

a b c d a b c d a b c d(( )

( ) ( ) ( ) ( ) ++

3

2 1 1 2 2 2 2 3 3 3 1

3

a b c d a b c d a b c d a b c d

a b c ( ) + ( ) ( )

( ) ( )

d a b c d a b c d

a b c d a b c d

11 3 1

3

3 1 1 3 2 2aa b c d a b c d

a b c d a b c d a b c d

3 3 3 2 1

21

1 2 1

( ) + ( ) ( ) ( ) + ( ) 2

, , - :

A B C d

a b c d a b c d

a b c d a

0 0 0 0( )

( ) ( ) + ( )

( ) bb c d a b c d( ) ( ) + ( ) ;

:

A B c

a b c a b c a b c

a b c a b c a bt

0 0 0

1 1 2 2 3 3

1 1 1 12( ) =

( ) ( ) ( )( ) (( ) + ( ) ( ) + ( )

3 2 2 1 2 2 3 3 1 3

2 2 2 2 3 1

2 2

2 2

c a b c a b c a b c

a b c a b c a b c a11 2 1 1 3 3 2 3

3 3 3 3 2 1 1 3 1

2

2 2

b c a b c a b c

a b c a b c a b c a b c a

( ) ( ) ( ) + bb c a b c( )

1 2 2 3 22

• 7

-

A B C d

b c a d a b c d

a b c d a

0 0 0 0( )

( ) ( ) + ( )

( ) dd b c a b c d( ) ( ) + ( ) ;

A B C d

a b c d a b c d

a b c d a

0 0 0 0( )

( ) ( ) + ( )

( ) bb c d a b c d( ) ( )+ ( ) ;

A B C d

b c a d a b c d

a b c d b

0 0 0 0( )

( ) ( ) + ( )

( ) cc a d a b c d( ) ( )+ ( ) ;

A B C d

a b c d a b c d

a b c d a

t0 0 0 0( )

( ) ( ) ( )

( ) bb c d a b c d( ) ( ) ( ) ;

A B C d

a b c d a b c d

a b c d a

t0 0 0 0( )

( ) ( ) ( )

( ) ( ) ( ) ( ) b c d a b c d;

A B C d

a b c d a b c d

a b c d a

t t0 0 0 0( )

( ) ( ) + ( )

( ) ( ) ( ) + ( ) b c d a b c d;

A B C d

b c a d a b c d

a b c d a

t t0 0 0 0( )

( ) ( ) + ( )

( ) ( ) ( ) + ( ) d b c a b c d;

A B C d

a b c d a b c d

a b c d a

t0 0 0 0( )

( ) ( ) + ( )

( ) + ( ) ( ) ( ) b c d a b c d;

A B C d

b c a d a b c d

a b c d a

t0 0 0 0( )

( ) ( ) + ( )

( ) + ( ) ( ) ( ) d b c a b c d;

A B C d

a b c d a b c d

a b c d a

t t0 0 0 0( )

( ) ( ) ( )

( ) + ( ) ( ) + ( ) b c d a b c d;

A B C d

a b c d a b c d

a b c d

t t0 0 0 0( )

( ) ( ) ( )

( ) + aa b c d a b c d( ) ( ) + ( ) ;

A B C d

a b c d a b c d

a b c d

t t t0 0 0 0( )

( ) ( ) + ( )

( )