89
µ¦´°r¦³°¸É¤¸§·Íµ¸ª£µ¡µ°Á¥Á«Ã¥ÄoÊε¹Éª·§ Ã¥ µµª»µ µ¥¡»··¦ ª·¥µ·¡r¸ÊÁ}nª®¹É°µ¦«¹¬µµ¤®¨´¼¦¦·µª·¥µ«µ¦¤®µ´· µµª·µÁÃ襸°µ®µ¦ £µª·µÁÃ襸°µ®µ¦ ´·ª·¥µ¨´¥ ¤®µª·¥µ¨´¥«·¨µ¦ eµ¦«¹¬µ 2553 ¨···Í°´·ª·¥µ¨´¥ ¤®µª·¥µ¨´¥«·¨µ¦

µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

2553

Page 2: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

2553

Page 3: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

EXTRACTION OF BIOACTIVE COMPONENTS FROM CINNAMON

(CINNAMOMUM ZEYLANICUM) BY SUBCRITICAL WATER

By

Nucha Sayputikasikorn

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

Department of Food Technology

Graduate School

SILPAKORN UNIVERSITY

2010

Page 4: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

……...........................................................

( . )

.......... .................... . ...........

1. .

2. .

3. .

....................................................

( . )

............/......................../..............

.................................................... ....................................................

( . ) ( . )

............/......................../.............. ............/......................../..............

.................................................... ....................................................

( . ) ( . )

............/......................../.............. ............/......................../..............

Page 5: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

51403207 :

: / /

:

. : . . , . .

. . . 74 .

(semi-continuous)

60 3 / 100, 150

200

protocatechuic acid, ferulic acid,

catechin, p-coumaric acid, vanillic acid caffeic acid

50

200

catechin

two-site kinetic

2,2-diphenyl-

1-picrylhydrazyl (DPPH) 200

10

50 30

DPPH

(R2 = 0.9835)

(log P)

(hydrophilic)

2553

........................................

1. ....................... 2. ................... 3. .......................

Page 6: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

51403207 : MAJOR : FOOD TECHNOLOGY KEY WORDS : PHENOLIC COMPOUNDS/ANTIOXIDANT/BIOACTIVE COMPOUND

NUCHA SAYPUTIKASIKORN : EXTRACTION OF BIOACTIVE COMPONENTS FROM CINNAMON (CINNAMOMUM ZEYLANICUM) BY SUBCRITICAL WATER. THESIS ADVISORS : ASST.PROF.PRAMOTE KHUWIJITJARU, Ph.D., ASST.PROF.SUCHED SAMUHASANEETOO, Ph.D., AND ASST.PROF.PRASONG SIRIWONGWILAICHAT, Ph.D. 74 pp.

The aim of this research was to study the subcritical water extraction (SWE) of bioactive components from cinnamon (Cinnamomum zeylanicum) bark using a semi-continuous system at a constant pressure of 60 bar and water flow rate of 3 ml/min. Effects of extraction temperature (100, 150 and 200°C) were determined on the amount of cinnamaldehyde, coumarin, cinnamic acid and cinnamyl alcohol compared to those obtained by ultrasonic-assisted extraction (UAE) using methanol as a solvent and the amount of phenolic compounds (protocatechuic acid, ferulic acid, catechin, p-coumaric acid, vanillic acid and caffeic acid) and the total phenolic content compared to those obtained by UAE using 50% methanol as a solvent. The amount of cinnamaldehyde obtained by UAE was higher than SWE, whereas the amount of coumarin and cinnamic acid in the extracts obtained by SWE and UAE were not significantly different. However, the amount of cinnamyl alcohol obtained by SWE was higher than UAE. The amount of phenolic compounds and the total phenolic content increased with an increasing in subcritical water temperature. At 200°C, these values from SWE were higher than UAE. However, catechin was not found from SWE. The extraction data were fitted with two-site kinetic model and the results indicated that the extraction rates in the first fraction for cinnamaldehyde, coumarin, cinnamic acid and cinnamyl alcohol were higher than those for phenolic compounds. In addition, antioxidant capacity of the extract that measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay from the first collected fraction of SWE at 200°C was comparable to that obtained by UAE using 50% methanol as a solvent. And the antioxidant capacity was linearly related to the total phenolic content (R2 = 0.9835). The polarity of the extracts was assessed by determining the octanol-water partition coefficient (log P). The extracts obtained from both SWE and UAE were found to be hydrophilic.

Department of Food Technology Graduate School, Silpakorn University Academic Year 2010 Student's signature ........................................Thesis Advisors' signature 1. ....................... 2. ....................... 3. .......................

Page 7: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

.

. .

. .

2”

Page 8: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

......................................................................................................

..................................................................................................

........................................................................................................

..............................................................................................................

.................................................................................................................

1 .............................................................................................................. 1

.............................................................. 1

........................................................................... 2

.............................................................................. 2

................................................................................. 2

2 .......................................................................... 3

..................................................................................................... 3

- (partition coefficient) ........... 10

.............................................................................................. 12

................................... 15

3 ............................................................................................. 17

.................................................................................................... 17

................................................................................................... 17

................................................................................ 18

........................................................................................... 20

................................................................. 20

(UAE) .............................................. 21

(Partition coefficient) ............. 21

................................................................................. 22

.......................................................... 23

.............................. 23

Page 9: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

4 ............................................................ 24

...................................................................... 24

....... 26

..................................................................... 31

.......................................................... 39

....................................... 42

...................................................................... 43

(partition) ...................................... 44

5 ......................................................................................... 47

......................................................................................................... 48

............................................................................................................. 55

................................................................................................. 56

................................................................................................. 58

................................................................................................. 67

.......................................................................................................... 74

Page 10: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

1

............................................................................ 5

2

.................................................................................................. 6

3 ...................................................... 7

4 ...... 9

5 F, k1 k2

two-site kinetic................................................................................ 29

6

(SWE) 60

(UAE) 30

................................................................................................. 31

7

........................................................................................... 32

8 F, k1 k2

two-site kinetic ....................... 37

9

(SWE) 60

(UAE) 50

30 .................................................................. 38

10 F, k1 k2

two-site kinetic ................... 40

Page 11: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

11

(SWE) 60

(UAE) 50

30 .................................................................. 41

12 (log P)

DPPH ............................................ 45

13

.................................................................... 68

14

........................................................................ 68

15

.................................................................... 69

16

....................................................... 69

17 protocatechuic acid

50 ....................................... 69

18 ferulic acid

50 .................................................... 70

19 catechin

50 ........................................................ 70

Page 12: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

20 p-coumaric acid

50 ............................................. 70

21 vanillic acid

50 .................................................... 71

22 caffeic acid

50 .................................................... 71

23

50 ............................... 71

24 DPPH

- 50

30 .................................................................... 72

25 (log P)

50 ....................................... 72

26 DPPH

100

- ...... 72

27 DPPH

150

- ...... 73

28 DPPH

200

- ...... 73

Page 13: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

1 (a) (b) (c)

(d) .............................................................................. 4

2 ................................................................................... 7

3 ................................................................................ 12

4 ( )

(log (KW)) 15 MPa........................................ 13

5 ....................................................... 15

6 (semi-continuous

system)........................................................................................... 18

7 (semi-

continuous system) (a) (b)

............................................ 19

8 100,

150 200

(UAE)....................................................... 25

9

(a) 250 (b)

280 ................................................................................. 26

10 (a)

(b) (c) (d)

100°C ( ), 150°C ( ) 200°C ( )

two-site kinetic 100°C ( ),

150°C ( ) 200°C ( ) ..................................................... 27

Page 14: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

11

200 10 (a)

250 (b) 280 (c)

320 ......................................................................... 33

12 (a)

protocatechuic acid (b) ferulic acid (c) p-coumaric acid (d)

vanillic acid (e) caffeic acid

100°C ( ), 150°C ( ) 200°C ( )

two-site kinetic

100°C ( ), 150°C ( ) 200°C ( ) ............................... 36

13

100°C ( ), 150°C ( ) 200°C ( )

two-site kinetic 100°C

( ), 150°C ( ) 200°C ( ) .......................................... 39

14 DPPH

(SWE)

(UAE) 50 30 .. 43

15

DPPH ....................... 44

16 ........ 57

17 (a) protocatechuic acid, (b) catechin, (c)

vanillic acid, (d) caffeic acid, (e) p-coumaric acid (f) ferulic

acid ................................................................................................ 63

18

............................................................................................ 64

Page 15: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

19

DPPH............................................................................ 65

Page 16: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

1

1

1.1

(Adisakwattana,

2007)

(Subash Babu ,

2007)

(Chang

, 2001) (

, 2551)

( , 2549)

100

374

(Smith, 2002)

(Herrero , 2006)

(polarity)

(Ozel , 2003) (Khuwijitjaru , 2008)

Page 17: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

2

1.2

1.

2. DPPH

3. -

1.3

1.

DPPH

-

2.

1.4

100 - 200

(semi-continuous)

Page 18: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

3

2

2.1

Lauraceae

30 – 40

4 – 5 ( , 2527) (Cinnamomum) 250

(Jayaprakasha , 2003)

(Cinnamomum zeylanicum)

Ceylon Cinnamon ( ) True Cinnamon ( )

3

(cinnamaldehyde)

(cinnamic aldehyde) 60 - 75 ( , 2549)

Page 19: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

4

OH O O

2.1.1

(cinnamaldehyde)

(cinnamic acid) (cinnamyl alcohol) (coumarin)

( 1)

(Woehrlin , 2010) 1

1 (a) (b) (c)

(d)

5 - 20

45 streptozotocin (STZ)

20

glycosylated hemoglobin (HbA1C)

high-density lipoprotein (HDL-cholesterol) (Subash

Babu , 2007)

OH

O

H

O (a) (b)

(c) (d)

Page 20: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

5

1

(mg/kg) (mg/kg)

(mg/kg)

(mg/kg)

cinnamon powder

mean value 11100 64 252 183

median 11500 <LOD 235 <LOD

range 2080 - 24800 <LOD - 297 88 - 436 <LOD - 509

cinnamon sticks

mean value 16700 185 231 1210

median 17400 160 208 434

range 3930 - 28200 <LOD - 486 62 - 522 <LOD - 8140

<LOD are considered as 0

: Woehrlin (2010)

Singh (2007)

97.7 50.0

Chang (2001)

(2551)

30 4,

6, 8 10 (% yield)

4 10

Page 21: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

6

2

2

DPPH radical-scavenging Extraction

time

(hour)

Yieldns

(%)

(dry basis) EC50

( g DM/ g DPPH)

ARP

(1/EC50)

Total phenolic

contents (mg of

GAE/g DM)

4 26.46±0.24 5.74±0.08 a 0.18±0.01 a 281.51±4.85 ab

6 24.80±0.74 5.80±0.42 a 0.17±0.01 a 278.34±0.68 a

8 27.70±0.88 5.04±0.57 ab 0.20±0.03 ab 283.28±4.65 b

10 24.76±0.90 4.15±0.17 b 0.24±0.01 b 300.67±3.20 c a, b, c Means with different letters within the column are significantly different (p 0.05)

: (2551)

(secondary metabolite)

, (Pentose phosphate, Shikimate

Phenylpropanoid pathway) (Balasundram , 2006)

(-OH) 1

2

(Vermerris Nicholson, 2006)

Page 22: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

7

2

: Vermerris Nicholson (2006)

(Naczk Shahidi, 2004)

3 (phenolic acids), (flavonoids)

(tannins) (Balasundram ,

2006)

3

: Balasundram (2006)

Page 23: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

8

(Phenolic acids) 2

(Hydroxybenzoic acid) 1 (C6-C1)

(hydroxycinnamic acids)

3 C6-C3 (Balasundram , 2006)

(Flavonoids)

8,000 15

C6-C3-C6 A B

3

(heterocyclic ring) C C

(flavonols), (flavones),

(flavanones), (flavanols catechins), (isoflavones),

(flavanonols) (anthocyanidins) (Balasundram , 2006)

(Tannins)

( ,

2549) Condensed tannins Hydrolysable tannins

4

Page 24: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

9

4

rutin

quercetin

kaempferol

isorhamentin

catechin

0.896 ±0.028

0.550 ±0.095

0.492 ±0.134

0.113 ±0.015

2.30 ±0.049

mg/100g

(fresh wt)

Al-Numair

(2007)

quercetrin

quercetin

kaempferol

0.122±0.005

0.267±0.001

0.005±0.000

mg/100g

(dry wt)

Prasad

(2009)

catechin

caffeic acid

454.4

24.2

mg/100g

(dry wt)

Shan

(2005)

p-coumaric

acid

10.3 ±0.03 mg/100g

(dry wt)

Wojdylo

(2007)

vanillic acid

caffeic acid

ferulic acid

- - Muchuweti

(2007)

(free radical)

Page 25: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

10

ROO• + PPH ROOH + PP•

RO• + PPH ROH + PP•

ROO•, RO• PPH

2 (Shahidi Naczk, 2004)

ROO• + PP• ROOPP

RO• + PP• ROPP

3

( , 2549)

1. (chelating agent)

2. (chain breaking antioxidant)

3. (regenerate)

2.2 - (partition coefficient)

(antioxidants)

(Maisuthisakul , 2006)

(polarity)

, (surfactants), - (pH),

(hydrophilic antioxidants)

Page 26: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

11

(lipophilic antioxidants)

polar paradox

(Shahidi Zhong, 2011)

(oil-

in-water)

-

(Huang , 1997)

(partition coefficient, P) 2

(immiscible) (Cheng , 2010)

(1-octanol)

2

(Noubigh , 2009)

Partition coefficient (P) = aqueous

octanol

C

C

Coctanol

Caqueous

25

Page 27: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

12

2.3

( 3) (subcritical water superheated

water) ( 100

374 )

3

: (2549)

2.3.1

(dielectric constant) (ion product) 4

(relative dielectric constant, )

79.0 25 35.5

200 20.7 300

( 32 25

) ( 21 25 -

)

Page 28: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

13

(KW) 15 MPa Log(KW) -14

25 -11.3 200-250

(H3O+) (OH- ) 1×10-7 mol/L

2.2 ×10-6 mol/L 20

(acid-base catalyst)

( , 2549)

4 ( ) (log

(KW)) 15 MPa

: (2549)

2.3.2 (Subcritical water extraction)

100

374

(Smith, 2002)

(Herrero

, 2006)

Thymbra spicata (Ozel , 2003)

(Centella asiatica) (Kim , 2009)

Page 29: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

14

(Rangsriwong , 2009) shikimic acid (Illicium verum Hook. f.)

(Ohira , 2009) quercetin (Ko , 2011)

(Anekpankul , 2007)

1.

(Coriandrum

sativum L.) 100 125 linalool

150 175 linalool

(Eikani , 2007)

(Terminalia chebula ) 120 180

gallic acid ellagic acid 220

corilagin 120

220 corilagin (Rangsriwong

, 2009)

2. Budrat Shotipruk (2008)

Anekpankul (2007) (Momordica

charantia)

3.

(Petroselinum crispum)

asiatic acid asiaticoside (Centella asiatic) (Gámiz-Gracia Luque de

Castro, 2000, Luthria, 2008 Kim , 2009)

4. (

) 40

glycyrrhizin ephedrine (Eng , 2007)

5.

(Luthria, 2008 Ohira

, 2009)

Page 30: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

15

6. (solid-to-solvent ratio)

100 250 91.3

500 78.3 78.8 750 1,000

(Luthria, 2008)

2.4

4 ( 5) (1)

(2)

(3)

(4)

(Khajenoori

, 2009)

solute-solid interaction (adsorption),

solute-fluid interaction (solubility) mass transfer

(upscale) (Sovová, 2005)

5

: Ong (2006)

Page 31: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

16

two-site kinetic

2

(F) k1

(1-F) k2 Two-site kinetic (Kubátová

, 2002)

tktkt eFFeSS 21

0

11

St = t (mg/g)

S0 = (mg/g)

0

SS

t = t

F =

1-F =

k1 = (min-1)

k2 = (min-1)

savory (Kubátová , 2002)

Zataria multiflora Boiss (Khajenoori , 2009) damnacanthal

(Anekpankul ,2008) (Kim

Mazza, 2006)

Page 32: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

17

3

3.1

(Cinnamomum zeylanicum)

500 4

8.17%

Karl Fisher Titration

3.2

3.2.1 Methanol (Merck, Germany)

3.2.2 Acetonitrile (Burdick & Jackson Reagent Plus, Korea)

3.2.3 Glacial acetic acid (Mallinckrodt Chemicals, USA)

3.2.4 DPPH (2,2-diphenyl-1-picrylhydrazyl) (Sigma-Aldrich, Germany)

3.2.5 Folin-ciocalteu (Merck, Germany)

3.2.6 Sodium carbonate anhydrous (Na2CO3) (Ajax Finechem, Australia)

3.2.7 Ascorbic acid (Poch, Poland)

3.2.8 Glass wool (Ajax Finechem, Australia)

3.2.9 Silicon dioxide acid washed (Riedel-de Haën, Germany)

3.2.10 protocatechuic acid , gallic acid monohydrate, trans-

cinnamaldehyde, cinnamyl alcohol coumarin (Sigma-

Aldrich,Germany), trans-cinnamic acid , vanillic acid , caffeic acid ,

catechin, p-coumaric acid ferulic acid (Fluka, UK)

3.2.11 HPLC grade (Fisher Scientific, UK)

3.2.12 1-octanol (Panreac, Spain)

3.2.13

Page 33: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

18

3.3

3.3.1 ( 6 7)

- 10 ( 30 108 mm Thar Instruments

Inc. 5794-13, USA)

- (Shimadzu LC-20AD, Japan)

- (back pressure regulator valve) (Upchurch

Scientific P-880, USA)

- (stainless steel tubing : i.d. 1/16 in.)

- (Temperature controller) (oven)

( )

- (Fluk 52 II, China)

- type-K

6 (semi-continuous system)

distilled

water

pump

cooling bath

oven

vial

extraction vessel

back pressure regulator

thermocouple T

pressure gauge

Page 34: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

19

7 (semi-continuous

system) (a) (b)

3.3.2 (HPLC)

HPLC (Dionex P680A LPG-4, Germany), Photodiode array detector (Dionex PDA-

100, USA) Inertsil ODS-3 ( 4.6 250 GL Science, Japan)

3.3.3 (Thermo Spectronic Genesys 10uv, USA)

oven pump

temperature

controller

cooling

bath

back pressure regulator

Distilled

water

(a)

extraction vessel

heating coil

(b)

Page 35: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

20

3.3.4 Karl Fisher Titration (KF Titrino 787 KF Titrino,

703 Ti Stand Metrohm, Switzerland)

3.3.5 4 (Sartorius AG ED224S, Germany)

3.3.6 (Binder FD 115, USA)

3.3.7 (Crest Ultra Sonics 275DAE, Malaysia)

3.3.8 (Büchi, Japan)

3.3.9

3.3.10 (Germany)

3.3.11 (Hettich Zentrifugen, Universal 16/16R, Germany)

3.3.12 (ALC PK 121R, Italy)

3.3.13 (water bath)

3.3.14

3.3.15

3.4

(UAE)

50

3.4.1

3.4.1.1 1.0 silicon dioxide 7.0

(glass wool)

3.4.1.2 (

0.45

)

3.4.1.3 (pre-heating coil) 5

(temperature controller)

Page 36: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

21

( 100 9 –

11 150 10 – 12 200

12 – 15 )

10

10 -18

3

3.4.2 (UAE)

3.4.2.1 1.0

( )

50 ( ) 50

( 27 – 35 )

30

3.4.2.2 945.8 g 15

3.4.2.3 whatman 1

3.4.2.4 50

-18 3

3.4.3 (Partition coefficient)

Maisuthisakul (2006)

3.4.3.1 100, 150 200

60

50 30

(freeze dry)

3.4.3.2 3,000 ppm HPLC

grade (Fisher Scientific, UK)

3.4.3.3 2.0

16 100

Page 37: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

22

3.4.3.4 1-octanol 2.0

3.4.3.5 (vortex) 3 20 20

3.4.3.6 2,879 g 40 20

3.4.3.7

-18

3.4.3.8

DPPH

3.4.3.9 (Partition coefficient)

Partition coefficient (P) = aqueous

octanol

C

C

Coctanol

Caqueous

Partition coefficient (P) = after

afterbefore

C

CC

Cbefore Cafter

3.4.4

-

(HPLC) 2

He (2005) ( )

-

(HPLC) 2

Prasad (2009) ( )

Page 38: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

23

- Folin-Ciocalteu

3 Jayaprakasha (2007)

(mg GAE/g

sample) ( )

- DPPH radical scavenging

3 Brand-Williams (1995)

(mg

VCEAC/g sample) ( )

3.4.4

two-site kinetic non-linear

regression Microsoft Excel solver F,

k1 k2

3.4.5

Completely Randomized Design (CRD)

3 (ANOVA, Analysis of

Variance)

LSD

95 ( = 0.05)

Page 39: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

24

4

4.1

100, 150 200

3 60

10 60

30

(He , 2005)

50

(Zhao Hall, 2008) 20

( 8)

100

150 200

(4.65%) (59.55%)

(Peter, 2001)

(Caramelization)

(Maillard Browning Reaction) (Hata , 2008 Plaza

, 2010)

Page 40: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

25

150 200

10 20

(mucilage) (Lapointe Solomon, 2006)

8 100, 150

200

(UAE)

100°C

150°C

200°C

0-10 21-30 41-50 11-20 31-40 51-60

50%MeOH

UAE

100%MeOH

UAE

Page 41: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

26

4.2

HPLC

9 250

280

9

(a) 250 (b) 280

0.0 10.0 20.0 30.0 40.0 55.0-100

500

1,000

1,500

2,000 mAU

min

coum

arin

cinn

amic

aci

d

cinn

amal

dehy

de

WVL:280 nm

0.0 10.0 20.0 30.0 40.0 55.0-100

500

1,000

1,500

2,000 mAU

min

cinn

amyl

alc

ohol

WVL:250 nm

(a)

(b)

Page 42: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

27

10

10

0

20

40

60

80

100

0 10 20 30 40 50 60 ( )

0

20

40

60

80

100

0 10 20 30 40 50 60

( )

0

20

40

60

80

100

0 10 20 30 40 50 60

( )

0

20

40

60

80

100

0 10 20 30 40 50 60

( )

10 (a)

(b) (c) (d)

100°C ( ), 150°C ( )

200°C ( ) two-site kinetic

100°C ( ), 150°C ( ) 200°C ( )

(c) (d)

(b) (a)

Page 43: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

28

two-site kinetic

(F) k1

(1-F) k2

F, k1 k2

Microsoft Excel solver 5

two-site

kinetic 10

k1 k2 5 k1

k2

k1 k1

100 200

k1 150 100

200 150 k1 100,

150 200

5 k1 100

10

100

Page 44: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

29

5

F, k

1 k

2

two-

site

kinet

ic

F

k 1

k 2

10

0°C

150°

C 20

0°C

10

0°C

150°

C 20

0°C

10

0°C

150°

C 20

0°C

4.

6410

-1

5.48

10-1

5.

5910

-1

2.

72

7.77

10-2

2.

4810

-1

8.

5210

-3

0.00

0.

00

4.

0110

-1

8.52

10-1

7.

6710

-1

6.

9010

-1

5.35

10-2

2.

1710

-1

1.

8210

-2

0.00

1.

0310

-4

8.

3110

-1

7.77

10-1

9.

1310

-1

3.

9410

-1

2.38

10-2

3.

4110

-1

2.

4310

-3

2.32

10-2

8.

3410

-4

5.

0910

-1

9.31

10-1

8.

1810

-1

3.

27

6.02

10-2

2.

3710

-1

3.

1310

-5

6.02

10-2

7.

1810

-4

Page 45: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

30

60

30

6

38.78 Woehrlin

(2010)

(cinnamon powder) 7

2.08 – 24.80 (cinnamon sticks)

15 3.93 – 28.20

(p 0.05)

100 150 200 28.16

21.76 22.80

Friedman

(2000)

(benzaldehyde)

60

(benzoic acid) (Chen , 2009) Woehrlin

(2010)

(p > 0.05)

Page 46: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

31

150

200

(p > 0.05)

100

6 (SWE)

60

(UAE) 30

( )*

(ºC)

UAE 38.78±0.78a 4.44±0.10 0.68±0.01 0.27±0.00a

SWE 100 28.16±4.02b 3.89±1.32 0.60±0.03 0.14±0.01b

150 21.76±1.30c 3.68±0.16 0.65±0.03 0.25±0.06a

200 22.80±2.11c 3.40±0.13 0.64±0.04 0.22±0.02a

a-c

(p 0.05)

* ± (n = 3)

4.3

HPLC retention time 7

protocatechuic acid, ferulic acid,

catechin, p-coumaric acid, vanillic acid caffeic acid

11 protocatechuic acid vanillic acid

250 catechin 280

caffeic acid, p-coumaric acid ferulic acid 320

( , 2549)

Page 47: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

32

protocatechuic acid

(OH) 2 (Cai , 2006)

(Tanaka , 2011)

7

protocatechuic acid / quercetin nd

catechin / rutin nd

p-coumaric acid / rosmarinic acid nd

vanillic acid / tannic acid nd

caffeic acid / ellagic acid nd

ferulic acid / syringic acid nd

gallic acid nd gentisic acid nd

chlorogenic acid nd 4-hydroxybenzoic acid nd

/ nd

protocatechuic acid,

catechin p-coumaric acid

protocatechuic acid, ferulic acid, p-coumaric acid, vanillic acid caffeic acid

catechin

12

20 vanillic

acid

Page 48: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

33

11

200 10 (a) 250 (b)

280 (c) 320

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 44.0-10

20

40

60

80

100 mAU

min

caffe

ic a

cid

p-co

umar

ic a

cid

feru

lic a

cid

WVL:320 nm

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 44.0-10

20

40

60

80

100 mAU

min

WVL:280 nm

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 44.0-10

20

40

60

80

100 mAU

min

prot

ocat

echu

ic a

cid

vani

llic

acid

WVL:250 nm

(a)

(b)

(c)

Page 49: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

34

100 200

protocatechuic acid, ferulic acid, p-coumaric acid,

vanillic acid caffeic acid (p 0.05) 9

(solute-matrix

interaction)

(Ong , 2006)

Ju (2011) 120

180 p-coumaric acid,

ferulic acid vanillic acid

F, k1 k2 two-site kinetic

8

two-site

kinetic 12

k1 k2

5 k1 k2

8 k1

k1

100 protocatechuic acid

protocatechuic acid

8 k1 k2 0 100

protocatechuic acid

protocatechuic acid

100

Page 50: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

35

Clifford (1999)

k1 150 200

150 200

k1 k2

200 150

vanillic acid 200 k1

k2

12

50

30

protocatechuic acid 200

(p 0.05) p-coumaric acid

(p > 0.05)

200

100 150 (p 0.05)

catechin 13.28 100

catechin

Page 51: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

36

0

20

40

60

80

100

0 10 20 30 40 50 60 ( )

0

20

40

60

80

100

0 10 20 30 40 50 60 ( )

0

20

40

60

80

100

0 10 20 30 40 50 60 ( )

0

20

40

60

80

100

0 10 20 30 40 50 60

( )

0

20

40

60

80

100

0 10 20 30 40 50 60 ( )

12 (a)

protocatechuic acid (b) ferulic acid (c) p-coumaric acid (d) vanillic acid

(e) caffeic acid 100°C

( ), 150°C ( ) 200°C ( )

two-site kinetic 100°C ( ), 150°C ( ) 200°C ( )

(c) (d)

(e)

(a) (b)

Page 52: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

37

8

F

, k1

k2

two-

site

kinet

ic

F

k 1

k 2

10

0°C

150°

C 20

0°C

10

0°C

150°

C 20

0°C

10

0°C

150°

C 20

0°C

prot

ocat

echu

ic

acid

2.

6010

-1

3.81

10-1

6.05

10-1

2.

41

5.24

10-3

7.

2710

-2

0.

00

5.24

10-3

7.

2710

-2

feru

lic a

cid

- 9.

8410

-1

6.06

10-1

-

1.00

10-2

6.

0110

-2

-

1.00

10-2

6.

0110

-2

cate

chin

-

- -

-

- -

-

- -

p-co

umar

ic

acid

-

3.94

10-1

5.86

10-1

-

1.72

10-2

7.

7610

-2

-

1.72

10-2

7.

7610

-2

vani

llic a

cid

- 3.

7910

-10.

00

-

1.42

10-3

2.

7110

-4

-

1.42

10-3

2.56

10-2

caffe

ic a

cid

- 3.

8410

-15.

9510

-1

-

7.28

10-3

7.

9710

-2

-

7.28

10-3

7.

9710

-2

-

Page 53: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

38

9

(S

WE)

6

0

(UAE

) 5

0

30

( 1

00

)*

(ºC)

prot

ocat

echu

ic a

cid

feru

lic a

cid

cate

chin

p-

coum

aric

aci

d va

nillic

aci

d ca

ffeic

aci

d

UAE

5.

23±0

.42b

nd

13.2

8±0.

88a

3.65

±0.2

2a nd

nd

SWE

100

6.66

±7.1

4b nd

nd

nd

nd

nd

15

0 6.

20±0

.50b

5.30

±0.5

5b nd

2.

74±0

.29b

0.28

±0.2

4b 0.

76±0

.03b

20

0 25

.65±

3.88

a 13

.03±

0.57

a nd

4.

19±0

.65a

3.52

±0.9

0a 2.

19±0

.64a

a-c

(p

0

.05)

* ±

(n

= 3

)

nd

Page 54: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

39

4.4

50 Folin-Ciocalteu

13

100, 150 200

10

F, k1 k2

10 k1 k2 k1 k2

0

20

40

60

80

100

0 10 20 30 40 50 60

( )

13

100°C ( ), 150°C ( ) 200°C ( )

two-site kinetic 100°C ( ), 150°C ( )

200°C ( )

Page 55: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

40

10 F, k1 k2

two-site kinetic

100°C 150°C 200°C

F 4.74 10-1 5.02 10-1 2.60 10-1

k1 2.69 9.68 10-2 2.75

K2 5.70 10-3 7.59 10-3 7.54 10-2

60

50 30

11 100

( )

(Teo ,

2010) 200

(Kw)

(Wahyudiono

, 2008)

200

(p 0.05)

Page 56: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

41

11

(SWE) 60

(UAE) 50 30

(ºC)

(mg GAE/g dw)*

UAE 139.75±6.20b

SWE 100 116.70±10.43c

150 125.47±6.59bc

200 185.64±12.91a

a-c

(p 0.05)

* ± (n = 3)

Folin-Ciocalteu HPLC

Burns (2000) Gheldof (2002)

HPLC tannins, phenolic diterpenes ,

phenolic volatile Gu (2004)

dimeric , trimeric oligomeric

proanthocyandins

Folin-Ciocalteu

Folin-Ciocalteu (Stevanato , 2004)

Page 57: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

42

4.5

DPPH radical

scavenging

(mg Vitamin C Equivalent Antioxidant Capacity (VCEAC)/g dw) 14

100, 150 200 10, 20, 30, 40, 50

60 50

30 0-10

10

50

200 0 -10 (167.42 mg VCEAC/g dw)

(179.70 mg VCEAC/g dw)

(p > 0.05) 100

150 0-10

129.83 78.97 mg VCEAC/g dw ( 14)

13

0-10

200, 100 150 -

30

200 10

Page 58: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

43

b

fg g g g g

a

c

ef de

fg g g

a

d

efg g g g0

50

100

150

200

UAE 0-10 11-20 21-30 31-40 41-50 51-60 ( )

(mg

VCEA

C/g

dw

)

SWE 100ºCSWE 150ºCSWE 200ºC

14 DPPH

(SWE)

(UAE)

50 30

4.6

100, 150 200 -

10, 20, 30, 40, 50 60

50

15

Page 59: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

44

R2 = 0.9835

0

50

100

150

200

0 20 40 60 80 100 120 140 160

(mg GAE/g dw)

DPP

H

(mg

VCEA

C/g

dw

)100°C150°C200°CUAE

15

DPPH

DPPH

(R2) 0.9835 (Cai , 2004; Wojdylo ,

2007 Jayaprakasha , 2008)

(Amarowicz , 2004)

4.7 (partition)

(log Poctanol/water)

100,150 200

50

DPPH 12

Page 60: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

45

12 (log P)

DPPH

DPPH

(mg VCEAC/g dry extract)

(°C) log P

UAE -1.54±0.07 506.09±21.08a 492.42±11.60a

SWE 100 -1.61±0.13 367.70±35.88b 321.12±36.05b

150 -1.72±0.24 204.30±10.83c 187.47±4.98c

200 -1.72±0.29 130.00±30.35d 131.61±24.03d

a-d

(p 0.05)

* ± (n = 3)

(log P)

0

50

(p > 0.05)

50

DPPH

(p 0.05)

100, 150 200

Page 61: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

46

( 4.4)

-

(protein-polyphenol complexes) (Staszewski , 2011)

DPPH

DPPH (p > 0.05)

DPPH

Page 62: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

47

5

protocatechuic acid, ferulic acid, p-coumaric acid, vanillic acid, caffeic acid

(volatile compounds)

two-site kinetic

Page 63: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

48

. 2535. 2. . .

71-80.

. 2549. (subcritical water)

. Food & Health 14: 51-53.

. 2535. . . . 161

.

. 2551. .

. 34. 31

- 2 2551. . . 1-6.

. 2549. . .

. . 56 .

. 2549.

: . . . . . 190 .

Adisakwattana, S. 2007. Cinnamon and diabetes mellitus. Thai Journal of Pharmacology,

29: 36-44.

Al-Numair, K.S., Ahmad, D., Ahmed, S.B. and Al-Assaf, A.H. 2007. Nutritive value,

levels of polyphenols and anti-nutritional factors in Sri Lankan Cinnamon

(Cinnamomum zeyalnicum) and Chinese cinnamon (Cinnamomum cassia).

Research Bulletin, Food Sciences and Agricultural Research. Center, King Saud

University, 154: 5-21.

Amarowicz, R., Pegg, R.B., Rahimi-Moghaddam, P., Barl, B. and Weil, J.A. 2004. Free-

radical scavenging capacity and antioxidant activity of selected plant species

from the Canadian prairies. Food Chemistry, 84: 551-562.

Anekpankul, T., Goto, M., Sasaki, M., Pavasant, P. and Shotipruk. 2007. Extraction of

anti-cancer damnacanthal from roots of Morinda citrifolia by subcritical water.

Separation and Purification Technology, 55: 343-349.

Page 64: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

49

Balasundram, N., Sundram, K. and Samman, S. 2006. Phenolic compounds in plants

and agri-industrial by-products: antioxidant activity, occurrence, and potential

uses. Food Chemistry, 99: 191–203.

Budrat, P. and Shotipruk, A. 2009. Enhanced recovery of phenolic compounds from

bitter melon (Momordica charantia) by subcritical water extraction. Separation

and Purification Technology, 66: 125-129.

Burns, J., Gardner, P.T., O’Neil, J., Crawford, S., Morecroft, I., McPhail, D.B., Lister, C.,

Matthews, D., MacLean, M.R., Lean, M.E.J., Duthie, G.G. and Crozier, A. 2000.

Relationship among antioxidant activity, vasodilation capacity, and phenolic

content of red wines. Journal of Agricultural and Food Chemistry, 48: 220-230.

Brand-Williams, W., Cuvelier, M.E., and Berset, C. 1995. Use of a free radical method to

evaluate antioxidant activity. LWT-Food Science and Technology, 28: 25–30.

Cai, Y., Luo, Q., Sun, M. and Corke, H. 2004. Antioxidant activity and phenolic

compounds of 112 traditional Chinese medicinal plants associated with

anticancer. Life Sciences, 74: 2157-2184.

Cai, Y., Sun, M., Xing, J., Luo, Q. And Corke, H. 2006. Structure-radical scavenging

activity relationships of phenolic compounds from traditional Chinese medicinal

plants. Life Sciences, 78: 2872-2888.

Chen, H., Ji, H., Zhou, X., Xu, J. and Wang, L. 2009. Aerobic oxidative cleavage of

cinnamaldehyde to benzaldehyde catalyzed by metalloporphyrins under mild

conditions. Catalysis Communications, 10: 828-832.

Cheng, H., Friis, A. and Leth, T. 2010. Partition of selected food preservatives in fish oil-

water systems. Food Chemistry, 122: 60-64.

Chang, S.T., Chen, P.F. and Chang, S.C. 2001. Antibacterial activity of leaf essential oils

and their constituents from Cinnamomum osmophloeum. Journal of

Ethnopharmacology, 77: 123-127.

Clifford, T. 1999. Fundamentals of supercritical fluids. Oxford University Press, Inc. USA.

Page 65: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

50

Eikani, M.H., Colmohammad, F. and Rowshanzamir, S. 2007. Subcritical water extraction

of essential oils from coriander seeds (Coriandrum sativum L.). Journal of Food

Engineering, 80: 735-740.

Eng, A.T.W., Heng, M.Y. and Ong, E.S. 2007. Evaluation of surfactant assisted

pressurized liquid extraction for the determination of glycyrhizin and ephedrine

in medicinal plants. Analytica Chimica Acta, 583: 289-295.

Friedman, M., Kozukue, N. and Harden, L.A. 2000. Cinnamaldehyde content in foods

determined by gas chromatography-mass spectrometry. Journal of Agricultural

and Food Chemistry, 48: 5702-5709.

Gámiz-Gracia, L. and Luque de Castro, M.D. 2000. Continuous subcritical water

extraction of medicinal plant essential oil : comparison with conventional

techniques. Talanta, 51: 1179-1185.

Gheldof, N., Wang, X. and Engeseth, N.J. 2002. Identification and quantification of

antioxidant components of honeys from various floral sources. Journal of

Agricultural and Food Chemistry, 50: 5870-5877.

Gu, L., Kelm, M.A., Hammerstone, J.F., Beecher, G., Holden, J., Haytowitz, D.,

Gebhardt, S. and Prior, R.L. 2004. Concentrations of proanthocyanidins in

common foods and estimations of normal consumption. The Journal of Nutrition,

134: 613-617.

Hata, S., Wiboonsirikul, J., Maeda, A., Kimura, Y. and Adachi, S. 2008. Extraction of

defatted rice bran by subcritical water treatment. Biochemical Engineering

Journal, 40: 44-53.

Herrero, M., Cifuentes, A. and Ibañez, E. 2006. Sub- and supercritical fluid extraction of

functional ingredients from different natural sources : Plants, food-by-products,

algae and microalgae. Food Chemistry, 98: 136-148.

He, Z., Qiao, C., Han, Q., Cheng, C., Xu, H., Jiang, R., But, P.P. and Shaw, P. 2005.

Authentication and quantitative analysis on the chemical profile of cassia bark

(Cortex Cinnamomi) by high-pressure liquid chromatography. Journal of

Agricultural and Food Chemistry, 53: 2424-2428.

Page 66: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

51

Huang, S., Frankel, E.N., Aeschbach, R. and German, J.B. 1997. Partition of selected

antioxidants in corn oil-water model systems. Journal of Agricultural and Food

Chemistry, 45: 1991-1994.

Jayaprakasha, G.K., Rao, L.J.M. and Sakariah, K.K. 2003. Volatile constituents from

Cinnamomum zeylanicum fruit stalks and their antioxidant activities. Journal of

Agricultural and Food Chemistry, 51: 4344-4348.

Jayaprakasha, G.K., Negi, P.S., Jena, B.S. and Jagan Mohan Rao, L. 2007. Antioxidant

and antimutagenic activities of Cinnamomum zeylanicum fruit extracts. Journal

of Food Composition and Analysis, 20: 330-336.

Jayaprakasha, G.K., Girennavar, B., Patil, B.S. 2008. Radical scavenging activities of

Rio Red grapefruits and sour orange fruit extracts in different in vitro model

systems. Bioresource Technology, 99: 4484-4494.

Khajenoori, M., Haghighi Asl, A. and Hormozi, F. 2009. Proposed models for subcritical

water extraction of essential oils. Chinese Journal of Chemical Engineering,

17(3): 359-365.

Khuwijitjaru, P., Chalooddong, K. and Adachi, S. 2008. Phenolic content and radical

scavenging capacity of kaffir lime fruit peel extract obtained by pressurized hot

water extract. Food Science and Technolohy Research, 14(1): 1-4.

Kim, J.W. and Mazza G. 2006. Optimization of extraction of phenolic compounds from

flax shives by pressurized low-polarity water. Journal of Agricultural and Food

Chemistry, 54: 7575-7584.

Kim, W.J., Kim, J., Veriansyah, B., Kim, J.D., Lee, Y.W., Oh, S.G. and Tjandrawinata,

R.R. 2009. Extractions of bioactive components from Centella asiatica using

subcritical water. Journal of Supercritical Fluids, 48: 211-216.

Ko, M., Cheigh, C., Cho, S. and Chung, M. 2011. Subcritical water extraction of flavonol

from onion skin. Journal of Food Engineering, 102: 327-333.

Page 67: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

52

Kubátová, A., Jansen, B. Vaudoisot, J.F. and Hawthorne S.B. 2002. Thermodynamic and

kinetic models for extraction of essential oil from savory and polycyclic aromatic

hydrocarbons from soil with hot (subcritical) water and supercritical CO2. Journal

of Chromatography A, 975:175-188.

Lapointe, P.M. and Solomon, D. 2006. Herbal product comprising cinnamon and bitter

melon. Canadian Patent no. 2551706.

Luthria, D.L. 2008. Influence of experimental conditions on the extraction of phenolic

compounds from parsley (Petroselinum crispum) flakes using a pressurized

liquid extractor. Food Chemistry, 107: 745-752.

Maisuthisakul, P., Pongsawatmanit, R. and Gordon, M.H. 2006. Antioxidant properties of

teaw (Cratoxylum formosum Dyer) extract in soybean oil and emulsions. Journal

of Agricultural and Food Chemistry, 54: 2719-2725.

Muchuweti, M., Kativu, E., Mupure, C.H., Chidewe, C., Ndhlala, A.R. and Benhura,

M.A.N. 2007. Phenolic composition and antioxidant properties of some spices.

American Journal of Food Technology, 2(5), 414-420.

Naczk, M. and Shahidi,F. 2004. Extraction and analysis of phenolics in food. Journal

of Chromatography A, 1054: 95–111.

Noubigh, A., Abderrabba, M. and Provost, E. 2009. Salt addition effect on partition

coefficient of some phenolic compounds constituents of olive mill wastewater in

1-octanol-water system at 298.15 K. Journal of the Iranian Chemical Society,

6(1): 168-176.

Ohira, H., Torii,N., Aida, T.M., Watanabe, M. and Smith Jr, R.L. 2009. Rapid separation

of shikimic acid from Chinese star anise (Illicium verum Hook. f.) with hot water

extraction. Separation and Purification Technology, 69: 102-108.

Ong, E.S., Cheong, J.S.H. and Goh, D. 2006. Pressurized hot water extraction of

bioactive or marker compounds in botanicals and medicinal plant materials.

Journal of Chromatography A, 1112: 92-102.

Ozel, M.Z., Gogus, F. and Lewis, A.C. 2003. Subcritical water extraction of essential oils

from Thymbra spicata. Food Chemistry, 82: 381-386.

Page 68: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

53

Peter, K.V. 2001. Handbook of herbs and spices. Woodhead Publlishing, USA. p. 319.

Plaza, M., Amigo-Benavent, M., Castillo, M.D., Ibáñez, E. and Herrero, M. 2010.

Neoformation of antioxidants in glycation model systems treated under

subcritical water extraction conditions. Food Research International, 43: 1123-

1129.

Prasad, K. N., Yang, B., Dong, X., Jiang, G., Zhang, H., Xie, H. and Jiang, Y. 2009.

Flavonoid contents and antioxidant activities from Cinnamomum species.

Innovative Food Science and Emerging Technologies, 10: 627–632.

Rangsriwong, P., Rangkadilok, N., Satayavivad, J., Goto, M. and Shotipruk, A. 2009.

Subcritical water extraction of polyphenolic compounds from Terminalia chebula

Retz. fruits. Separation and Purification Technology, 66: 51-56.

Shan, B., Cai, Y.Z., Sun, M. and Corke, H. 2005. Antioxidant capacity of 26 spice

extracts and characterization of their phenolic constituents. Journal of

Agricultural and Food Chemistry, 53: 7749-7759.

Shan, B., Cai, Y.Z., Brooks, J.D. and Corke, H. 2007. Antibacterial properties and major

bioactive components of cinnamon stick (Cinnamomum burmannii) : activity

against foodborne pathogenic bacteria. Journal of Agricultural and Food

Chemistry, 55: 5484-5490.

Shahidi, F and Naczk, M 2004. Phenolics in Food and Nutraceuticals. CRC Press LLC.

New York.

Shahidi, F. and Zhong, Y. 2011. Revisiting the polar paradox theory: a critical overview.

Journal of Agricultural and Food Chemistry, 59: 3499-3504.

Singh, G., Maury, S., Delampasona, M.P. and Catalan, C.A.N. 2007. A comparison of

chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark

volatile oils, oleoresins and their constituents. Food and Chemical Toxicology,

45: 1650-1661.

Smith, R.M. 2002. Extractions with superheated water. Journal of Chromatography A,

975: 31-46.

Page 69: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

54

Sovová, H. 2005. Methematical model for supercritical fluid extraction of natural

products and extraction curve evaluation. Journal of Supercritical Fluids, 33: 35-

52.

Staszewski, M., Jagus, R.J. and Pilosof, A.M.R. 2011. Influence of green tea polyphenols

on the colloidal stability and gelation of WPC. Food Hydrocolloids, 25: 1077-

1084.

Stevanato, R., Fabris, S. and Momo, F. 2004. New enzymatic method for the

determination of total phenolic content in tea and wine. Journal of Agricultural

and Food Chemistry, 52: 6287-6293.

Subash Babu, P., Prabuseenivasna, S. and Ignacimuthu, S. 2007. Cinnamaldehyde-A

potential antidiabetic agent. Phytomedicine, 14: 15-22.

Tanaka, T., Tanaka, T. and Tanaka, M. 2011. Potential cancer chemopreventive activity

of protocatechuic acid. Journal of Experimental and Clinical Medicine, 3(1):27-

33.

Teo, C., Tan, S., Yong, J., Hew, C. And Ong, E. 2010. Pressurized hot water extraction

(PHWE). Journal of Chromatography A, 1217: 2484-2494.

Wahyudiono, M., Sasaki, M. and Goto, M. 2008. Recovery of phenolic compounds

through the decomposition of lignin in near and supercritical water. Chemical

Engineering and Processing, 47: 1609-1619.

Woehrlin, F., Fry, H., Abraham, K. and Preiss-Weigert, A. 2010. Quantification of

flavoring constituents in cinnamon: High variation of coumarin in cassia bark

from the German retail market and in authentic samples from Indonesia. Journal

of Agricultural and Food Chemistry, 58: 10568-10575.

Wojdylo, A., Oszmianski, J. and Czemerys, R. 2007. Antioxidant activity and phenolic

compounds in 32 selected herbs. Food Chemistry, 105: 940-949.

Vermerris, W. and Nicholson, R. 2006. Phenolic compound biochemistry. Springer.

Netherlands.

Zhao, B. and Hall, C.A. 2008. Composition and antioxidant activity of raisin extracts

obtained from various solvents. Food Chemistry, 108: 511-518.

Page 70: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª
Page 71: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª
Page 72: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

57

1.

100, 150 200

16

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80

( )

()

100ºC

150ºC

200ºC

16

Page 73: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª
Page 74: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

59

1.

(HPLC)

He (2005)

1.1

1.1.1 Inertsil ODS-3 C18 ( GL Sciences, Japan

4.6×250 )

1.1.2 mobile phase :

0.04% 25 : 75 (v/v) 0.45

30

1.1.3 mobile phase 1.0

1.1.4

280 250

1.2

1.2.1

1.006-201.200, 0.016-162.000, 0.011-109.000

0.043-432.000

1.2.2 syringe filter 0.45

20 HPLC

1.2.3 ( )

Page 75: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

60

y = 93.122x - 0.5217, R2 = 0.9999

y = 139.30x + 1.0854, R2 = 0.9998

y = 160.29x + 0.3344, R2 = 0.9999

y = 168.46x + 3.2907, R2 = 0.9998

y = (mAU*min)

x = ( )

1.3

1.3.1 syringe filter 0.45

20 HPLC

1.3.2 retention time

retention time 23, 27, 37 48

2.

(HPLC) Prasad (2009)

2.1

2.1.1 Inertsil ODS-3 C18 ( GL Sciences, Japan

4.6×250 )

2.1.2 mobile phase A 2%(v/v)

mobile phase B : (10:15 , v/v) 0.45

30

2.1.3 mobile phase 1.0

2.1.4 protocatechuic acid vanillic acid

250 catechin 280

caffeic acid, p-coumaric acid ferulic acid 320

gradient

Page 76: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

61

( ) (mL/min) A B

0 1.00 90% 10%

10 1.00 80% 20%

15 1.00 70% 30%

25 1.00 60% 40%

30 1.00 50% 50%

40 1.00 50% 50%

42 1.00 75% 25%

44 1.00 90% 10%

2.2

2.2.1 protocatechuic acid ,

catechin , vanillic acid , caffeic acid, p-coumaric acid ferulic acid

0.510-61.200 , 0.480-48.000 , 0.052-52.000, 0.052-52.000 , 0.022-22.000 0.021-

20.800

2.2.2 syringe filter 0.45

20 HPLC

2.2.3 ( )

protocatechuic acid y = 49.44x + 0.1299, R2 = 0.9997

catechin y = 12.365x - 0.216, R2 = 0.9970

vanillic acid y = 106.82x + 0.0185, R2 = 0.9998

caffeic acid y = 114.6x + 0.117, R2 = 1.0000

p-coumaric acid y = 139.41x - 0.044, R2 = 1.0000

ferulic acid y = 107.78x + 0.1323, R2 = 0.9999

y = (mAU*min)

x = ( )

Page 77: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

62

2.3

2.3.1 10

(Rotary evaporator) 5

2.3.2 syringe filter 0.45

20 HPLC

2.3.3 retention time ( 17)

protocatechuic acid, catechin, vanillic acid, caffeic acid, p-coumaric

acid ferulic acid retention time 9, 12, 15,16, 20 22

0

200

400

600

250 270 290 310 330 350

Wavelength (nm)

Valu

e

0

10

20

30

40

250 270 290 310 330 350

Wavelength (nm)

Valu

e

0

200

400

600

250 270 290 310 330 350

Wavelength (nm)

Valu

e (m

*AU

)

0

200

400

600

250 270 290 310 330 350

Wavelength (nm)

Valu

e (m

*AU

)

(a) (b)

(c) (d)

Page 78: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

63

0

200

400

600

250 270 290 310 330 350

Wavelength (nm)

Valu

e (m

*AU

)

0

200

400

600

800

250 270 290 310 330 350

Wavelength (nm)

Valu

e (m

*AU

)

17 (a) protocatechuic acid, (b) catechin, (c) vanillic

acid, (d) caffeic acid, (e) p-coumaric acid (f) ferulic acid

3. Folin-Ciocalteu

Jayaprakasha (2007)

3.1

3.1.1 0.025±0.001 ( )

3.1.2 25

100

3.1.3 20, 40,

60 80

3.1.4 400

Folin-ciocalteu 10 2.0

3

3.1.5 (Na2CO3) 7.5

1.6

3.1.6 120

3.1.7 765

3.1.8 blank 400 Folin-ciocalteu

10 2.0 Na2CO3 7.5

1.6

(e) (f)

Page 79: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

64

3.1.9 (

)

y = 0.0108x + 0.0339

R2 = 0.9991

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100 120

( )

18

3.2

3.2.1

3.2.2 3.1.4 – 3.1.8

3.2.3

(mg gallic acid equivalent; mg

GAE) 1 (dw)

4. DPPH radical

scavenging Brand-Williams (1995)

4.1

4.1.1 0.025±0.001 ( )

3.4.2 25

1.0 stock solution

4.1.3 stock solution 0.1, 0.3, 0.5

0.7

Page 80: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

65

4.1.4 50

4.1.5 DPPH 0.1 mM 5

30

4.1.6 517

blank

4.1.7 % Radical scavenging activity

% Radical scavenging activity = 100controlOD

sampleODcontrolOD

control OD = DPPH

sample OD = DPPH

4.1.8 % Radical scavenging activity

( )

y = 118.92x + 1.7285

R2 = 0.9983

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

( )

% R

adic

al s

cave

ngin

g ac

tivity

19

DPPH

Page 81: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

66

4.2

4.2.1

4.2.2 3.3.1.4 – 3.3.1.7

4.2.3

vitamin C equivalent antioxidant capacity

(VCEAC) vitamin C equivalents 1 (dw)

Page 82: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª
Page 83: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

68

(ANOVA, Analysis of

Variance) SPSS

LSD 95

( =0.05)

13

Source DF Sum of Squares Mean Square F Value Pr>F

Model 3 546.3748596 182.1249532 31.83 <.0001

Error 8 45.7718293 5.7214787

Corrected Total 11 592.1466889

14

Source DF Sum of Squares Mean Square F Value Pr>F

Model 3 1.74957400 0.58319133 1.30 0.3396

Error 8 3.59006067 0.44875758

Corrected Total 11 5.33963467

Page 84: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

69

15

Source DF Sum of Squares Mean Square F Value Pr>F

Model 3 0.01071300 0.00357100 4.02 0.0512

Error 8 0.00709867 0.00088733

Corrected Total 11 0.01781167

16

Source DF Sum of Squares Mean Square F Value Pr>F

Model 3 0.02319092 0.00773031 6.47 0.0157

Error 8 0.00956400 0.00119550

Corrected Total 11 0.03275492

17 protocatechuic acid

50

Source DF Sum of Squares Mean Square F Value Pr>F

Model 3 869.072550 289.690850 17.45 0.0007

Error 8 132.792517 16.599065

Corrected Total 11 1001.865067

Page 85: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

70

18 ferulic acid

50

Source DF Sum of Squares Mean Square F Value Pr>F

Model 3 341.7433182 113.9144394 731.55 <.0001

Error 8 1.2457287 0.1557161

Corrected Total 11 342.9890469

19 catechin

50

Source DF Sum of Squares Mean Square F Value Pr>F

Model 3 396.6669722 132.22232414 760.16 <.0001

Error 8 1.3915287 0.1739411

Corrected Total 11 398.0585009

20 p-coumaric acid

50

Source DF Sum of Squares Mean Square F Value Pr>F

Model 3 30.70470025 10.23490008 73.46 <.0001

Error 8 1.11462067 0.13932758

Corrected Total 11 31.81932092

Page 86: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

71

21 vanillic acid

50

Source DF Sum of Squares Mean Square F Value Pr>F

Model 3 26.58780300 8.86260100 41.08 <.0001

Error 8 1.72587800 0.21573475

Corrected Total 11 28.31368100

22 caffeic acid

50

Source DF Sum of Squares Mean Square F Value Pr>F

Model 3 9.55969200 3.18656400 30.67 <.0001

Error 8 0.83108200 0.10388525

Corrected Total 11 10.39077400

23

50

Source DF Sum of Squares Mean Square F Value Pr>F

Model 3 8469.535172 2823.178391 31.61 <.0001

Error 8 714.407709 89.300964

Corrected Total 11 9183.942881

Page 87: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

72

24 DPPH

-

50 30

Source DF Sum of Squares Mean Square F Value Pr>F

Model 18 182362.8854 10131.2714 136.77 <.0001

Error 38 2814.9389 74.0773

Corrected Total 56 185177.8243

25 (log P)

50

Source DF Sum of Squares Mean Square F Value Pr>F

Model 3 0.06944395 0.02314798 0.56 0.6574

Error 8 0.33190844 0.04148855

Corrected Total 11 0.40135238

26 DPPH

100

-

Source DF Sum of Squares Mean Square F Value Pr>F

Model 1 3253.380204 3253.380204 2.51 0.1880

Error 4 5174.435281 1293.608820

Corrected Total 5 8427.815485

Page 88: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

73

27 DPPH

150

-

Source DF Sum of Squares Mean Square F Value Pr>F

Model 1 424.9743360 424.9743360 5.98 0.0708

Error 4 284.2691680 71.0672920

Corrected Total 5 709.2435040

28 DPPH

200

-

Source DF Sum of Squares Mean Square F Value Pr>F

Model 1 3.859224 3.859224 0.01 0.9462

Error 4 2997.300335 749.325084

Corrected Total 5 3001.159559

Page 89: µ¦ r ¦³ ° ´·Í ° ª£µ¡ µ ° Á ¥Á «Ã ¥Ä µ ¸É¤¸¸o Êη · 2012-07-02 · ´Ê (R2 = 0.9835) ®¤ δµ®¦ ¨ µ¦ª·Á ¦µ³® ¸ ´Ê´r à ¥ µ¦ª

74

- ( )

( ) MISS NUCHA SAYPUTIKASIKORN

27 73000

. . 2550

. . 2550

2554 “

” 4