13
RESUMEN El presente trabajo trata sobre el Acero, desde cómo lo podemos obtener hasta como tenemos que utilizarlo ya que este material es usado en la construcción y no se encuentran en la naturaleza en estado puro y por lo que para su empleo hay que someterlos a una serie de operacionesmetalúrgicas cuyo fin es separar el metal de las impurezas u otros minerales que lo acompañen. Los metales inician su historia cuando el hombre se siente atraído por su brillo y se da cuenta de que golpeándolos puede darles forma. El hierro es el elemento esencial para la producción del acero, el cual está compuesto en un 78% como mínimo de Fe, el hierro posee una gran cantidad de propiedades favorables para la construcción, y por ello después del concreto, es llamado como el esqueleto de las estructuras. El acero, como material indispensable de refuerzo en las construcciones, es una aleación de hierro y carbono. Una de sus características es admitir el temple, con lo que aumenta su dureza y su flexibilidad. El hierro en estado puro no posee la resistencia y dureza necesarias para las aplicaciones de uso común. Sin embargo, cuando se combina con pequeñas cantidades de carbono se obtiene un metal denominado acero, cuyas propiedades varían en función de su contenido en carbono y de otros elementos en aleación, tales como el manganeso, el cromo, el silicio o el aluminio, entre otros. El acero se puede obtener a partir de dos materias primas fundamentales: El ARRABIO, obtenido a partir de mineral en instalaciones dotadas de horno alto (proceso integral); Las CHATARRAS férricas, Que condicionan el proceso de fabricación. En líneas generales, para fabricar acero a partir de arrabio se utiliza el convertidor con oxígeno, mientras que partiendo de chatarra como única materia prima se utiliza exclusivamente el horno eléctrico (proceso electrosiderúrgico).

ACERO 22222

Embed Size (px)

DESCRIPTION

.

Citation preview

Page 1: ACERO 22222

RESUMEN

El presente trabajo trata sobre el Acero, desde cómo lo podemos obtener hasta como tenemos que utilizarlo ya que este material es usado en la construcción y no se encuentran en la naturaleza en estado puro y por lo que para su empleo hay que someterlos a una serie de operacionesmetalúrgicas cuyo fin es separar el metal de las impurezas u otros minerales que lo acompañen.

Los metales inician su historia cuando el hombre se siente atraído por su brillo y se da cuenta de que golpeándolos puede darles forma. El hierro es el elemento esencial para la producción del acero, el cual está compuesto en un 78% como mínimo de Fe, el hierro posee una gran cantidad de propiedades favorables para la construcción, y por ello después del concreto, es llamado como el esqueleto de las estructuras. El acero, como material indispensable de refuerzo en las construcciones, es una aleación de hierro y carbono. Una de sus características es admitir el temple, con lo que aumenta su dureza y su flexibilidad.

El hierro en estado puro no posee la resistencia y dureza necesarias para las aplicaciones de uso común. Sin embargo, cuando se combina con pequeñas cantidades de carbono se obtiene un metal denominado acero, cuyas propiedades varían en función de su contenido en carbono y de otros elementos en aleación, tales como el manganeso, el cromo, el silicio o el aluminio, entre otros.

El acero se puede obtener a partir de dos materias primas fundamentales:

El ARRABIO, obtenido a partir de mineral en instalaciones dotadas de horno alto (proceso integral);

Las CHATARRAS férricas,

Que condicionan el proceso de fabricación. En líneas generales, para fabricar acero a partir de arrabio se utiliza el convertidor con oxígeno, mientras que partiendo de chatarra como única materia prima se utiliza exclusivamente el horno eléctrico (proceso electrosiderúrgico).

Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobre todo de la cantidad de carbono y de su distribución, la mayoría de los aceros son una mezcla de tres sustancias, Ferrita, Perlita y Cementita.

Los materiales básicos para la fabricación de lingotes de acero es material férrico coque y caliza. El coque se quema como un combustible para calentar el horno; cuando se quema el coque, este emite monóxido de carbono que se combina con los óxidos férricos, reduciéndolos a hierro metálico.

También podemos observar las aleaciones, sus propiedades mecánicas, ventajas, desventajas, principales características, clasificación de los aceros como al carbón y los aleados,

El 90% de los aceros son aceros al carbono. Estos aceros contienen una cantidad diversa de carbono, menos de un 1,65% de manganeso, un 0,6% de silicio y un 0,6% de cobre. Con este tipo de acero se fabrican maquinas, carrocerías de automóvil, estructuras de construcción

Page 2: ACERO 22222

INTRODUCCIÓN

Durante la historia el hombre a tratado de mejorar sus materias primas para sus construcciones, añadiendo materiales orgánicos como inorgánicos, para obtener así los resultados ideales para sus diversas obras.

Dado el caso de que los materiales más usados en la construcción no se encuentran en la naturaleza en estado puro, por lo que para su empleo hay que someterlos a una serie de operaciones metalúrgicas cuyo fin es separar el metal de las impurezas u otros minerales que lo acompañen. Pero esto no basta para alcanzar las condiciones optimas, entonces para que los metales tengan buenos resultados, se someten a ciertos tratamientos con el fin de hacer una aleación que reúna una serie de propiedades que los hagan aptos para adoptar sus formas futuras y ser capaces de soportar los esfuerzos a los que van a estar sometidos.

El ACERO, como material indispensable de refuerzo en las construcciones, es una aleación de hierro y carbono, en proporciones variables, y pueden llegar hasta el 2% de carbono, con el fin de mejorar algunas de sus propiedades, puede contener también otros elementos. Una de sus características es admitir el temple, con lo que aumenta su dureza y su flexibilidad.

En las décadas recientes, los ingenieros y arquitectos han estado pidiendo continuamente aceros cada vez más sofisticados, con propiedades de resistencia a la corrosión, aceros mas soldables y otros requisitos. La investigación llevada a cabo por la industria del acero durante este periodo ha conducido a la obtención de varios grupos de nuevos aceros que satisfacen muchos de los requisitos y existe ahora una amplia variedad cubierta gracias a las normas y especificaciones actuales.

Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobre todo de la cantidad de carbono y de su distribución. Antes del tratamiento térmico, la mayoría de los aceros son una mezcla de tres sustancias, Ferrita, Perlita y Cementita.

La Ferrita, blanda y dúctil, es hierro con pequeñas cantidades de carbono y otros elementos en disolución.

La Cementita, es un compuesto de hierro con el 7% de carbono aproximadamente, es de gran dureza y muy quebradiza.

La Perlita es una mezcla de ferrita y cementita, con una composición específica y una estructura característica, sus propiedades físicas con intermedias entre las de sus dos componentes.

La resistencia y dureza de un acero que no ha sido tratado térmicamente depende de las proporciones de estos tres ingredientes, cuanto mayor es el contenido en carbono de un acero, menor es la cantidad de ferrita y mayor la de perlita: cuando el acero tiene un 0,8% de carbono, está por compuesto de perlita. El acero con cantidades de carbono aún mayores es una mezcla de perlita y cementita.

Page 3: ACERO 22222

MARCO TEÓRICO

HISTORIA

Es imposible determinar a ciencia cierta dónde y cómo el hombre descubrió el hierro, pero es cierto que su historia está estrechamente ligada con el desarrollo de la cultura y la civilización.

Los metales inician su historia cuando el hombre se siente atraído por su brillo y se da cuenta de que golpeándolos puede darles forma y fabricar así utensilios tan necesarios para su supervivencia.

La humanidad se sucede en Edades, a las que se ha dado nombres de metales, y cuando se cierran las Edades del Cobre y Bronce, a las que se atribuye una duración de 500 a 2000 años, comienza la Edad del Hierro.

Con la excepción del aluminio, el hierro se encuentra en la naturaleza en cantidades mayores que cualquier otro metal; se explota con métodos relativamente sencillos, y se puede trabajar y transformar tanto como se quiera. La razón del retraso en la aparición del hierro respecto al bronce hay que buscarla en el elevado punto de fusión del hierro puro, lo que hacía prácticamente imposible que una vez tratados sus minerales se pudiese ofrecer en forma líquida, separado de la escoria.

Las primeras producciones se obtuvieron seguramente rodeando al mineral totalmente con carbón de leña con el que no era posible alcanzar la temperatura suficiente para fundir el metal, obteniéndose en su lugar una masa esponjosa y pastosa, mezcla de hierro y escoria, que había que martillear repetidamente al rojo vivo para eliminar la escoria y las impurezas.

Este martilleo producía dos efectos, por un lado conseguía obtener un hierro puro al eliminar las escorias e impurezas, endureciéndolo por forja al mismo tiempo. Se obtenían así barras de hierro forjado resistente y maleable, que no eran otra cosa que un tipo muy primitivo de acero.

Con el paso del tiempo, se fue comprobando que la obtención accidental del hierro colado no era una desgracia, sino que por el contrario se trataba de una materia prima mejor para obtener posteriormente el acero, con todas las ventajas técnicas y económicas que implica el proceso.

En 1855 se produce un hecho trascendental en la producción y el futuro del acero: el invento del convertidor ideado por Henry Bessemer, que supuso el paso revolucionario de la obtención del acero a partir del hierro producido en el alto horno. Este invento trascendental se completa por Thomas en 1873, al conseguir convertir el hierro colado, de alto contenido en fósforo, en acero de alta calidad mediante un convertidor con recubrimiento básico.

Page 4: ACERO 22222

A partir de entonces las innovaciones en la producción del acero se han ido sucediendo hasta nuestros días, gracias a la participación de figuras como las de Martín, Siemens, Héroult, los técnicos de Linz y Donawitz y tantos otros.

El ACERO

. DEFINICIÓN.

El acero es una aleación de hierro con pequeñas cantidades de otros elementos, es decir, hierro combinado con un 1% aproximadamente de carbono, y que hecho ascua y sumergido en agua fría adquiere por el temple gran dureza y elasticidad. Hay aceros especiales que contienen además, en pequeñísima proporción, cromo, níquel, titanio, volframio o vanadio. Se caracteriza por su gran resistencia, contrariamente a lo que ocurre con el hierro. Este resiste muy poco la def0rmacion plástica, por estar constituida solo con cristales de ferrita; cuando se alea con carbono, se forman estructuras cristalinas diferentes, que permiten un gran incremento de su resistencia. Ésta cualidad del acero y la abundancia de hierro le colocan en un lugar preeminente, constituyendo el material básico del S.XX. Un 92% de todo el acero es simple acero al carbono; el resto es acero aleado: aleaciones de hierro con carbono y otros elementos tales como magnesio, níquel, cromo, molibdeno y vanadio.

CARACTERISTICAS MECANICAS Y TECNOLOGICAS DEL ACERO

estas varían con los ajustes en su composición y los diversos tratamientos térmicos,

químicos o mecánicos, con los que pueden conseguirse aceros con combinaciones de

características adecuadas para infinidad de aplicaciones, se pueden citar algunas

propiedades genéricas:

Su densidad media es de 7850 kg/m³.

En función de la temperatura el acero se puede contraer, dilatar o fundir.

El punto de fusión del acero depende del tipo de aleación y los porcentajes de

elementos aleantes. El de su componente principal, el hierro es de alrededor de

1.510 °C en estado puro (sin alear), sin embargo el acero presenta frecuentemente

temperaturas de fusión de alrededor de 1.375 °C, y en general la temperatura

necesaria para la fusión aumenta a medida que se aumenta el porcentaje de carbono

y de otros aleantes. (excepto las aleaciones eutécticas que funden de golpe). Por otra

parte el acero rápido funde a 1.650 °C.17

Su punto de ebullición es de alrededor de 3.000 °C.18

Page 5: ACERO 22222

Es un material muy tenaz, especialmente en alguna de las aleaciones usadas para

fabricar herramientas.

Relativamente dúctil. Con él se obtienen hilos delgados llamados alambres.

Es maleable. Se pueden obtener láminas delgadas llamadas hojalata. La hojalata es

una lámina de acero, de entre 0,5 y 0,12 mm de espesor, recubierta, generalmente de

forma electrolítica, por estaño.

Permite una buena mecanización en máquinas herramientas antes de recibir un

tratamiento térmico.

Algunas composiciones y formas del acero mantienen mayor memoria, y se

deforman al sobrepasar su límite elástico.

La dureza de los aceros varía entre la del hierro y la que se puede lograr mediante su

aleación u otros procedimientos térmicos o químicos entre los cuales quizá el más

conocido sea el templado del acero, aplicable a aceros con alto contenido en

carbono, que permite, cuando es superficial, conservar un núcleo tenaz en la pieza

que evite fracturas frágiles. Aceros típicos con un alto grado de dureza superficial

son los que se emplean en las herramientas de mecanizado, denominados aceros

rápidos que contienen cantidades significativas

de cromo,wolframio, molibdeno y vanadio. Los ensayos tecnológicos para medir la

dureza son Brinell, Vickers y Rockwell, entre otros.

Se puede soldar con facilidad.

La corrosión es la mayor desventaja de los aceros ya que el hierro se oxida con

suma facilidad incrementando su volumen y provocando grietas superficiales que

posibilitan el progreso de la oxidación hasta que se consume la pieza por completo.

Tradicionalmente los aceros se han venido protegiendo mediante tratamientos

superficiales diversos. Si bien existen aleaciones con resistencia a la corrosión

mejorada como los aceros de construcción «corten» aptos para intemperie (en

ciertos ambientes) o los aceros inoxidables.

Posee una alta conductividad eléctrica. Aunque depende de su composición es

aproximadamente de19 3 · 106 S/m. En las líneas aéreas de alta tensión se utilizan

con frecuencia conductores de aluminio con alma de acero proporcionando éste

último la resistencia mecánica necesaria para incrementar los vanos entre la torres y

optimizar el coste de la instalación.

Se utiliza para la fabricación de imanes permanentes artificiales, ya que una pieza

de acero imantada no pierde su imantación si no se la calienta hasta cierta

temperatura. La magnetización artificial se hace por contacto, inducción o mediante

Page 6: ACERO 22222

procedimientos eléctricos. En lo que respecta al acero inoxidable, al acero

inoxidable ferrítico sí se le pega el imán, pero al acero inoxidable austenítico no se

le pega el imán ya que la fase del hierro conocida como austenita no es atraída por

los imanes. Los aceros inoxidables contienen

TIPOS DE ACEROS.

ll.a. Acero aleado o especial.

Acero al que se han añadido elementos no presentes en los aceros al carbono o en que el contenido en magnesio o silicio se aumenta mas allá de la proporción en que se halla en los aceros al carbono.

ll.b. Acero autotemplado

Acero que adquiere el temple por simple enfriamiento en el aire, sin necesidad de sumergirlo en aceite o en agua. Este efecto, que conduce a la formación de una estructura martensitica muy dura, se produce añadiendo constituyentes de aleación que retardan la transformación de la austenita en perlita.

ll.c. Acero calmado o reposado

Acero que ha sido completamente desoxidado antes de colarlo, mediante la adición de manganeso, silicio o aluminio. Con este procedimiento se obtienen lingotes perfectos, ya que casi no hay producción de gases durante la solidificación, lo que impide que se formen sopladuras.

ll.d. Acero de construcción

Acero con bajo contenido de carbono y adiciones de cromo, níquel, molibdeno y vanadio.

II.e. Acero de rodamientos

Acero de gran dureza y elevada resistencia al desgaste; se obtiene a partir de aleaciones del 1% de carbono y del 2% de cromo, a las que se somete a un proceso de temple y revenido. Se emplea en la construcción de rodamientos a bolas y en general, para la fabricación de mecanismos sujetos al desgaste por fricción.

II.f. Acero dulce

Denominación general para todos los aceros no aleados, obtenidos en estado fundido.

II.g. Acero duro

Page 7: ACERO 22222

Es el que una vez templado presenta un 90% de martensita. Su resistencia por tracción es de 70kg/mm2 y su alargamiento de un 15%. Se emplea en la fabricación de herramientas de corte, armas y utillaje, carriles, etc. En aplicaciones de choque se prefiere una gradación de dureza desde la superficie al centro, o sea, una sección exterior resistente y dura y un núcleo mas blando y tenaz.

II.h. Acero efervescente

Acero que no ha sido desoxidado por completo antes de verterlo en los moldes. Contiene gran cantidad de sopladuras, pero no grietas.

II.i. Acero fritado

El que se obtiene fritando una mezcla de hierro pulverizado y grafito, o también por carburación completa de una masa de hierro fritado.

II.j. Acero fundido o de herramientas

Tipo especial de acero que se obtiene por fusión al crisol. Sus propiedades principales son:

1) resistencia a la abrasión

2) resistencia al calor

3) resistencia al choque

4) resistencia al cambio de forma o a la distorsión al templado

5) aptitud para el corte

Contienen de 0,6 a 1,6% de carbono y grandes proporciones de metales de aleación: tungsteno, cromo, molibdeno, etc.

II.k. Acero indeformable

El que no experimenta prácticamente deformación geométrica tanto en caliente( materias para trabajo en caliente ) como en curso de tratamiento térmico de temple( piezas que no pueden ser mecanizadas después del templado endurecedor )

II.l. Acero inoxidable

Acero resistente a la corrosión, de una gran variedad de composición, pero que siempre contiene un elevado porcentaje de cromo ( 8-25% ). Se usa cuando es absolutamente imprescindible evitar la corrosión de las piezas. Se destina sobre todo a instrumentos de

Page 8: ACERO 22222

cirugía y aparatos sujetos a la acción de productos químicos o del agua del mar( alambiques, válvulas, paletas de turbina, cojinetes de bolas, etc. )

II.m. Acero magnético

Aquel con el que se fabrican los imanes permanentes. Debe tener un gran magnetismo remanente y gran fuerza coercitiva. Los aceros de esta clase, tratándose aplicaciones ordinarias, contienen altos porcentajes de tungsteno( hasta el 10%) o cobalto(hasta el 35% ).Para aparatos de calidad se emplean aceros de cromo-cobalto o de aluminio-níquel ( carstita, coercita ).

II.n. Acero no magnético

Tipo de acero que contiene aproximadamente un 12% de manganeso y carece de propiedades magnéticas.

II.ñ. Acero moldeado

Acero de cualquier clase al que se da forma mediante el relleno del molde cuando el metal esta todavía liquido. Al solidificar no trabajado mecánicamente.

II.o. Acero para muelles

Acero que posee alto grado de elasticidad y elevada resistencia a la rotura. Aunque para aplicaciones corrientes puede emplearse el acero duro, cuando se trata de muelles que han de soportar fuertes cargas y frecuentes esfuerzos de fatiga se emplean aceros al sicilio con temple en agua o en aceite y revenido.

II.p. Acero pudelado

Acero no aleado obtenido en estado pastoso.

II.q. Acero rápido

Acero especial que posee gran resistencia al choque y a la abrasión. Los mas usados son los aceros tungsteno, al molibdeno y al cobalto, que se emplean en la fabricación de herramientas corte.

II.r. Acero refractario

Tipo especial de acero capaz de soportar agentes corrosivos a alta temperatura.

II.s. Acero suave

Acero dúctil y tenaz, de bajo contenido de carbono. También se obtiene este tipo de acero, fácil de trabajar en frió, aumentando el porcentaje de fósforo( aumentando un 0,15% ) y de

Page 9: ACERO 22222

azufre( hasta un 0,2% ). Tiene una carga de rotura por tracción de unos 40 kg/mm2, con un alargamiento de un 25%.

II.t. Aceros comunes

Los obtenidos en convertidor o en horno Siemens básico.

II.u. Aceros finos

Los obtenidos en horno Siemens ácido, eléctrico, de inducción o crisol.

II.v. Aceros forjados

Los aceros que han sufrido una modificación en su forma y su estructura interna ante la acción de un trabajo mecánico realizado a una temperatura superior a la de recristalización.