2008 T.matsushita 1

Embed Size (px)

Citation preview

  • 7/27/2019 2008 T.matsushita 1

    1/70

    X-ray monochromators

    T. Matsushita

    Photon FactoryHigh Energy Accelerator Research Organization

  • 7/27/2019 2008 T.matsushita 1

    2/70

    outline

    1. Controlling X-ray beam properties and the roll ofcrystal monochromators

    2. Bragg diffraction by crystals3. Dynamical diffraction

    4. Double crystal monochromator

    5. Heat load and cooling6. Higher harmonics rejection

    7. High resolution monochromators8. Phase retarder and polarization conversion

    9. Curved crystals

    10. Other issues and future problems

  • 7/27/2019 2008 T.matsushita 1

    3/70

    Synchrotron Radiation - Basic Properties

    High flux and brightness Pulsed time structureBroad spectral range

    Polarized (linear,

    elliptical, circular)

    Small source size

    Partial coherence

    High stability

    HIGH VACUUMENVIRONMENT

    Flux = # of photons in given /

    sec, mrad Brightness (Brilliance)

    = # of photons in given /

    sec, mrad , mrad , mm2

    (a measure of concentration of the radiation)

    Winick: Presentation at JASS02 Seminarhttp://conference.kek.jp/JASS02/PDF_PPT/3_2_winick.ppt

  • 7/27/2019 2008 T.matsushita 1

    4/70

    Designing your experiment

    - X-ray optical consideration -EXAFS(Extended X-ray Absorption Fine Structure)

    Protein crystallography

    180 degree oscillation : 0.7 ~ 3 (E : 18 keV ~4 keV)/ (E/E) : 10-3 ~10-4

    Angular divergence : 2 ~ 0.2 mrad

    Beam spot size : 5 ~ 200 m

    0.375

    0.75

    1.125

    1.5

    8500 9000 9500 1 104

    CU2A03

    UT

    t

    E/eV

    0.3

    0.7

    1.1

    1.5

    1.9

    8940 8960 8980 9000 9020 9040 9060

    CU7B03

    UT

    E/eV

    E: ~4 keV - ~20 keV (~10 keV - ~50 keV)

    E/E: ~10-4

    Beam size: 1 mm x 10 mm 1 m2

  • 7/27/2019 2008 T.matsushita 1

    5/70

    Designing your experiment

    - X-ray optical consideration -Small angle scattering Powder diffraction

    E: 6keV- 20 keV

    E/E: 10-3

    Angular convergence:0.1- 0.2 mrad (V)1- 2 mrad (H)

    Focal spot size:0.3 mm (V) - 1.0 mm (H)

    E: 10 keV 35 keV

    E/E: ~10-4

    Angular divergence:

    0.5 1 mrad

    Beam size:

    V: 0.1 ~ 0.5 mm

    H: 1 ~ 3 mm

    PF 15A (bending magnet) Spring-8 BL02B (bending magnet)

  • 7/27/2019 2008 T.matsushita 1

    6/70

    polarization

    Energy, energy resolution Spatial spread Time structure

    Angular divergence intensity

    Controlling the X-ray beam properties by X-ray crystal monochromators

  • 7/27/2019 2008 T.matsushita 1

    7/70

    Concrete shield

    Light source

    Storage ring

    Experimental hall

    Front-end

    Optics hutch

    Optics and transport channel

    Experimentalhutch

    Double-crystal

    monochromator

    Example of beamline structure

    @SPring-8

    UndulatorBending magnet &

    front-end

  • 7/27/2019 2008 T.matsushita 1

    8/70

    Crystal monochromators

    )(

    4.12)()sin()(2

    keVEnnd ==

    d

    dsin dsin

    cot=

    =

    E

    E

    d: Latiice (d)-spacing,

    : glancing angle,: X-ray wavelength10 keV : 1.24 ,1 : 12.4 keV

    Energy (wavelength) resolution

    Higher harmonicsE1 = 10 keV (n = 1)

    E2 = 20 keV (n = 2)

    E3 = 30 keV (n = 3)

    Braggs law of difraction

    E1,E2,E3,

  • 7/27/2019 2008 T.matsushita 1

    9/70

    Lattice planes of silicon

    Top view

    Side view

    [100]

    [011]

    [010]

    [001]

    (400)

    (511)

    (111) : 3.1356

    (311) : 1.6375

    (400) : 1.3578

    (511) : 1.0452

    a

    a

    d-spacing

    (111)(311)

    a0 = 5.43095

  • 7/27/2019 2008 T.matsushita 1

    10/70

    Energy range of SPring-8

    standard monochromator

    ReflectionSi 111 : d = 3.1356

    Si 311 : d = 1.6375

    Si 511 : d = 1.0452

    ..

    Bragg angle327

    Energy range4.4110 keV

    e.g. For SPring-8 standard monochromator

    0

    20

    4060

    80

    100

    120

    0 5 10 15 20 25 30Bragg angle (deg)

    Photonene

    rgy(keV)

    Si 111 refl.

    Si 311 refl.

    Si 511 refl.

    Photon energy (wavelength) can be selectedby crystal, net planes, and Bragg angle.

    E = 12.4/(2d sin)

    nd =)sin(2

  • 7/27/2019 2008 T.matsushita 1

    11/70

    Preparation of crystal monochromator

    Courtesy of Sharan Instruments Co. Ltd.

    No or less imperfections

    dislocations

    stacking faultspoint defects (non-uniformlydistributed, striations, aggregations)

  • 7/27/2019 2008 T.matsushita 1

    12/70

  • 7/27/2019 2008 T.matsushita 1

    13/70

    X-Ray Dynamical Diffraction

    P. Ewald (1912, 1917):dipoles in the crystal which are excited by the incident X-ray wave and radiate X-rays. C. Darwin (1914): multiple reflection by lattice planes. M. von Laue (1931) :

    continuous medium consisting of periodic dielectric constant.

    Experimental proof: in 1960s and 1970s, big perfect crystals (silicon, germanium,etc) became available

    Since late 1970s, perfect crystals have been used as monochromators onsynchrotron beamlines.

    Textbooks and reviewsB. W. Batterman and H. Cole, Rev. Mod. Phys. 36, 681 - 717 (1964)

    Dynamical Diffraction of X Rays by Perfect Crystals

    A. Authier, Dynamical Theory of X-Ray Diffraction, International Union of Crystallography

    Monographs on Crystallography No. 11. Oxford: Oxford University Press, 2001

    R. W. James: The Dynamical Theory of X-Ray Diffraction, in Solid State Physics (Seitz andTurnbull) vol.15 (1963), Academic Press

    M. von Laue: Roentgenstrahlen Interferenzen , 1941

  • 7/27/2019 2008 T.matsushita 1

    14/70

    Laue case and Bragg case

    K0Kh

    n

    K0Kh

    n

    Laue case Bragg case

  • 7/27/2019 2008 T.matsushita 1

    15/70

    Reflectivityreflectivity for Bragg case, no absorption, and thick crystal:

    Mhrhr eF

    Vmc

    e =2

    22

    ( ) )1(12

    2

    2

    00 = WWWR

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -5 -4 -3 -2 -1 0 1 2 3 4 5

    W

    Reflectivity

    { }hr

    rBKW

    1

    2sin 0+=

    For symmetric Bragg case, sigma polarization:

    h

    BK

    hrF=

    2sin

    2

    Darwin widthW= 2

    Shift of Bragg angle due to refraction:

    BK

    rrefraction

    2sin0=

    rr FVmc

    e02

    22

    0

    =

  • 7/27/2019 2008 T.matsushita 1

    16/70

    Silicon single crystal, E = 10 keV

    hkl Braqg angle(degree)

    (arc sec)

    (rad)

    111 11.403 5.476 26.55

    220 18.836 3.984 19.32

    311 22.246 2.273 11.02

    400 27.167 2.495 12.10

    422 34.001 1.886 9.142

    333 36.379 1.228 5.952

    440 40.22 1.543 7.479

    0h on the web!!!

    http://sergey.gmca.aps.anl.gov/x0h.html

  • 7/27/2019 2008 T.matsushita 1

    17/70

    )41( 22 += LLR

    222222 )(4)1( gWgWgWL +++

    For thin absorbing crystal of the Laue-case (transmission geometry), thereflectivity is given by

    For thick absorbing crystal in the Bragg-case (reflection geometry), thereflectivity is given by

    hr

    ig

    0

    =

    rh

    hi

    =

    +++

    +

    =

    2

    222

    1

    sinh)1(sin)21(

    )/exp(

    W

    AWA

    W

    tR T

    /tkA hr=

  • 7/27/2019 2008 T.matsushita 1

    18/70

    Intrinsic rocking curve for silicon

    Features:Diffraction width (Darwin width) of 0.1100 radPeak reflectivity of ~1 for low absorption case

    0

    0.2

    0.4

    0.6

    0.8

    1

    -100 -50 0 50 100(rad)

    Reflec

    tivity

    111 refl.10 keV

    333 refl.30 keV

    Based on the dynamical theory for perfect crystalfor thick crystal and absorption considered:

    BK

    rrefraction

    2sin

    0=

    BK

    hr

    2sin

    2=

    M

    hrhr eFVmc

    e

    = 2

    22

    rr F

    Vmc

    e02

    22

    0

    =

  • 7/27/2019 2008 T.matsushita 1

    19/70

    Angular divergence of sources and

    diffraction width

    SPring-8 bending

    magnet

    Divergence of undulator radiation is the same order as

    diffraction width of low order reflection.

    rad601

    r

    Undulator (N= 140)

    rad51

    r N

    10-1

    100

    101

    102

    103

    0 20 40 60 80 100

    Photon energy (keV)

    F

    WHM(rad)

    Bending magnet

    Undulator 1st

    Si 511 refl.

    Si 111 refl.

    Si 311 refl.

  • 7/27/2019 2008 T.matsushita 1

    20/70

    Energy resolution E/E=10-510-322

    Bcot +=E

    E: intrinsic angular width of diffraction

    : angular divergence of X-ray beam

    (1) -10

    1

    (2)

    2d sin(0) = 0

    2d sin(-1) = -1

    2d sin(1) = 1

    source-to-slit distance = 30 m

    slit width = 1 mm

    = 3.3 x 10-5

    Si 111, 10 keV: = 11.4

    E/E = cot = 1.6 x 10-4

    For Si 111, = 2.66 x 10-5 rad at 10 keV

    E/E = cot = 2.66 x 10-5 x cot(11.4) = 1.32 x 10-4

  • 7/27/2019 2008 T.matsushita 1

    21/70

    Energy resolution

    E/E=10-510-3

    22Bcot +=

    E

    E : divergence of source

    : diffraction width

    10-5

    10-4

    10-3

    10-2

    0 20 40 60 80 100Photon energy (keV)

    E/E

    Bending magnet + Si 111 refl.

    Bending magnet + Si 311 refl.

    Undulator 1st + Si 111 refl.

    Bending magnet + Si 511 refl.

    Using slit, collimator mirror,.. we can reduce eff

    ,

  • 7/27/2019 2008 T.matsushita 1

    22/70

  • 7/27/2019 2008 T.matsushita 1

    23/70

    Goniometer and angle accuracy

    Courtesy of Kohzu Seiki Co. Ltd.0.2 arc s / step (1 rad / step)

    Energy scan (Si 111 d = 3.119478)

    E0: 10.000 keV = 11.46246

    E1: 10.001 keV = 11.46130

    = 0.001162= 4.18 arc s = 20.3 rad

  • 7/27/2019 2008 T.matsushita 1

    24/70

    Double crystal monochromator

    Constant beam direction

    beam height changesslightly when E ischanged.

    Two crystals should beparallel to each otherwithin sub-arc-seconds.

    Tail intensity falls off

    rapidly.

    g

    h

    )cos(2 gh =

    Alignment of a double crystal monochromator

  • 7/27/2019 2008 T.matsushita 1

    25/70

    Alignment of a double crystal monochromator

    (1) Parallelity in the scattering plane: sub-rad

    (2) Parallelity normal to the scattering plane: ~10-3 - 10-4 rad

    (3) Parallelity to the rotating axis :

    tan2

    2=

    sin2=

    : 10-3

    10-4

  • 7/27/2019 2008 T.matsushita 1

    26/70

    Courtesy of Kohzu Seiki Co. Ltd.

  • 7/27/2019 2008 T.matsushita 1

    27/70

    Stability and disturbances

    Energy :0.1 eV for XAFS,

    sub-meV for high resolution inelastic scattering Intensity : less than 1 %. Beam position: typically several tens ~ 1 m

    Source instability

    Source size change, source position change, charge distribution change

    Room temperature variation

    Heat load by the radiation itself

    Vibrationfloor, cooling water, vacuum pump

    Variation at the sample

  • 7/27/2019 2008 T.matsushita 1

    28/70

    (1) 1+ translation + 2 link (2) + two translation link

    B

    hy

    sin2AB ==

    B

    hz

    cos2OB ==

    16/)4/)(4/( 42222 hhzhy =

    -stage

    Translation stage

    1st crystal

    2nd crystal

    -stage

    y

    h

    B

    hy

    2tan=

    Fixed-exit DCM

    Offseth

    y B

    O

    AB

    z

    1st crystal

    2nd crystal

    B

    B

    Exit beam

    A number of different schemes have beendeveloped to realize a fixed-exit beam.

  • 7/27/2019 2008 T.matsushita 1

    29/70

    UVSOR BL 1A, BL 7A

    Hiraya et al., RSI 66 (1995)

    Kirkland, NIM-A291 (1990)

    h= 50 mm, B= 585

    Difficult ies for crystal cooling and multi-stage adjustment Low rigidity

    Boomerang link type

    B= 18.571.5

  • 7/27/2019 2008 T.matsushita 1

    30/70

  • 7/27/2019 2008 T.matsushita 1

    31/70

  • 7/27/2019 2008 T.matsushita 1

    32/70

    Crystal cooling

    Qin

    T1

    T0

    Radiation & convection

    Heat conduction in crystal

    Heat transfer

    to coolant/holderCoolant/holder

    Crystal

    Why crystal coolingQin (Heat load by SR) = Qout (Cooling + Radiation,..)

    with temperature rise T T = d (d-spacing change) : thermal expansion coefficientor (bump of lattice due to heat load)

    Miss-matching between 1st and 2nd crystals occurs: Thermal drift, Loss of intensity, Broadening of beam, loss of brightness Melting or limit of thermal strain Broken !

  • 7/27/2019 2008 T.matsushita 1

    33/70

    Solution for crystal cooling

    We must consider:

    Thermal expansion of crystal: ,Thermal conductivity in crystal: ,Heat transfer to coolant and crystal holder.

    Solutions:(S-1) / Larger(S-2) Large contact area between crystal and coolant/holder

    larger(S-3) Irradiation area Larger, and power density smaller

  • 7/27/2019 2008 T.matsushita 1

    34/70

    Silicon Silicon Diamond Copper

    300 K 80 K 300 K 300 K

    (W/m/K) 150 1000 2000 401

    (1/K) 2.5x10-6 -5x10-7 1x10-6 16.5x10-6

    / x106 60 2000 2000 24

    Figure of merit

    Figure of merit of cooling:Figure of merit of cooling:

    Good for silicon (80 k) and diamond (300 K)Good for silicon (80 k) and diamond (300 K)

  • 7/27/2019 2008 T.matsushita 1

    35/70

  • 7/27/2019 2008 T.matsushita 1

    36/70

    Direct cooling with fin crystal

    Fins with

    Inserted metal

    Applied to bending magnet beamline

    P f f fi l (1)

  • 7/27/2019 2008 T.matsushita 1

    37/70

    Performance of fin crystal (1)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -40 -30 -20 -10 0 10 20 30 40

    Horizontal position (mm)

    Intensity(arb.units)

    Uniformity0.3%

    Si 111 refl.

    Si 333 refl.

    h= 25 keV

    Si 111 refl.

    Ring current= 1 mA

    Mechanical deformation removed

  • 7/27/2019 2008 T.matsushita 1

    38/70

    Di t li ith fi t l

  • 7/27/2019 2008 T.matsushita 1

    39/70

    Reduce radiation damage of rubber O-ring

    SR

    Direct cooling with fin crystal

    P f f fi t l (2)

  • 7/27/2019 2008 T.matsushita 1

    40/70

    Performance of fin crystal (2)

    B= 5, E= 43.4 keV

    B= 10, E= 21.8 keV

    Slit: 3 mmV40 mmH

    B= 20, E= 11.1 keV

    Current status

    Practical use both (311) and (111) crystals24 sec. twist due to fabrication process must be reduced.

    No heat strain for (111) crystal at 12 keV photon

    Radiation damage of O-ring is improved by side-inletDurability test is under way.

    X-ray image for Si 311 refl.

    P f f fi t l (3)

  • 7/27/2019 2008 T.matsushita 1

    41/70

    Performance of fin crystal (3)

    Si 111 refl.

    Ring current= 100 mA

    0

    10

    20

    30

    40

    50

    60

    70

    0 10 20 30 40Slit width (mm)

    RockingcurvewidthFWH

    M(rad)

    E= 7 keV

    E= 12.4 keV

    E= 18.9 keV

  • 7/27/2019 2008 T.matsushita 1

    42/70

  • 7/27/2019 2008 T.matsushita 1

    43/70

  • 7/27/2019 2008 T.matsushita 1

    44/70

  • 7/27/2019 2008 T.matsushita 1

    45/70

  • 7/27/2019 2008 T.matsushita 1

    46/70

    Cryogenic cooling

  • 7/27/2019 2008 T.matsushita 1

    47/70

    Cryogenic cooling

    LN2 circulator with He refrigerator

    Indirect side cooling

    Applied to undulator beamline

  • 7/27/2019 2008 T.matsushita 1

    48/70

  • 7/27/2019 2008 T.matsushita 1

    49/70

  • 7/27/2019 2008 T.matsushita 1

    50/70

    IIa diamond crystal

  • 7/27/2019 2008 T.matsushita 1

    51/70

    IIa diamond crystal

    (111) (100)

    Crystal handling is crucial: Mounting without strain Alignment

    Nearly perfect crystal using High Pressure High Temperature (HPHT)synthesis is available in growth direction.

    To maximize the photon flux, 111 refl. in Bragg case is used.

    Effective size of Diamond (111) is, however, small !

    Seed

    Seed

    5 mm5 mm

    Crystal mounting

  • 7/27/2019 2008 T.matsushita 1

    52/70

    Crystal mounting

    Mechanical mounting withSS plates and screws

    Release the screws

    Temperature increase to ~ 130 CKeep 30 min

    Decrease to room temperature

    Thermal mounting method

    Topograph and rocking curve

  • 7/27/2019 2008 T.matsushita 1

    53/70

    Topograph and rocking curve

    -10 0 100

    0.5

    1

    Rotation angle (arcsec)

    Intensity

    (a.u.

    )

    MeasuredCalculated

  • 7/27/2019 2008 T.matsushita 1

    54/70

  • 7/27/2019 2008 T.matsushita 1

    55/70

    Higher harmonics rejection

    total reflection mirror

  • 7/27/2019 2008 T.matsushita 1

    56/70

    Substrate materialSi for white radiation

    SiO2 for monochromatic beam Coating materialPt, Rh, Ni,...Depending on energy, reflectivity, absorption edges,..

    Glancing angle210 mrad (For SPring-8 X-ray beamline)Depending on energy, reflectivity, absorption edges,..

    Mirror length400 mm1 m (For SPring-8 X-ray beamline)Depending on the beam size and glancing anglee.g. 100 rad50 m/5 mrad= 1 m

    - total reflection mirror -

  • 7/27/2019 2008 T.matsushita 1

    57/70

  • 7/27/2019 2008 T.matsushita 1

    58/70

    High resolution monochromator

  • 7/27/2019 2008 T.matsushita 1

    59/70

    double crystal arrangements and the DuMond diagram

  • 7/27/2019 2008 T.matsushita 1

    60/70

    Extremely HighExtremely High--Resolution XResolution X--RayRay

    MonochromatorsMonochromators

  • 7/27/2019 2008 T.matsushita 1

    61/70

    120eV @ 14.4 keVYabashi et al., PRL (2001)

    [email protected] et al., JSR (2001)

    Channel-Cut

    Asymmetric Channel-Cut

    Original Nested-Channel-Cut, [email protected] keVIshikawa et al., RSI (1992)

    Alfred Q. R. Baron,a* Yoshikazu Tanaka,b DaisukeIshikawa,b Daigo Miwa,b Makina Yabashia and TetsuyaIshikawaa,b J. Synchrotron Rad. (2001). 8, 1127-1130

    MonochromatorsMonochromators

  • 7/27/2019 2008 T.matsushita 1

    62/70

    Power Load Effects on BackscatteringPower Load Effects on Backscattering

    MonochromatorMonochromator

  • 7/27/2019 2008 T.matsushita 1

    63/70

    Flat CrystalAnalyzer

    VerticalTranslation

    ~130 mWIncident BeamFrom Si (111) mono

    Detector

    Backscattering MonoAt the (11 11 11)

    0

    0.2

    0.4

    0.6

    0.8

    1

    -4 -2 0 2 4

    GrazingIncidence

    NormalIncidence

    Energy Offset (meV)

    phase retarder, polarization conversiontransmission through a thin crystal

  • 7/27/2019 2008 T.matsushita 1

    64/70

    - transmission through a thin crystal -

    M. Suzuki and T. Hirono,Hoshako Nov. 2006, Vo.19 No6, pp.444-453

    Concept of dispersion surfaces should be utilized to understand.

    Sagittal focusing

  • 7/27/2019 2008 T.matsushita 1

    65/70

    Applied for bending magnet beamline

    Bending mechanism

    for SPring-8 sagittal focusing

    1st crystal

    2nd crystal

    Focal point

    Si 311 refl.

    40 keV

    SourceCrystal=36.5 m

    Crystalfocalpoint= 16.5 m

    50 mm

    Principle of sagittal

    focusing

    e.g. Sagittal

    focusing images

    sin2qp

    pqr+

    =

    r: radius of 2nd crystal

    : Bragg anglep: source ~ crystal distance

    q: crystal ~ focal point distance

  • 7/27/2019 2008 T.matsushita 1

    66/70

  • 7/27/2019 2008 T.matsushita 1

    67/70

    Other issuesPh l i

  • 7/27/2019 2008 T.matsushita 1

    68/70

    Phase space analysisposition-angle (position-momentum) space

    Extended Phase spaceposition-angle-wavelength spaceposition-angle-energy space

    Ray tracing Feedback control of the DCM Compton scattering (heating of the 2nd crystal) Stress due to crystal mounting Surface finish and residual stress layer

    Wide band-pass monochromators Quick-scan monochromators

    Dispersion surface

    Future subjects

  • 7/27/2019 2008 T.matsushita 1

    69/70

    j

    Smaller slope error, smaller roughness, smaller residualstress

    optics for handling more coherent X-rays More higher resolution Wide bandpass crystal monochromator

    optics for handling more bright( intense) beam optics for handling extremely short pulses

    Acknowledgements

  • 7/27/2019 2008 T.matsushita 1

    70/70

    Dr. S. Goto, Spring-8Dr. T. Ishikawa, RIKEN/Spring-8

    Dr. K. Hirano, Photon FactoryProf. H. Winick, SSRLMr. H. Kohzu, Kohzu Seiki Co. LtdMr. Koizumi , Sharan Instruments Co. ltdDr. T. Mochizuki, Spring-8Dr. M. Takata, RIKEN/Spring-8Prof. Y. Amemiya, Univ. of Tokyo

    Dr. M. Suzuki, Spring-8Dr. T. Hirono, Spring-8