517
กลศาสตรการแตกหัก

Fracture Book

  • Upload
    -

  • View
    77

  • Download
    1

Embed Size (px)

DESCRIPTION

เขียนดีครับ ภาษาไทย อ่านเข้าใจง่าย

Citation preview

  • (i)

    ix 1 1

    1.1 1 1.2 4 1.3 5 1.4 6

    1.4.1 6 1.4.2 6 1.4.2.1 6 1.4.2.2 8 1.4.3 8 1.4.4 8 1.4.5 10

    1.5 12 1.6 12

    2 15 2.1 16 2.2 18 2.3 20 2.3.1 20 2.3.2 23 2.3.2.1 23 2.3.2.2 24 2.3.2.3 26 2.3.3 Griffith 27 2.3.4 Griffith 29 2.4 35 2.4.1 35

  • (ii)

    2.4.2 38 2.4.3 42 2.5 K G 44 2.6 49 2.7 51 2.8 56 2.8.1 56 2.8.1.1 Westergaard 56 2.8.1.2 Muskhelishvili 60 2.8.1.3 Williams 60 2.8.2 61 2.8.3 64 2.8.4 66 2.8.4.1 70 2.8.4.2 K 75 2.8.5 79 2.8.5.1 K 80 2.8.5.2 K 81 2.8.6 86 2.8.6.1 K 86 2.8.6.2 K 87 2.8.7 88 2.8.8 90 2.9 91 2.9.1 92 2.9.2 93 2.9.3 94 2.9.3.1 Irwin 94 2.9.3.2 100

  • (iii)

    2.10 102 2.11 104 2.11.1 CTOD Irwin 105 2.11.2 CTOD 106 2.12 109 2.13 110 : Williams 113

    3 - 125 3.1 125 3.2 J- 128 3.2.1 128 3.2.2 J 131 3.2.3 J 133 3.3 J - CTOD 134 3.4 J 137 3.4.1 J 137 3.4.2 J 148 3.4.2.1 148 3.4.2.2 151 3.4.2.3 164 3.4.3 EPRI 166 3.4.4 170 3.5 J 175 3.5.1 J- 175 3.5.2 J 178 3.6 181 3.7 182

    : Jpl EPRI 185 : J-integral estimation for a semi-elliptical surface crack in a round bar under tension 193

  • (iv)

    4 197 4.1 197 4.2 199 4.3 201 4.3.1 201 4.3.2 202 4.3.2 202 4.4 206 4.5 214 4.5.1 214 4.5.2 214 4.5.3 217 4.5.4 219 4.5.5 220 4.5.6 221 4.6 KIc 223 4.7 KR 234 4.8 JIc 244 4.8.1 245 4.8.2 255 4.9 JR 262 4.10 JR 267 4.10.1 EPRI 268 4.10.2 268 4.11 CTOD 272

    4.12 277 4.13 278 4.14 278 : 281

  • (v)

    5 295 5.1 295 5.2 297 5.2.1 299 5.2.2 299 5.2.3 299 5.3 301 5.3.1 da/dN 302 5.3.2 da/dN incremental polynomial 302 5.3.3 da/dN modified difference 303 5.3.4 da/dN central difference 304 5.4 308 5.4.1 309 5.4.2 309 5.5 311 5.5.1 311 5.5.1.1 311 5.5.1.2 313 5.5.1.3 313 5.5.2 314 5.5.3 317 5.6 318 5.6.1 318 5.6.2 320 5.7 321 5.7.1 323 5.7.2 323 5.8 327 5.8.1 327 5.8.2 328

  • (vi)

    5.8.3 Simplified Rainflow 334 5.8.4 339 5.8.4.1 340 5.8.4.2 Wheeler 341 5.8.4.3 Wheeler 343 5.8.4.4 Willenborg 343 5.8.4.5 346 5.8.4.6 346 5.9 347 5.10 - 349 5.11 353 5.12 357 5.13 357 : 363 : 375

    6 381 6.1 381

    6.1.1 381 6.1.2 SCC 383 6.1.2.1 384 6.1.2.2 384 6.1.3 387

    6.2 389 6.2.1 389 6.2.2 391 6.3 395

    6.3.1 C* 396 6.3.1.1 C* 397 6.3.1.2 C* EPRI 399 6.3.1.3 C* 401

  • (vii)

    6.3.1.4 C* 402 6.3.2 403

    6.3.3 407 6.4 410

    6.5.1 412 6.5.2 412

    6.5 414 6.6 415 : 419

    7 425 7.1 425 7.2 425 7.3 427 7.3.1 427 7.3.2 428 7.3.3 431 7.3.4 435 7.4 CTOD 438 7.5 441 7.5.1 441 7.5.2 J- 445 7.6 R6 448 7.6.1 449 7.6.2 451 7.6.2.1 451 7.6.2.2 451 7.6.2.3 452 7.6.2.4 453 7.6.2.5 454 7.6.2.6 Lr 455

  • (viii)

    7.6.2.7 Kr 455 7.6.2.8 458 7.7 472 : WES 2805-1997 473 479

  • (ix)

    (simulation) 7 1 2 3 - 4 5 6 7 R6 Emeritus Prof. Dr. Yasuhide ASADA (), Assoc. Prof. Dr. Toshiya NAKAMURA

  • (x)

    Prof. Shinsuke SAKAI TJTTP-OECF .. [email protected]

    2553

  • (xi)

    stress intensity factor +++ singularity dominated-zone + + fracture toughness

  • 1

    1.1 1 (overload) (fatigue) (creep) (corrosion) (wear) (buckling) (failure criteria) ( ) ( ) () () ( ) (failure analysis) 2 ( 1) ( )f ( )g 1 2 failure damage corrosion damage corrosion failure

  • 2

    ()( ),...f ( ),...g >b () 2a (6)

    a

    A 2 (7)

    (7) ( = 0) (infinitely sharp) !

  • 20

    () [7] ( )0> (7)

    2.3. .. 1921 A.A. Griffith (global analysis)

    2.3.1 (conservation of energy theorem) (external work) W (strain energy) U UW = (8)

    W P (load-line displacement) LL

    LL

    PdW = (9)

    4 LLPW 2

    1= (8) LLPU 2

    1= 5 (strain energy density) Ud 2

    1 E

    2

    21

    dxdydzE

    U2

    21 = (10)

  • 21

    W

    P

    LL

    LL

    P

    4 -

    U

    5 -

    (central through-crack plate) 2a P 6 P LL (stiffness)

    2a

    P

    P

    LL

    LL

    1

    6

  • 22

    W U Ws dA

    dA

    dWdAdU

    dAdW s+=

    ( )dA

    dWUW

    dAd s= (11)

    (11) (fracture criteria) (total potential energy)

    WU = (12) (11)

    dAdW

    dAd s= (13)

    ..1956 Irwin (13) (11) (energy release rate, G 2) (crack driving force) (crack growth resistance, R)

    dAd

    dAdU

    dAdWG == (14)

    dA

    dWR s= (15) RG = (16)

    (16) G R ( dAdG dAdR )

    2 Griffith

  • 23

    dAdR

    dAdG > (17)

    dAdR

    dAdG < (17)

    dAdR

    dAdG = (17)

    (17) (17) ()

    2.3.2 1) (displacement-controlled condition) 2) (load-controlled condition)

    2.3.2.1 a P1 ( LL 1) a a+da ( P1 1 dPP +1 1+d ) a a+da ( 7) O C D da C D dW ACDE dU ODE OCA [ (12)] ( )OCAODEACDEd = ( )[ ]OCAABDEOBAACDEd += ( ) ( )ABDEACDEOBAOCAd += OCDd =

    - da ()

  • 24

    a

    a+da

    P1

    1 LL d+1

    -

    O

    C

    D

    A E

    dB

    dPP +1

    7 a a+da

    2.3.2.2 8 ( B) P1 1 OA P1 AB a+da dPP +1

    11P

    1 LL

    A

    B

    1P

    dPP +1

    a daa +P

    O

    da daa +

    C

    a a

    () () ()

    8 () () da ()

  • 25

    (dW = 0) (14)

    dAdUG = (18)

    8 U a OAC 1121 P

    a+da OBC ( ) 1121 dPP +

    dU dPdU 12

    1 = (19)

    dAdP

    dAdU

    LL21= (20)

    PCLLLL = (21)

    CLL (compliance) P-LL

    LLLLLL CdAdPP

    dAdC

    dAd += (22)

    0=dA

    d LL

    dA

    dCCP

    dAdP LL

    LL

    = (23)

    (20) dA

    dCCP

    dAdU LL

    LLLL2

    1=

    (21) dA

    dCPdAdU LL2

    21=

    (18) dA

    dCPG LL221= (24)

    B dA = Bda (24)

    da

    dCBPG LL

    2

    21= (25)

  • 26

    2.3.2.3 9 P1 1 OA P1 AB a+da 1+d

    dAdU

    dAdWG = (14)

    9 a a+da 1121 P

    ( ) dP +1121

    dPdU 121=

    dPdW 1= dPdPdUdW 11 2

    1=

    dUdPdUdW == 121

    (14)

    dAdUG = (26)

    1P

    P

    1P

    1 d+1 LL

    a daa +

    O

    A B

    D

    d

    12

    a daa +

    1PC

    E

    a

    9

  • 27

    dA

    dPdAdU

    dAdW LL

    21= (27)

    (22)

    PdA

    dCdA

    d LLLL = (28) (27)

    dAdCPG LL2

    21= (29)

    B dA = Bda (29)

    da

    dCBPG LL

    2

    21= (30)

    (24) (29) (25) (30) G (18) (26) U G G (17)

    2.3.3 Griffith Griffith (infinite plate) 2a [ 10()] y

    E

    2

    21 [ 10()]

    [ 10()]

    ( )( )E

    BaaU2

    22=

  • 28

    E

    BaU22= (31) 3

    = 0

    21 222

    =

    EBaVol

    E

    Vol

    EaB

    dad 22=

    GE

    adAd =

    22 (32)

    Ws

    ( )( )ss aBW 22=

    2aB s2 () ss aBW 4=

    4a

    2a

    () ()

    10

    3 Griffith Griffith

  • 29

    ss BdadW 4=

    RdA

    dWs

    s = 4 (33)

    (32) (33) (16)

    sf BEaB 42

    2

    = f

    aE s

    f 2= (34)

    (34) (ideally brittle solids) (34)

    2.3.4 Griffith Irwin Orowan Griffith (plastic work) p ( )

    aE ps

    f += 2 (35)

    p s s

    (crack meandering) 11() (crack branching) 11() Griffith

    a

    EWff

    2= (36)

    fW (fracture energy)

  • 30

    () () 11 G

    () ()

    1 [3] 3 .

    , a (.)

    , Pc ()

    () , c (.)

    30.0 4,000 0.40 40.0 3,500 0.50 50.0 3,120 0.63 60.0 2,800 0.78 70.0 2,620 0.94 77.5 2,560 1.09

    () Gc CLL - 1) a a+da - a a+da ( E1)

    ( )( ) 1,1,,1,1,,,,1 212121 +++++ ++= icicicicicicicicii PPPPAOA (E1) i = 1, 2, 3, 4, 5 2.3.2.1

    ( )iiii

    ic aaBAOAG = +

    +1

    1, (E2)

  • 31

    0

    2000

    4000

    0.2 0.4 0.6 0.8 1.0 1.2

    (

    )

    (.)

    a= 3

    0 .

    a = 40

    .a =

    50

    .

    a = 60 .

    a = 70 .

    a = 77.5 .

    A1A2

    A3A4 A5 A6

    () -

    E1 -

    (E1) (E2) Gc 10000, 10750, 11160, 9807, 9987 J/m2 Gc ( 9,807 J/m2) (10,340 J/m2)

    2) -

    ic

    iciLL P

    C,

    ,,

    = ; i = 1, 2, 3, 4, 5, 6 (E2) (E2)

    , a (.) 30 40 50 60 70 77.5 , CLL (/) 1.0x10-7 1.4x10-7 2.0x10-7 2.8x10-7 3.6x10-7 4.3x10-7 4

    76243343 1075.11076.91006.31037.21053.7 ++= aaaaCLL

  • 32

    2 [5] D a P ( E1)

    ( )( )DadEDCd

    Da

    Da

    Daa

    GE LL41

    21

    18

    =

    E

    a

    D

    P

    P

    AA

    A-A

    E1

    CLLED (normalized compliance) (24) (29)

    dAdCPG LL2

    21= (24)

    P 24DP

    = 2

    4DP = (E1)

    E2

    ( )aDaaDDy =

    =22

    24 (E2)

    = aDy2

    arctan2

  • 33

    (E2) ( )

    =

    aDaDa

    2arctan2 (E3)

    A ( ) sin22

    1 2

    = DA (E4) dA/da

    dad

    ddA

    dadA

    = (E5)

    (E4) ( ) cos1421 2 = D

    ddA (E6)

    (E3) ( )aDadad

    =2 (E7)

    (E6) (E7) (E5)

    ( )( ) daaDaDdA

    = cos14

    2

    (E8)

    (E3)

    ( )daaDadA = 2 (E9)

    (E1) (E9) (24)

    aD/2

    Ay

    E2 ( A-A)

  • 34

    ( ) dadC

    aDa

    DG LL

    =2

    1621

    422

    ( )( )

    ( )DadEDCd

    aDaaD

    aEG LL

    =2

    2 64

    ( )[ ]( )

    ( )21

    418

    =

    DadEDCd

    aDaa

    Da

    EG LL

    ( )( )21

    41

    21

    18

    =

    DadEDCd

    Da

    Da

    Daa

    EG LL

    3 [6] B 2h 2a P E1 h

  • 35

    33

    2EBhPa

    LL = E1 3

    32EBh

    aP

    C LLLL == (E1)

    (E1) (25)

    = 3

    22 321

    EBha

    BPG (E2)

    () (E2)

    3222

    43

    hEBaPG =

    P

    2a

    hLL

    E2

    2.4 2.4.1 3

    1) (opening mode) 1 [ 12()]

    2) (in-plane shear mode) (sliding mode) 2 [ 12()]

    3) (out-of-plane shear mode) (tearing mode) 3 [ 12()]

    13 17 13 P M P M

  • 36

    () ( 1) () ( 2) () ( 3)

    12 1 14

    (circumferential crack) (twisting moment) T 3 15 45 1 (biaxial) 16 (neutral axis) 2 17 y x 1 2

    +

    A

    AMM

    PP

    13 P M

  • 37

    T T

    A

    A

    x+

    14 T

    T T

    A

    A

    45o

    15 T

    16

    1) 2)

  • 38

    x

    yxy

    xx yy

    yx

    17

    2.4.2 (isotropic) 4 ij ( 18) [7]

    ( ) ( ) ( ) ( )=

    ++

    =

    1,

    20,0,

    mmij

    m

    mijijij grAgAfrkr (37)

    r k A

    ijf ijg

    (37) 3 21r r0 () r

    21r (dominant term) r ( P ) r ( P ) 21r (37)

    4

  • 39

    ( ) ( ) ( ) 0,0, ijijij gAfrkr +

    = (38)

    r (38) - (T-stress) [7] 5 - [8,9] (38) 6

    ( ) ijij frk

    = (39)

    r (singular point) (39) (37) 10 [10] (singularity dominated zone) 19 (infinite body) (cylindrical coordinate, zr ) [11] 2.1

    x

    y

    z

    r

    P

    xx

    yy

    zzzxzy

    yz yx

    xy

    xz

    P()

    18

    5 1 ( o0= ) - rr 124C (biaxial stress state) 6 ( 2.8.6)

  • 40

    (37 ) (39 )

    ij

    r -1/2

    x

    19 (37)

    2.1 :

    a2

    x

    y

    r

    = 2

    3cos2

    cos54

    21 rArr

    += 2

    3cos2

    cos34

    21 rA

    += 2

    3sin2

    sin4

    21 rAr

    ( )

    =2

    3cos2

    cos124

    21 r

    Aur

    ( )

    ++=2

    3sin2

    sin124

    21 r

    Au

    a2x

    yr

    += 2

    3sin32

    sin54

    21 rBrr

    = 2

    3sin32

    sin34

    21 rB

    += 2

    3cos32

    cos4

    21 rBr

    ( )

    +=2

    3sin32

    sin124

    21 r

    Bur

    ( )

    ++=2

    3cos32

    cos124

    21 r

    Bu

    a2

    x

    yr

    + + +

    2sin

    221 = rCrz

    2cos

    221 = rCz

    2sin2

    1 Cruz =

    (shear modulus) 43 ( ) ( ) + 13

  • 41

    1 2 xyz - 2.1 [4]

    cossin2sincos 22 rrrxx += (40) cossin2cossin 22 rrryy ++= (40) ( ) ( ) 22 sincoscossin += rrrxy (40)

    20 3 xyz

    ( ) ( ) sincos dAdAdA rzzyz += ( ) ( ) sincos dAdAdA zrzxz = sincos rzzyz += (41) cossin rzzxz += (41) 2.2

    ++

    rzz

    dA+

    +xz

    yz

    dA x

    y

    () () 20 3 () () xyz

    2.2 ( xyz)

    1

    = 2

    3sin2

    sin12

    cos21 Arxx

    += 2

    3sin2

    sin12

    cos21 Aryy

    23cos

    2sin

    2cos2

    1 = Arxy

    +=2

    sin212

    cos2

    221

    Aru

    +=2

    cos212

    sin2

    221

    Arv

    (shear modulus) 43 ( ) ( ) + 13

  • 42

    2.2 ()

    2

    += 2

    3cos2

    cos22

    sin21 Brxx

    23cos

    2cos

    2sin2

    1 = Bryy

    = 2

    3sin2

    sin12

    cos21 Brxy

    ++=2

    cos212

    sin2

    221

    Bru

    =2

    sin212

    cos2

    221

    Brv

    3 2sin

    221 = rCxz

    2cos

    221 = rCyz

    2sin

    21

    Crw =

    2.4.3 2.1 2.2 1, 2 3 ( ), ( )Iij ijAr fr = (42) ( ) ( ) IIijij fr

    Br =, (42) ( ) ( ) IIIijij fr

    Cr2

    , = (42)

    (42) ( )( )

    Iij

    ij

    frr

    A,=

    ( o0= ) ( )( )00,

    Iij

    ij

    frr

    A=

    2.2 ij yy ( ) 10 =oIyyf

    ( )0,rrA yy= 2

    AA= ( )0,2 rrA yy=

    Irwin [12] A r (stress intensity factor) 1 KI

    ( )( )oyyrI rrK 0,2lim0 = (43)

  • 43

    2 3 2BB

    = 2CC

    = Irwin ( )( )oxyrII rrK 0,2lim0 = (43) ( )( )oyzrIII rrK 0,2lim0 = (43)

    KII KIII 2 3

    2.2 2.3 (singularity stress amplitude)

    2.3 ( xyz)

    1

    =2

    3sin2

    sin12

    cos2

    r

    K Ixx

    +=2

    3sin2

    sin12

    cos2

    r

    K Iyy

    23cos

    2sin

    2cos

    2

    rK I

    xy =

    ( )yyxxzz += 0== yzxz

    +=2

    sin212

    cos22

    2 rKu I

    +=2

    cos212

    sin22

    2 rKv I

    0=w

    2

    +=2

    3cos2

    cos22

    sin2

    r

    K IIxx

    23cos

    2cos

    2sin

    2

    rK II

    yy =

    =2

    3sin2

    sin12

    cos2

    r

    K IIxy

    ( )yyxxzz += 0== yzxz

    ++=2

    cos212

    sin22

    2 rKu II

    =2

    sin212

    cos22

    2 rKv II

    0=w

    3 2sin

    2

    rK III

    xz =

    2cos

    2

    rK III

    yz = 2

    sin2

    rKw III=

  • 44

    (local parameter) K 21 P p K K K

    2.5 K G .. 1957 Irwin G K K ( ) 1 a 1 xy [ 22 ()] y 00= xr 2.3 1 ( )

    xKyx Iyy 20, == (44)

    a+a [ 22()] 0=x ax = y

    xx

    yyxy

    p

    P

    aa2

    ( )K,, PafK = ( )K,, pagK =

    21 K

  • 45

    y

    x

    a

    a a

    ( )x

    Kx Iyy 2=

    y

    x

    y

    x

    ( ) ( )+ = xvxv

    y

    x( )

    22

    1 xKxv I+= +

    ()

    ()

    ()

    ()

    22 (closure stress)

    yx 0180= xr 1 2.3 ( )

    22

    1 xKxv I+= + (45)

    ( ) ( )+ = xvxv

    ( )+xv y () ( )xv -y ()

  • 46

    (44) (45) xy axx =+ xax = (45) ( )

    22

    1 xaKxv I+=+ (46)

    a a [ 22()] (closure work) Wc 7 ( ) ( )

    ( )

    ( )dxxBdvyxW

    a xv

    xvyyc

    ==+

    00,

    ( ) ( )( ) dxxdvyxBW a xv yyc

    ==+

    0 00,2

    ( ) ( ) dxxvyxBW a yyc

    ==0

    0,212

    (44) (46) dxxaKx

    KBWa

    II

    c

    +=

    0 221

    2

    dxx

    xaBKWa

    Ic +=0

    2

    41

    2sinax = ( ) ++=

    2

    0

    2 2cos14

    1 daBKW Ic

    aBKW Ic += 281

    (14) G Ba aBKaGB I += 28

    1

    7

  • 47

    28

    1IKG

    += (47)

    ( ) += 12E

    +=

    13 43

    (47)

    EKG I=

    2

    (48)

    EE = 21 =EE

    2.8.6 () BdxxaK

    xKxaK

    xKxaK

    xKaGB

    aIIIIII

    IIII

    II

    ++++=

    0 22

    2221

    2221

    2

    ++++=a

    IIIIII dxx

    xaKKKBaGB0

    222 14

    14

    ++++=

    2

    18

    18

    222IIIIII KKKaBaGB

    2

    222IIIIII K

    EK

    EKG ++= (49)

    IIIIII GGGG ++= (49)

    EKG II =

    2

    , EKG IIII =

    2

    22III

    IIIKG =

    4 [13] E1

    P

    L L

    hh

    a B

    E1

  • 48

    ( 2) (49)

    E

    KG II2

    = (E1)

    G ( 3) P (26) G () ( E2)

    ( ) xPxM21

    = 0 < x < L ( ) xPPLxM

    22= L < x < 2L

    ax 0 h a 2h 2L a U

    ( )[ ] dxEIxMU

    L

    =2

    0

    2

    2

    ( ) ( )

    +

    +

    =

    L

    L

    L

    a

    a

    dxhBE

    xPPLdx

    hBE

    xP

    dxBhE

    xP

    U2

    3

    2

    3

    2

    0 3

    2

    21212

    2

    21212

    2

    1212

    221

    2

    ( ) ( )3 3323323 332332 16 3216164 EBh aLPEBhLPEBhaLPEBhaPU +=++= (E2)

    B (26) dadU

    BG 1=

    2LLax

    M1(x) M2(x)

    E2

  • 49

    (E2) 32

    22

    169

    hEBaPG = (E3)

    (E3) (E1) 234

    3BhPaKII =

    KII 1. KII 2. P KII a 3. KII ( E)

    2.6 2.4.3 K () K K (effect of finite size) K 2a [ 23()] (finite width plate) [ 23()] (force flow line) W x y x (free edge) (gradient) K K K (geometry correction factor) K 23() aKI = 23() ( )WafaK I =

    ( )Waf

  • 50

    W2

    a2

    W2

    a2

    () () 23 K 2.4 23()

    2.4 2W 2a

    [6]

    ( )Waf Irwin

    Wa

    aW

    2tan2 5% 5.0Wa

    Brown ( ) ( ) ( )32 525.1288.0128.01 WaWaWa ++ 0.5% 7.0Wa Feddersen W

    a2

    sec 0.3% 7.0Wa 1% 8.0=Wa

    Koiter ( ) ( )( )WaWaWa

    +

    1326.05.01 2 1% Wa

    Tada ( ) ( ) ( )( )WaWaWaWa

    +

    1044.0370.05.01 32 0.3% Wa

    Tada ( ) ( )[ ]WaWaWa

    2sec06.0025.01 42 + 0.1% Wa

  • 51

    2.7 (superposition principle) K K K () K K K K ( [ (49)] ) 24 K 4321 ,,, TTTT 43214321 TITITITITTTTI KKKKK +++=+++ (50) 43214321 TIITIITIITIITTTTII KKKKK +++=+++ (50) 43214321 TIIITIIITIIITIIITTTTIII KKKKK +++=+++ (50)

    4321 TTTTjK +++ K j ),,( IIIIIIj = 4321 TTTT +++ iTjK K j ),,( IIIIIIj = iT (i = 1, 2, 3, 4)

    1T

    2T

    4T

    3T

    4321 TTTTjK

    +++

    1T

    1TjK

    2T

    2TjK

    3T

    3TjK

    4T

    4TjK

    +

    + +

    =

    24 K

  • 52

    25 P M ( 1) K P M totalIK K tensionIK K bendingIK

    bendingItensionItotalI KKK +=

    +

    =

    Waf

    WBWM

    Waf

    WBPK bt

    totalI

    tf bf

    K 26 26 () P K 1 26() 1) P p 2) P p KI 8 KI 26() KI 26()

    pIPI KK ,, = (51)

    PM

    W2

    B

    a2

    25 P M

    8

  • 53

    P

    p

    = +

    () () ()

    P

    p

    =p

    26

    K 26() [ 27()] p [ 27()] K () p K K 2.8.3 2.8.4 K (concentrated load per unit thickness) P K p 2.8.3

    P

    p

    P

    p

    P

    () () ()

    27

  • 54

    5 E1 P AP = ; A 2 a P K D

    P/2

    P/2

    E1 P

    E1 E2 ( A) B A B ( C) P - ( D) DICIBIAI KKKK +=+ A B ( )DICIAI KKK += 21

    2.0Da [18] () E3 C D a2 aDa 22 += K C D

  • 55

    WaaK CI 2

    sec=

    Wa

    Wa

    Wa

    Wa

    aPK DI

    +

    =

    1

    16.0957.05.0132

    P

    + = +

    P

    P

    Pa aD

    A B C D E2

    P

    P

    ) D) C

    a aD

    a aD

    P

    P

    2W 2W2W 2W

    a2a2

    E3

  • 56

    2.8 K K K 4

    1) (analytical approach) (stress function) (Greens function) (weight function) (stress concentration) (body force) (Laurent s series)

    2) (numerical approach) (finite element) (boundary element) (boundary collocation)

    3) (experimental approach) (compliance) (photoelasticity) (strain gage)

    4) (bounding) (compounding)

    K ( ) K K K 6, 14, 15 K

    2.8.1

    K (43) Westergaard Muskhelishvili William

    2.8.1.1 Westergaard Westergaard

    { } { }ZyZ ImRe += (52)

    = ZdzZ , dzZZ = iyxz += , 1=i

  • 57

    [ (52)] [3]

    { } { }ZyZxx = ImRe (53) { } { }ZyZyy += ImRe (53) { }Zyxy = Re (53)

    dzdZZ =

    [3] { } { } = ZyZu ImRe2 121 (54) { } { } += ZyZv ReIm2 121 (54) K [3]

    =

    III

    II

    I

    zz

    III

    II

    I

    ZZZ

    zzKKK

    00

    lim2 (55)

    III ZZ , IIIZ Westergaard 1, 2 3 0z

    6 [3] Westergaard 2a P b ( E1)

    ( ) 2222

    azba

    bzPZI

    =

    KI

    x

    y

    a

    P

    Pa

    b

    E1 2a P

  • 58

    ax = az = az += ( )[ ] ( ) 22

    22

    aaba

    baPZI +

    +=

    (55) KI ax =

    ( ) ( )[ ] ( )

    +

    +== 2222

    0lim2

    aaba

    baPaxK I (E1)

    0/0

    ( ) 221

    aa + (E1) ( ) K+=+ 2322 24

    1211

    aaaa

    (E1) ( ) ( )[ ]

    ++

    == K 2322

    0 24

    121lim2

    aababaPaxK I

    ( ) ( )[ ] ( )[ ]

    ++

    +

    +== K

    23

    22

    0

    22

    0 24

    1lim2

    lim2aba

    baPaba

    baPaxK I

    ( ) ( )[ ] 021lim2

    22

    0+

    +

    == ababaPaxK I

    ( )baba

    aPaxKI

    +==

    KI ax = ax = P bx =

    ( )baba

    aPaxKI +

    ==

    7 [3] Westergaard 2a W ( E1)

    =

    Wa

    Wz

    Wz

    ZI

    22 sinsin

    sin

  • 59

    KI

    x

    y

    a2

    W W

    E1 2a

    ax = az = az +=

    +

    +=

    Wa

    Wa

    W

    Wa

    WZI

    22 sinsin

    sin

    (55) 0/0

    +W

    aW

    aW

    22 sinsin1

    +W

    aW

    aW

    22 sinsin1

    Wa

    Wa

    W cossin2

    1

    K+

    Wa

    Wa

    Wa

    Wa

    W

    Wa

    Wa

    W

    cossincossin24

    sincos 22

    (E1)

    (E1)

  • 60

    =

    =

    Wa

    WWa

    Wa

    W

    Wa

    Z I

    tan

    2cossin2

    sin

    (55) KI ax =

    = Wa

    W

    K I

    tan2

    lim20

    =W

    aWKI tan

    =W

    aa

    WaKI

    tan

    2.8.1.2 Muskhelishvili Muskhelishvili [16]

    ( ) ( )[ ]zzz += Re (56)

    ( ){ } ( ){ } ( ){ }zzyzx ReImRe ++= (56)

    ( )z ( )z z ( iyxz += )

    Muskhelishvili [16]

    ( ) ( ) ( ){ }zzzi yyxx =+=+ Re422 (57) ( ) ( )zzzi xyxxyy +=+ 222 (57) ( ) ( ) ( )[ ]zzzzivu =+ 21 (57) K ( )( )zzziKK

    zzIII = 00lim22 (58)

    2.8.1.3 Williams William ( 1 2)

    ( ) fr 1+= (59)

  • 61

    William (59) 2

    ( ) ( ) ( ) ( )[ ] 1sin1cos1sin1cos 43211 +++++= + CCCCr (60)

    321 ,, CCC 4C

    (60) 0= 0= r =

    K 1 2

    2.8.2 ( 28) 1

    K+

    +

    = 23sin

    2sin1

    2cos

    223cos

    22

    rK

    rrK II

    xx (61) K+

    ++

    = 2

    3sin2

    sin12

    cos22

    3cos22

    r

    Krr

    K IIyy (61)

    K++

    = 23cos

    2cos

    2sin

    223sin

    22

    rK

    rrK II

    xy (61)

    2=r 0=

    ( ) IIIyyoyy KKK 20,2 max =+=

    KI

    ( )2

    lim max0

    yyIK = (62)

    +

    /2

    r

    x

    y

    28

  • 62

    ( 28) K 2 3

    ( ) max0lim xyIIK = (62) ( ) max0lim yzIIIK = (62)

    8 [17] E1 P KI y ( )

    aP

    yy 2

    max=

    x

    y

    b2

    a2

    P

    P

    E1 P (62) KI

    2

    2

    lim0

    = a

    P

    KI

    a

    PKI =

    9 [17] E1 2b P KI

    ( )

    bbb

    bb

    bP

    yy

    +

    +

    +

    =arctan1

    12

    2max

  • 63

    x

    y

    P

    P

    b2

    E1 P

    (62)

    2

    arctan1

    12

    2

    lim0

    +

    +

    +

    =

    bbb

    bb

    bP

    KI

    bbb

    b

    bPKI

    +

    +

    +

    = arctan1

    1lim

    2 0

    +

    = 1arctan1

    lim2

    2

    0

    bbb

    b

    bPKI

    bbbb

    bb

    PKIarctanarctan

    lim2 0 ++

    +=

    ( ) ( ) bP

    bb

    bPKI

    =

    +++=

    22000

    2

  • 64

    2.8.3 K p(x) (concentrated load) K

    ( )axGa

    PK ,= (63)

    P () x G(x,a) (, )

    p(x) K

    ( ) ( )= dxaxGxpaK ,1 (64)

    P K

    ( )1 ( , )K P x G x a dxa

    = (64)

    b ( )P x bx P bx = (64)

    ( )abGa

    PK ,=

    K (64) (63) G(x,a)

    10 K 2a P, Q T x ( E1) K A [6]

    xaxa

    TQP

    aKKK

    AIII

    II

    I

    +

    =

    1

    K B [6]

    xaxa

    TQP

    aKKK

    BIII

    II

    I

    +

    =

    1

    P

    P

    A B x

    yx

    2a

    Q

    Q

    T

    T

    E1

    2a

  • 65

    K (63) A B ( )

    xaxaaxGA +

    =,

    ( )xaxaaxGB

    +=,

    11 KI x E1 KI ( W = 100 . a = 50 .)

    ) p0 ) p(x) p0 x = 0 x = a ) P (x = 0)

    KI ( E1) [6]

    ( )( )

    ( )( )

    ( )( ) ( ) ( )( )[ ]

    +

    +

    =

    Waaxaxax

    ax

    Wa

    ax

    Wa

    axa

    PK I

    1176.183.01

    30.030.1

    1

    28.535.4

    1

    152.32

    2

    23

    21

    23

    W

    y

    x

    a

    P

    Px

    E1

  • 66

    KI (63)

    ( ) ( )( )

    ( )( )

    ( )( ) ( ) ( )( )[ ]

    +

    +

    =

    Waaxaxax

    ax

    Wa

    ax

    Wa

    axaxG

    1176.183.01

    30.030.1

    1

    28.535.4

    1

    152.32,

    2

    23

    21

    23

    ) p0 : KI ( )=

    a

    I dxaxGpaK

    00 ,

    1

    mpKI 0979.0= p0 Pa

    ) p0 : KI ( ) =

    a

    I dxaxGaxp

    aK

    00 ,1

    1

    mpKI 0509.0= p0 Pa

    ) P : KI ( ) ( )=

    a

    I dxaxGPaK

    0

    ,01

    ( )a

    aPGKI ,0=

    m

    PKI1571.24=

    P N/m

    2.8.4 2.7 ( 26) K K yy(x),

  • 67

    yx(x), yz(x) 1, 2 3 ( 29) K

    ( ) ( )dxaxmxK Ia

    yyI ,= (65) ( ) ( )dxaxmxK II

    ayxII ,= (65)

    ( ) ( )dxaxmxK IIIa

    yzIII ,= (65)

    mI(x), mII(x) mIII(x) 1, 2 3 ( ) ( )

    aaxv

    KEaxm

    II

    = ,2

    , (66) ( ) ( )

    aaxu

    KEaxm

    IIII

    = ,2

    , (66) ( ) ( )

    aaxw

    Kaxm

    IIIIII

    = ,22, (66)

    u(x,a), v(x,a) w(x,a) x, y z

    Bueckner [19] Paris [20] K 30 KI KI v(x,a) p0 (66) KI p(x) p(x) (65)

    x

    y

    a

    yy(x) yx(x)

    + + + +

    +

    yz(x)

    29

  • 68

    p0

    mI(x,a)

    KI v(x,a)

    a

    p(x)

    a

    KI

    ( ) ( )dxaxmxpK Ia

    I ,0=

    30 KI

    12 [16] K 2a P ( E1)

    x

    y

    a

    P

    Pa

    E1

    ( E2) 26 E2() [ E2()] KI v(x,a) aK I = (E1) ( ) 222, xa

    Eaxv = (E2)

    (E1) (E2) (66)

    ( ) ( ) ( )222222, xa axaE aaEaxmI =

    =

    (E3)

    KI E1 E3 KI

    ( ) =d

    dI dxxa

    apK 22 (E4)

  • 69

    x

    y

    aa

    x

    y

    aa

    () ()

    E2 () ()

    =adapKI arcsin2

    P p

    ( )dpP 2= KI E1

    aP

    ada

    dPK

    dI =

    = arcsin22lim0

    Dirac delta function (E4) ( ) ( )2 2

    a

    Ia

    aK P x dxa x

    =

    ( ) aPa aPK =

    = 22 0

    x

    y

    a

    p

    ad d

    E3

  • 70

    (66) v(x,a) 2 1) [21-23] 2) K [19,24,25] K 2.8.4.2

    2.8.4.1 K KI,ref (66) ( ) ( )

    aaxv

    KEaxm

    refII

    = ,2

    ,,

    (65) K

    ( )dxa

    axvKEK

    a refIrefI = ,2 ,,

    KI,ref x

    ( )dxa

    axvEKa

    refI = ,22,

    (profile) [21-23] 2 - y [ 31()]

    ( ) 0,0

    =

    =xxaxv (67)

    - [ 31()] ( ) 0,

    02

    2

    =

    =xxaxv (67)

    Petroski Achenbach [21] 1

  • 71

    ( ) ( )=

    + =0

    21

    21

    ,i

    ii

    i xaaCaxv (68)

    Ci

    v(x,a)

    ( ) ( ) ( )232112121

    0, xaaCxaaCaxv += (69)

    y

    x

    y

    xP P

    31

    () )

    13 2a Petroski Achenbach

    ( E2 12) KI

    aK I = (E1) (69) ( ) ( ) ( )23211212

    1

    0, xaaCxaaCaxv += (E2)

    a

    ( )

    +

    +

    =

    23

    21

    1

    21

    210 12

    1123

    2

    1

    12

    1,ax

    axCa

    x

    ax

    Ca

    axv

  • 72

    ax

    ( ) ( ) ( ) ( )2312110210 12123

    21

    2,

    ++=

    CCCCa

    axv (E3)

    (E1) (E3) (66)

    ( ) ( ) ( ) ( )

    ++= 231211021

    0 12

    123

    21

    22,

    CCCCa

    EaxmI (E4)

    (E1) (E4) (65)

    ( ) ( ) ( ) ( ) ( )

    ++= 11212321222

    0

    1

    23

    121

    102

    10 daCCCC

    aEa

    ECC =+ 10 5

    434 (E5)

    (E2) (67)

    03 10 =+ CC (E6) (E5) (E6)

    EC

    1615

    0 = EC

    165

    1 = (E7)

    (E7) (E4)

    ( ) ( ) ( )

    += 2321 1

    6451

    64151, aaxmI

    12 ax

    ( ) ( )21212 111,

    =a

    axmEx

    = ( ) ( )( ) %100,,,

    12

    12 axm

    axmaxm

    Ex

    Ex (E8)

    E1 3

  • 73

    ( ) aaxmI ,

    0 0.2 0.4 0.6 0.8 1.0

    1.00.75

    1.5

    2.0

    %

    13

    12

    (E8)

    0.5

    0

    1.0

    1.5

    2.0

    E1 ( 12) ( 13)

    14 2 E1 KI Bowie

    1, 3

    2

    I BowieFK a FaF

    r

    = + +

    F1 = 0.6865, F2 = 0.2772 F3 = 0.9439 KI 2.3

    2r aa

    E1 2

  • 74

    2.3 y

    +=2

    cos212

    sin22

    2 rKv I (E1)

    E1 o180= xar = ( x-y ) ( ) += 12E ( ) ( ) += 13

    24xa

    EKv I =

    KI Bowie (66) ( )

    = 242,

    ,

    ,

    xaE

    KaK

    Eaxm BowieIBowieI

    ( ) ( ) ( )( )

    rraF

    FK

    xaaxa

    xaa

    axmBowieI

    2

    2

    1

    ,

    22221,

    ++=

    KI (66) =

    a

    II dxaxmxpK0

    ),()(2

    ++

    ++=

    42

    322

    )(xr

    rxr

    rxp x ()

    KI ( ) a E2 Bowie 2=ra 12 1) K 2) K ( 1 ) Petroski Achenbach

  • 75

    aKI

    raa

    K BowieI

    ,

    0 0.5 1 1.5 21

    1.5

    2

    2.5

    3 KI

    E2 KI Bowie

    2.8.4.2 K Glinka et al. [19, 24, 25] 1

    ( ) ( )

    +

    +

    +=23

    3221

    1 111122,

    axM

    axM

    axM

    xaaxmI (70)

    M1, M2, M3

    (semi-elliptical surface crack) (corner crack) 32 ( A)

    ( ) ( )

    +

    +

    +=23

    3221

    1, 111122,

    axM

    axM

    axM

    xaaxm AAAAI (71)

    M1A, M2A, M3A ( B)

  • 76

    ( )

    +

    +

    += 23

    3221

    1, 12,

    axM

    axM

    axM

    xaxm BBBBI (71)

    M1B, M2B, M3B (70) (71) 3 K 3 Shen et al.[24, 25] [ (67)] 2 (66)

    ( ) ( )

    =

    a

    axvxK

    Ex

    axm

    I

    I ,2

    ,

    ( )

    =

    xaxv

    aKE

    I

    ,2

    67() ( ) 0,

    0

    =

    =xI

    xaxm (72)

    67()

    ( ) 0,0

    2

    2

    =

    =x

    I

    xaxm (72)

    2c aB

    B Ax

    y

    z

    c aB A

    x

    y

    z

    t t

    () ()

    32

  • 77

    [22] K [24] (closed form) K 9 (residual stress) ryy (butt weld) 33 [26]

    2

    22

    41

    = l

    xryy el

    xA

    A l 4~6 [26]

    x

    ryy

    y

    33

    15 [24] K 2a 2 1) 0 [ E1()]

    aK I 0= 2) [ E1()] ( ) 210 = aK I

    9 Numerical Methods for Engineers Chapra, S.C., Canale, R.P McGraw-Hill

  • 78

    x

    y

    x

    y0 0

    () ()

    E1 K E1() E1()

    ( ) 01 =xp (E1) ( )

    =

    ax

    xp 102 (E2)

    (70) KI (65)

    ( ) dxaxM

    axM

    axM

    xaa

    a

    +

    +

    += 23

    3221

    10

    00 111122

    (E3)

    ( ) dxaxM

    axM

    axM

    xaax

    aa

    +

    +

    +

    =

    2

    3

    3221

    10

    00 111122121 (E4)

    (72)

    ( ) 0111122

    0

    23

    3221

    1 =

    +

    +

    +

    =xaxM

    axM

    axM

    xax (E5)

    (E3) (E4) (E5)

    221

    322 321

    =+++ MMM

    2

    231

    52

    21

    32

    321=+++ MMM

    021 32 = MM

  • 79

    M1, M2, M3

    1685.01 =M 4730.02 =M 7365.03 =M

    (70) 2a

    2.8.5 K ANSYSTM (routine) K K (node) K K K [27]

    1) (displacement extrapolation method) 2) G 3) J- ( 3)

    () K (extrapolation) K ( 0=r ) a aa + (18) G (49) K (closed path) J - J- K K 3.2.1 [28,29] (KI KII)

  • 80

    2.8.5.1 K 2.3 = y 1 x 2

    22

    1 rKv I+== (73)

    221 rKu II

    +== (73) (73) K

    += =

    vr

    KrI

    21

    2lim0

    (74)

    += =

    ur

    KrII

    21

    2lim0

    (74) (74) K [30] sin(x)/x x 34 10 x 5x10-6

    1.0000000002

    1.0000000000

    0.9999999998

    0.9999999996

    0.999999999510-7 10-6 10-5 10-4

    x

    xxsin

    1sinlim0

    = xx

    x

    34 sin(x)/x

    10 MathCadTM

  • 81

    2.8.5.2 K (74) K 21r 3

    1 y [28]

    ( ) ( )( )

    ++

    ++

    ++=

    2sin

    23sin

    3121

    sin312

    3sin2

    sin1224

    1

    23

    2

    1

    rE

    A

    rE

    ArE

    Kv I (75)

    = (75) y

    ( )( ) ( )( ) 232 11322

    211 r

    EAr

    EKv I

    ++++==

    (76)

    ( )( ) rAvrEK I 2

    *

    322

    11

    +++= =

    ( ) rAvrK I 2* 322

    12

    ++= = (77)

    KI* KI r

    KI* r (77) r KI (77) ( 35)

    =;r

    r

    *IK

    ( )aKI

    a

    35 KI

  • 82

    K [31] K ( 4 ) (crack element) (crack-tip element) () 36 Byskov [32] Barsoum [33] 8 37() - 1/4 37() - (singularity isoparametric element) - 37 8 38() ( 1, 8 7) 37() 1, 8 7 r-1 (perfectly plastic) 6 38() K K 39 A B y A B r = L/4 r = L (76)

    ( )( ) ( )( ) 232 11121211

    41 L

    EAL

    EKv IA

    ++++=

    ( )( ) ( )( ) 232 1132211

    21 L

    EAL

    EKv IB

    ++++=

    A2 KI

    ( )( ) ( )BAI vvLEK ++= 8

    2113

    (78)

  • 83

    1

    2

    3

    4

    36 Byskov

    4LL

    1 2 3

    4

    567

    8

    L

    1 2 3

    4

    567

    8

    () 8 () 8

    37

    4L

    L

    1,8,7

    2

    3

    4

    5

    6

    4L

    L

    12

    3

    4

    5

    6

    () 8 () 6

    38

  • 84

    =

    =

    AB

    CD

    0.25LL

    39 6

    3 x KII

    ( )( ) ( )BAII uuLEK ++= 8

    2113

    (78)

    uA uB x A B

    ( = ) ( = ) K 1 2 [34] ( )( ) ( ) ( )

    ++= DBCAI vvvvL

    EK2142

    113

    (79)

    ( )( ) ( ) ( )

    ++= DBCAII uuuuLEK

    2142

    113

    (79)

    16 [29] KI (single edge notch tension, SENT) E1 E1 E = 210 GPa, = 0.3

    E1 (1)

    (.)

    (.) A 0.04 6.91410-3 B 0.16 1.38810-2

    (1) 39

  • 85

    MPa200=

    h = 50 .

    W = 50 .

    a = 25 .

    E1

    == 43 1.8 L = 0.16 . (78)

    ( )( ) ( )5639

    10388.110914.681016.0

    218.13.013

    10210 ++

    = IK mMPaKI 89.157=

    K H W 11

    23

    1

    ,

    =

    Wa

    WH

    WaF

    aKI

    1=WH 5.0=Wa 9989.0=F mMPaK I 36.158= 0.3

    K

    11 Fett, T. Stress intensity factors for edge-cracked plates under arbitrary loading. Fatigue and Fracture of Engineering Material and Structures, Vol. 22, p.301-305. Boundary collocation K

  • 86

    2.8.6 (bounding method) [35,36] (upper bound) (lower bound) K (integrand) (63) K p(x)

    2.8.6.1 K 40() p(x) 2 ( 40()) pmean p(x) pmean () (63) ( ) ( )=

    a

    dxaxGxpa

    K0

    ,1 (63)

    ( ) ( )( ) ( ) ( )( ) ( )

    ++= a

    bmean

    b

    mean

    a

    mean dxaxGpxpadxaxGpxp

    adxaxGp

    aK ,1,1,1

    00

    b pmean p(b)

    ( )dxxpa

    pa

    mean =0

    1 (80)

    tippx

    y

    ( )xp

    x

    y

    a

    meanp2

    1b

    a

    ( )xp

    ) )

    40 K

  • 87

    40() ( 2) p(x) ( 1) K KUpper ( )=

    amean

    Upper dxaxGapK

    0

    , (81) 2.8.6.2 K 41() p(x) 2 [ 41()] ptip p(a) p(x) ptip (63) ( ) ( )( ) ( ) += a tipa tip dxaxGpxpadxaxGpaK 00 ,

    1,1

    ( )( ) ( ) ( )( ) ( ) > a tipa tip dxaGpxpadxaxGpxpa 00 ,0

    1,1 G(0,a) x ( )( ) ( ) ( ) ( )

    =

    a

    tip

    aa

    tip dxpdxxpaaGdxaGpxp

    a 000

    ,0,01

    ( ) ( )

    =

    a

    tipapdxxpaaG

    0

    ,0

    tippx

    y

    a

    ( )xp

    x

    y

    3

    a

    tipp

    ( )xp

    ) )

    41 K

  • 88

    K KLower

    ( ) ( ) ( )

    += apdxxpa

    aGdxaxGpa

    K tipaa

    tipLower00

    ,0,1 (82)

    (81) (82)

    ( ) ( ) lpBBKapBpB meanmeantip 2121 +

  • 89

    17 K 2a 2W ( 23())

    E1 A ( B)

    aK =0

    2a

    2W

    2a

    2a

    A B

    2a

    K0Kreq

    + +

    K1 K2

    A B

    W-a W-a

    A B A B

    E1 2 A [6]

    +

    +

    = 0003.10366.04782.07089.055.0

    234

    Wa

    Wa

    Wa

    WaaK A

    0003.10366.04782.07089.0550.0234

    10

    +

    +

    =Wa

    Wa

    Wa

    WaQ

    KK A (E1)

    3 A K0 [6]

    004.12803.0568.22279.50317.4234

    20

    +

    +

    =Wa

    Wa

    Wa

    WaQ

    KK A (E2)

    (E1) (E2) (85)

    +

    +

    = 004.1317.0046.3937.5582.4

    234

    Wa

    Wa

    Wa

    WaaK req

  • 90

    Fedderson ( 2.4) E2 ( 10 a/W = 0.7)

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    0.90 0.2 0.4 0.6 0.8 W

    a

    aK

    Fedderson

    Compounding

    E2 K Fedderson

    2.8.8 K CLL G [ (24) (29)] G K 1 P K CLL

    da

    dCB

    EPK LLI 2= (86)

    EE = ( )21 = EE CLL 1) 2) P

    LL

  • 91

    3) P-LL () 42()

    4) - 42() 5) (86) KI

    (86) KI 0= 3.0= KI 5 KI

    2.9 2.4.2 - (yield strength) (plastic zone) (yield zone) K () 21r 21r K , P

    , LL

    1a 2a

    3a

    4a

    LLC1

    1

    , CLL

    , a1a 2a 3a 4a

    () ()

    42

  • 92

    K ( 4) ( 5 6) Irwin K K a K aa + a ( ) a LEFM (small scale yielding, SSY) 21r K ( 3)

    2.9.1 B 43 - zz z 43 ( z yy ) (zz ) [38] ( 44 )

    2

    5.2,,,

    Y

    IKhbaB (87) B a b h ( b )

  • 93

    z

    xy

    B

    zz

    xxyy

    zz

    Bz

    z

    0.50

    43 zz z [7]

    a b

    Bh

    44

    2.9.2 Von-Mises

    ( ) ( ) ( ) ( ) 2222222 26 Yxzyzxyxxzzzzyyyyxx =+++++ (88)

    Y ( = 0o) 1

  • 94

    r

    KIxx 2= , xxyy = , 0=zz , 0=== xzyzxy (89)

    rKI

    xx 2= , xxyy = , ( )yyxxzz += , 0=== xzyzxy (89) (89) (89) (88) yy y Yyy = (90) Yyy 2441

    1

    +=

    = 0.33 Yyy 3 (90) (90) (90) ( y) (90) (plastic constraint factor, PCF) PCF xx (89) PCF 3 [39] 68.122 = 3

    2.9.3 2 Irwin (strip yield model) 2.9.3.1 Irwin Irwin 12 ( o0= ) 1 ry ( A 45)

    Yy

    I

    rK =2

    ry 2

    21

    =

    Y

    Iy

    Kr (91)

    12 3

  • 95

    (91) - Irwin AA ( 46) rp 46 ==

    yy rI

    r

    yypY BdrrKBdrBr

    00 2

    B yy

    r

    rKI

    yy 2= ( )

    yr

    Y A

    45 ()

    yy

    r

    pr

    Y AA

    yr

    -

    46

  • 96

    rp [ (91)] y

    Y

    Ip r

    Kr 212

    =

    = (92)

    PCF 3

    2

    31

    =

    Y

    Ip

    Kr (92) 2 3 (shear yield stress) Y Y 2

    21

    =

    Y

    IIp

    Kr (93)

    2

    31

    =

    Y

    IIp

    Kr (93)

    3 2

    1

    =

    Y

    IIIp

    Kr (94)

    2

    31

    =

    Y

    IIIp

    Kr (94)

    - a a ry ( 47) (effective crack length) aeff

    yeff raa += (95)

    (effective stress intensity factor) Keff

    ( )effeff aKK = (96)

    ry K Keff ry Keff (iteration)

    1. K a Kold 2. ry (91) (92)

    3. aeff (95) 4. Keff (96) Knew

  • 97

    5. Knew Kold - Knew Kold Keff = Knew - Kold Knew 2-5

    yy

    r

    Y AA

    yr

    -

    O O

    a+ry

    yy

    47 Irwin

    18 Keff 2a aK =

    (96) ( )yeff raK += (91)

    +=

    2

    21

    Y

    effeff

    KaK

    Keff 2211

    =

    Y

    effaK

  • 98

    19 Keff 2a Irwin ( 2.4 ) 2a 2 . 40 . 100 250 MPa W 150 . MPaY 420=

    2.4

    =W

    aa

    WaK tan

    +

    +

    +=

    2

    2

    2

    21tan

    212

    1

    Y

    eff

    Y

    effY

    effeff

    Ka

    WKa

    WKaK

    i j

    +

    +

    +=+

    2

    ,2

    ,

    2

    ,1, 2

    1tan

    212

    1

    Y

    jieffi

    Y

    jieffi

    Y

    jieffijieff

    Ka

    WKa

    WKaK

    =Wa

    aWaK i

    iiieff

    tan0,

    ) 100 MPa K 4 25 E1()

    2a () 1 2 3 4 5

    2 5.606 5.685 5.687 5.687 5.687 6 9.723 9.861 9.865 9.865 9.865 14 14.951 15.172 15.179 15.179 15.179 22 18.974 19.277 19.286 19.287 19.287 30 22.573 22.975 22.990 22.990 22.990 40 26.954 27.541 27.567 27.568 27.568

  • 99

    ) 250 MPa 60 E1()

    2a () 1 2 3 4 5 6 7 8

    2 14.015 15.207 15.409 15.444 15.451 15.452 15.452 15.452 6 24.306 26.393 26.750 26.813 26.825 26.827 26.827 26.827 14 37.377 40.735 41.342 41.457 41.479 41.483 41.484 41.484 22 47.436 52.074 53.003 53.200 53.241 53.250 53.252 53.253 30 56.432 62.702 64.178 64.548 64.643 64.667 64.674 64.675 40 67.386 76.844 79.875 80.959 81.360 81.511 81.567 81.589

    5

    10

    25

    20

    15

    10 20 30 400 2a (.)

    ( )mMPaKeff

    0

    20

    80

    60

    40

    10 20 30 400

    ( )mMPaKeff

    2a (.)

    () 100 MPa () 250 MPa

    E1 K

  • 100

    2.9.3.2 Dugdale [7] ( 48) (strip yield) () Dugdale (strip yield model) Dugdale 2 1) 2(a+) 49() 2) 2(a+) (closure stress) Y 49() () K 49() K 49() K 49() ( ) += aK (97)

    K 47() K P x ( 50) [7]

    ( )( )( )

    ( )( )

    +++++

    +++= xa

    xaxaxa

    aPKP

    (98)

    ( )+a2a2

    48 Dugdale

  • 101

    = +( )+a2

    a2( )+a2 ( )+a2

    Y

    () () ()

    49 Dugdale - () 2a () 2(a+) () () 2(a+) ()

    x

    PP

    PP

    ( )+a2

    50

    x

    dxP Y= 49() ( ) dxxa

    xaxaxa

    aK

    a

    a

    Yclosure

    +

    +++++

    +++

    =

    ++=

    a

    aaK Yclosure arccos2 (99)

  • 102

    0=+ closureKK

    (97) (99)

    =+ Ya

    a

    2cos (100)

    = 1

    2sec

    Ya

    (101)

    (100)

    ...2!6

    12!4

    12!2

    11642

    +

    +

    =+ YYYa

    a

    2

    2

    22

    88

    ==

    Y

    I

    Y

    Ka

    (101)

    Y

  • 103

    SSY LEFM Hauf [8] LEFM SSY 3 (middle tension plate, MT) (single-edge notch tension, SENT) (double edge notch tension, DENT) 52 a/W 0.2, 0.35 0.5 LL 1 LEFM SSY 2.5 (limit load)15 a/W () SSY LEFM LEFM SSY LEFM [38] ( )

    24,,

    Y

    IKhaba (102)

    (102) 44

    -

    LL

    LEFM

    SSY

    51 - LEFM, SSY, -

    15

  • 104

    2a

    2W

    a

    W 2W

    a a

    () MT () SENT () DENT

    52

    2.5 LEFM SSY a/W

    0.2 0.35 0.5

    LEFM SSY LEFM SSY LEFM SSY MT 60(1) 65 40 50 30 40 SENT 75 85 40 50 20 35 DENT 70 85 50 65 35 50

    (1) 8

    2.11 (crack tip opening displacement, CTOD) CTOD (large-scale yielding) LEFM SSY K CTOD - 3 ( ) 53 CTOD 16 CTOD Irwin 16 1 2 (crack tip sliding distance, CTSD)

  • 105

    Dugdale CTOD

    2.11.1 CTOD Irwin y ( 2.3)

    +=2

    cos212

    sin22

    2 rKv I

    54 yrr = =

    221 y

    Ir

    Kv += CTOD 54

    2

    12 yIr

    KvCTOD +== (103)

    a

    CTOD

    53 CTOD

    vCTOD

    y

    x

    a yr

    54 CTOD Irwin

  • 106

    (91) (103)

    E

    KY

    I

    24= (104)

    (48)

    Y

    IG

    4= (105)

    2.11.2 CTOD Burdekin Stone [40] Westergaard 55() 55() 55() CTOD

    22 +a 55()

    ( )22

    +=

    az

    zZ (106)

    22 +a Y ax = += ax 55()

    P x 22 +a ( 50) ax = += ax

    ( )( ) ( )dxxzazxaz

    Za

    a

    Y+

    ++=

    2222

    222

    ( )+a2

    Y

    a2

    ( )+a2

    +

    ( )+a2

    Y

    a2

    =

    () () ()

    55

  • 107

    ( )

    ( )( )

    ++

    ++=

    22

    22

    22cotarccos2

    aaaz

    zaarc

    aa

    az

    zZ Y

    (107)

    (106) (107) 55()

    ( ) ( )( )

    ( )

    ++

    +++

    +=

    22

    22

    2222cotarccos2

    aaaz

    zaarc

    aa

    az

    z

    az

    zZ Ytotal

    (108) (53) ()

    { } { }ZyZxx = ImRe { } { }ZyZyy += ImRe { }Zyxy = Re

    ( 0=y ) { }Zyyxx Re== 0=xy += ax (108)

    ( ) ( )

    ++=

    +

    aa

    az

    z

    az

    z Y arccos22222

    +=

    aa

    Yarccos2

    =+ Ya

    a

    2cos

    + aak

    ( )

    += 2

    22

    1cot2

    kaz

    zkarcZZ Ytotal

    (109)

    y 54()

    { } ( ) { }[ ]ZyZE

    v Re1Im21 += = ZdzZ

  • 108

    ( 0=y ) ZE

    v Im2= (110)

    (109) [ ]212 azZ Y = (111)

    +=

    11

    1cot

    2

    2

    1

    k

    za

    arc

    ( )( )

    ++=

    22

    22

    2 cot aaazarc

    (111) (110)

    ( ) ( )

    +

    +

    +=

    2

    221

    2

    221

    1coth

    11coth4

    kza

    zkz

    kza

    aa

    Ev Y

    CTOD 56

    == = kEavCTOD Yyaz

    1ln82lim 0

    +

    +

    = ...

    2121

    2218

    42

    YY

    Y

    Ea

    +

    += ...

    2611

    22

    YY

    I

    EK

    (112)

    CLCLa

    CTOD

    56 CTOD

  • 109

    SSY Y (112)

    Y

    I

    Y

    I GE

    K ==

    2

    (113)

    (104) (113) CTOD Irwin Dugdale

    Em

    KY

    I

    = 2

    (114)

    m 2.12

    ( 2.2) Griffith ( 2.3) K ( 2.4) Irwin ( 2.5) Irwin K K ( 4)

    K ; ; K ( 2.6) ( 2.7) 2 K K ( (50))

  • 110

    ( (51)) K ( 2.8.1 - 2.8.4) ( 2.8.5) ( 2.8.6 - 2.8.7) ( 2.8.8)

    2 Irwin Dugdale ( (104) (113)) - () Irwin K LEFM LEFM SSY (2.9.3) LEFM SSY ( (102) 2.10)

    CTOD ( 2.11) CTOD K 2.13 [1] Timoshenko, S.P. History of strength of materials, McGraw-Hill, 1953. [2] Parton V.Z. Fracture mechanics: From theory to practice, Gordon and Breach Science

    Publisher, 1992. [3] Gdoutos, E.E. Fracture mechanics : An introduction, Kluwer Academic Publishers, 1993. [4] Timoshenko, S.P., and Goodier, J.N. Theory of elasticity, 3rded, McGraw-Hill International

    Edition, 1970. [5] Daoud, O.E.K., Cartwright, D.J., and Carney, M. Strain energy release rate for a single edge-

    cracked circular bar in tension. J. of Strain Analysis, Vol. 13 No. 2 1978 p.83-89. [6] Tada, H., Paris, P.C., and Irwin, G.R. The stress analysis of cracks handbook. Del Research

    Corporation, 1973. [7] Anderson,T.L. Fracture mechanics: Fundamental and application, 2nd ed., CRC Press 1995.

  • 111

    [8] Hauf, D.E. Modified effective crack-length formulation in elastic-plastic fracture mechanics. BSc.Thesis. MIT, 1992.

    [9] Wang, X. Elastic T-stress for cracks in test specimens subjected to non-uniform stress distributions. Eng. Frac. Mech., Vol. 69, 2002, pp.1339-1352.

    [10] Suresh, S. Fatigue of materials. Cambridge University Press, UK, 1991. [11] Hellan, K. Introduction to fracture mechanics. McGraw-Hill, 1984. [12] Irwin, G.R. Analysis of stresses and strains near the end of a crack transversing a plate. Trans

    ASME J. of App. Mech., Vol. 24, No. 3, 1957, pp.361-364. [13] Wang, C.H. Introduction to fracture mechanics. DSTO-GD-0103, 1996. [14] Rooke, D.P., and Cartwright, D.J. Compendium of stress intensity factors, Her Majestys

    Stationery Office, London, 1974. [15] Murakami, Y. Stress intensity factor handbook. Pergamon Press, New York, 1987. [16] Parker, A.P. The mechanics of fracture and fatigue. E.&F.N. Spon, USA, 1981. [17] Okamura, H. Senkei Hakai Riki Gaku Nu Mon. (In Japanese), 1995. [18] Broek,D. Practical use of fracture mechanics. Kluwer academic publisher, Netherlands,1989. [19] Boyd, K.L., Krishnan, S., Litvinov, A., Elsner, J.H., Harter, J.A., Ratwani, M.M. and Glinka, G.

    Development of structural integrity analysis technologies for aging aircraft structures : Bonded composite patch repair and weight function methods. Wright Laboratory, WL-TR-97-3105, July, 1997.

    [20] Paris, P.C., McMeeking, R.M. and Tada, H. The weight function method for determining stress intensity factors. Cracks and Fracture, ASTM STP 601. American Society for Testing and Materials, 1976, pp.471-489.

    [21] Petroski, H.J. and Achenbach. Computation of the weight function from a stress intensity factor, Eng. Frac. Mech., Vol. 10, 1978, pp. 257-266.

    [22] Varfolomeyev, I.V. and Hodulak, L. Improved weight functions for infinitely long axial and circumferential cracks in a cylinders. Int. J. Pres & Piping, Vol. 70, 1997, pp. 103-109.

    [23] Fett, T. and Mattheck, C. On the Calculation of crack opening displacement from the stress intensity factor. Eng. Frac. Mech., Vol. 27, No.6, 1987, pp. 697-715.

    [24] Shen, G. And Glinka, G. Determination of weight functions from reference stress intensity factors. Theoretical and Applied Fracture Mechanics, Vol. 15, 1991, pp. 237-245.

  • 112

    [25] Shen, G.and Glinka, G. Weight functions for a surface semi-elliptical crack in a finite thickness plate. Theoretical and Applied Fracture Mechanics, Vol. 15, 1991, pp. 247-255.

    [26] Bergman, M., Brickstad, B., Dahlberg, L., Nilsson, F. and Sattari-Far, I. A procedure for safety assessment of components with crack handbook. SA/FoU-Report 91/01, 1991.

    [27] Shiratori, M., Miyoshi, T., and Matsushita, H. SuuChi Hakai Riki Gaku. (In Japanese), 1996. [28] Guinea, G.V., Planas, J. and Elices, M. KI evaluation by the displacement extrapolation

    technique. Eng. Frac. Mech., Vol. 66, 2000, pp.243-255. [29] Zhu, W.X. and Smith, D.J. On the use of displacement extrapolation to obtain crack tip singular

    stresses and stress intensity factors. Eng. Frac. Mech., Vol. 51, No.3, 1995, pp.391-400. [30] Sanford R.J. Principles of fracture mechanics. Pearson Education, 2003. [31] Chan, S.K., Tuba, I.S., and Wilson, W.K. On the finite element method in linear fracture

    mechanics. Eng. Frac. Mech., Vol.2, 1970, pp.1-17. [32] Byskov, E. The calculation of stress intensity factors using finite element method with cracked

    elements. Int. J. of Frac. Mech. Vol. 6, No. 2, 1970, pp. 159-167. [33] Barsoum, R.S. On the use of isoparametric finite elements in linear fracture mechanics. Int. J.

    of Num Methd. Eng, Vol.1, No. 1, 1976, pp.25-37. [34]

    . 2544. [35] Smith, E. Simple approximate methods for determining the stress intensification at the tip of a

    crack. Int. J. of Fracture, Vol. 13, No. 4, 1977, pp.515-518. [36] Cartwright, D.J. Bounding functions for stress intensity factors. Int. J. of Fracture, Vol. 24.

    1984, pp. 35-44. [37] Rooke, D.P., Baratta, F.I., and Cartwright, D.J. Simple methods of determining stress intensity

    factors. Eng. Frac. Mech., Vol. 14, 1981, pp.379-426. [38] Dowling, N.E. Mechanical behavior of engineering materials : Engineering methods for

    deformation, fracture and fatigue. Prentice Hall Internaltional Inc, New Jersey, 1993. [39] Broek,D. Elementary engineering fracture mechanics, 4th eds., Martinus Nijhoff Publish-

    ers,1986. [40] Burdekin, F.M. and Stone, D.E.W. The crack opening approach to fracture mechanics in

    yielding materials. J. of Strain Analysis., Vol. 1, No.2, 1966, pp.145-153.

  • 113

    William

    1. 1 2 1.1 William 1 [11]

    ( ) fr 1+= (1)

    2 04 = (2) (2)

    011112

    22

    2

    2

    2

    22

    2

    =

    +

    +

    +

    + rrrrrrrr

    ( ) ( ) 0112 2222244 =+++ fd fdd fd (3)

    (3)

    ( ) ( ) ( ) ( ) 1sin1cos1sin1cos 4321 +++++= CCCCf (4)

    x

    yrr

    r

    1

  • 114

    ( )( ) ( ) frr 122

    1 +== (5)

    22

    211

    +=

    rrrrr

    ( ) ( ) ( ) frr

    frr

    ++= +12111 ( ) ( ) ( )[ ] ffr ++= 11 (6)

    =

    rrr1

    ( )

    = + fr

    rr11

    ( ) fr = 1 (7)

    1 = 0== r (5) (7) 0= 0=f 0= r 0=d

    df

    1 : = , 0=f

    ( ) ( ) ( ) ( ) 1sin1cos1sin1cos0 4321 +++++= CCCC (8)

    2 : = , 0=f

    ( ) ( ) ( ) ( ) 1sin1cos1sin1cos0 4321 +++= CCCC (9)

    3 : = , 0=ddf

    ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

    1cos11sin11cos11sin10

    4

    321

    ++++++=

    CCCC (10)

    4 : = , 0=ddf

    ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

    1cos11sin11cos11sin10

    4

    321

    +++++++=

    CCCC (11)

    (8) (9)

    ( ) ( ) 01cos1cos 31 =++ CC (12)

  • 115

    (8) (9)

    ( ) ( ) 01sin1sin 42 =++ CC (13)

    (10) (11)

    ( ) ( ) ( ) ( ) 01cos11cos1 42 =+++ CC (14)

    (10) (11)

    ( ) ( ) ( ) ( ) 01sin11sin1 31 =+++ CC (15)

    (12) (15)

    ( ) ( )( ) ( ) ( ) ( )

    =

    ++

    +00

    1sin11sin11cos1cos

    3

    1

    CC

    (16)

    (13) (14)

    ( ) ( )( ) ( ) ( ) ( )

    =

    ++

    +00

    1cos11cos11sin1sin

    4

    2

    CC

    (17)

    (16) (17) (non-trivial solution) (16)

    ( )[ ]( ) ( ) ( )[ ]( ) ( ) 01sin11cos1sin11cos =+++

    ( ) ( ) ( ) ( )[ ]( ) ( ) ( ) ( )[ ] 01sin1cos1sin1cos1sin1cos1sin1cos

    =++++++

    ( )( ) ( )[ ] 011sin11sin =++++

    02sin2sin =+ (18)

    (17)

    ( )[ ]( ) ( ) ( )[ ]( ) ( ) 01cos11sin1cos11sin =+++

    ( ) ( ) ( ) ( )[ ]( ) ( ) ( ) ( )[ ] 01cos1sin1cos1sin1cos1sin1cos1sin

    =++++++

    ( ) ( )[ ] ( ) ( )[ ] 011sin11sin =++++

    ( ) 02sin2sin =+

    02sin2sin =+ (19)

  • 116

    = = (18) (19)

    (18) : ( ) ( )[ ] 02sin2sin =+ 02sin =

    (19) : ( ) ( )[ ] 02sin2sin =+ 02sin =

    ( ) 02sin =

    2n= n n = ,...3,2,1n

    C1 C2 C3 C4 ( (12) (15)) 2n= (16) (17) (16)

    ( ) ( )

    ( ) ( )

    =

    +

    +

    +

    00

    12

    sin12

    12

    sin12

    12

    cos12

    cos

    3

    1

    n

    n

    CC

    nnnn

    nn

    ( ) ( ) nn CnCn 31 12cos12cos

    +=

    ( )( ) nn

    Cn

    n

    C 131

    2cos

    12

    cos

    +

    = (20)

    ( ) ( ) nn CnnCnn 31 12sin1212sin12

    +

    +=

    ( )( ) nn

    Cnn

    nn

    C 131

    2sin1

    2

    12

    sin12

    +

    +

    = (20)

  • 117

    (20) (20) n

    ,...6,4,2=n (20) nn CC 13 = (21) ,...5,3,1=n (20) nn Cn

    nC 13 22

    += (21)

    (17)

    ( ) ( )

    ( ) ( )

    =

    +

    +

    +

    00

    12

    cos12

    12

    cos12

    12

    sin12

    sin

    4

    2

    n

    n

    CC

    nnnn

    nn

    ( ) ( ) nn CnCn 42 12sin12sin

    +=

    ( )( ) nn

    Cn

    n

    C 241

    2sin

    12

    sin

    +

    = (22)

    ( ) ( ) nn CnnCnn 42 12cos1212cos12

    +

    +=

    ( )( ) nn

    Cnn

    nn

    C 241

    2cos1

    2

    12

    cos12

    +

    +

    = (22)

    (22) (22) n

    ,...5,3,1=n (22) nn CC 24 = (23) ,...6,4,2=n (22) nn Cn

    nC 24 22

    += (23)

    (21) (23) f

    +

    ++

    +

    = 1

    2sin1

    2cos

    221

    2sin1

    2cos 2121

    nCnCnnnCnCf nnnnn ; ,...5,3,1=n

    ++

    +

    +

    = 1

    2sin

    221

    2cos1

    2sin1

    2cos 2121

    nCnnnCnCnCf nnnnn ; ,...6,4,2=n

  • 118

    =

    =

    ++

    +

    +

    +

    +

    +

    ++

    =

    evennnn

    oddnnnn

    nnnnCnnC

    nnCnnnnCf

    12

    sin221

    2sin1

    2cos1

    2cos

    12

    sin12

    sin12

    cos221

    2cos

    21

    21

    William

    ++

    +

    +

    +

    +

    +

    ++

    =

    =

    +

    =

    +

    12

    sin221

    2sin1

    2cos1

    2cos

    12

    sin12

    sin12

    cos221

    2cos

    21

    12

    21

    12

    nnnnCnnCr

    nnCnnnnCr

    nnevenn

    n

    nnoddn

    n

    (24)

    1.2 (24) (5)

    =

    =

    ++

    +

    +

    ++

    +

    +

    ++

    +=

    evennn

    nn

    oddnn

    nn

    nnnnC

    nnCrnn

    nnC

    nnnnC

    rnn

    12

    sin221

    2sin

    12

    cos12

    cos

    21

    2

    12

    sin12

    sin

    12

    cos221

    2cos

    21

    2

    2

    11

    2

    2

    11

    2

    n = 1 n = 2

    ( )

    2cos12

    23sin

    2sin

    23cos

    31

    2cos

    21

    23

    12

    211121

    +

    +

    +

    =

    C

    CCr

    ( )

    2cos12

    23sin

    2sin

    43

    23cos

    31

    2cos

    43

    12

    2121

    1121

    +

    +

    +=

    C

    CrCr (25)

  • 119

    rr (24) (6)

    =

    +

    =

    +

    =

    =

    +

    ++

    +

    +

    +

    ++

    +

    ++

    +

    +

    ++

    +

    +

    ++

    +

    +

    ++

    +

    +

    ++

    +=

    evenn

    n

    nn

    oddn

    n

    nn

    evennn

    nn

    oddnn

    nn

    rr

    nnnnnnC

    nnnnC

    rr

    nnnnC

    nnnnnnC

    rr

    nnnnC

    nnCrn

    r

    nnC

    nnnnC

    rnr

    12

    sin122

    212

    sin12

    12

    cos12

    12

    cos121

    12

    sin12

    12

    sin12

    12

    cos122

    212

    cos121

    12

    sin221

    2sin

    12

    cos12

    cos1

    21

    12

    sin12

    sin

    12

    cos221

    2cos

    12

    1

    22

    2

    22

    11

    22

    22

    2

    22

    11

    22

    2

    1

    2

    2

    1

    2

    n = 1 n = 2

    ( )

    2cos122

    3sin49

    2sin

    41

    23cos

    43

    2cos

    41

    23sin

    2sin

    23cos

    31

    2cos

    23

    12

    211121

    211121

    ++

    ++

    +

    +

    +=

    C

    CCr

    CCrrr

    ( )

    2cos12

    23sin

    43

    2sin

    45

    23cos

    41

    2cos

    45

    12

    2121

    1121

    ++

    ++

    =

    C

    CrCrrr (26)

  • 120

    r (24) (7)

    +

    ++

    +

    +

    ++

    +

    +

    +

    +

    +

    +

    +++

    =

    =

    +

    =

    +

    12

    cos122

    212

    cos12

    12

    sin12

    12

    sin12

    12

    cos12

    12

    cos12

    12

    sin122

    212

    sin12

    2

    11

    2

    2

    11

    2

    nnnnnnC

    nnnnCr

    nnnnC

    nnnnnnC

    r

    n

    n

    evenn

    n

    n

    n

    oddn

    n

    +

    ++

    +

    +

    ++

    +

    +

    +

    +

    +++

    =

    =

    =

    12

    cos122

    212

    cos12

    12

    sin12

    12

    sin12

    2

    12

    cos12

    12

    cos12

    12

    sin122

    212

    sin12

    21

    2

    11

    2

    2

    11

    2

    nnnnnnC

    nnnnCrn

    nnnnC

    nnnnnnC

    rnr

    n

    n

    evenn

    n

    oddnn

    nn

    n = 1 n = 2

    2sin2

    23cos

    23

    2cos

    21

    21

    23sin

    21

    2sin

    21

    21

    12

    2121

    1121

    C

    CrCrr

    =

    2sin223cos

    43

    2cos

    41

    23sin

    41

    2sin

    41

    122121

    1121

    CCrCrr

    ++

    += (27)

    1 2 ( 1)

    ( ) 2cos122

    3cos2

    cos54 12

    21

    11 ++

    = CrCrr (28)

    ( ) 2cos1223cos

    2cos3

    4 1221

    11 +

    += CrC (28)

    2sin223sin

    2sin

    4 1221

    11 CrCr

    += (28)

  • 121

    ( 2)

    += 2

    3sin32

    sin54

    21

    21 rCrr (29)

    = 2

    3sin32

    sin34

    21

    21 rC (29)

    += 2

    3cos32

    cos4

    21

    21 rCr (29) 1.3

    1

    [ ] = rrrr E1

    =

    23cos

    2cos3

    23cos

    2cos5

    41 2

    111 rC

    E (30)

    rur

    rr =

    ( ) ( )

    +=

    23cos1

    2cos35

    421

    11 rE

    Crur

    ( ) ( )

    +

    = 23cos1

    2cos35

    214

    21

    11 rE

    Cur

    ( )

    ++=

    23cos

    2cos

    13512

    421

    11 r

    ECur

    ( ) ( )( )

    ++=

    23cos

    2cos

    1126

    421

    11

    r

    Cur

    ( )

    =2

    3cos2

    cos124

    21

    11 rCur (31)

    +

    =13

  • 122

    ( )rrE =1

    ( ) ( )

    ++= 2

    3cos12

    cos534

    1 21

    11 rCE

    ++=

    23cos

    2cos

    153

    821

    11

    rC

    ( )

    ++=

    23cos

    2cos

    13326

    821

    11

    r

    C

    ( )

    +=

    23cos

    2cos32

    8

    21

    11 rC (32)

    ruru =

    ( ) ( )

    +=

    23cos2

    2cos122

    23cos

    2cos32

    821

    11 rCu

    ( )

    +=

    23cos3

    2cos12

    821

    11 rCu

    ( )

    ++=2

    3sin22

    sin1228

    21

    11 rCu

    ( )

    ++=2

    3sin2

    sin124

    21

    11 rCu (33)

    (31) (33) ( )0=r

    2

    ( )

    +=2

    3sin32

    sin124

    21

    21 rCur (34)

    ( )

    +=2

    3cos32

    cos124

    21

    21 rCu (35)

  • 123

    2. 3 2 0== vu 0==== xyzzyyxx

    ruGG zrzrz == (36)

    == zzz ur

    GG (37)

    ( ) 0=+

    zrzrr

    0=

    +

    zz u

    rG

    ruGr

    r

    01 222

    =

    +

    +

    zzz urr

    ururG (38)

    02 = zu

    0=z 0=zu = (39)

    ( ) gruz = (38) ( ) ( ) ( ) ( ) 01 112 =++ grgrgrr ( ) ( )[ ] 021 =+ ggr (40)

    (39)

    ( ) 0= gr = ( ) 0= g = (41)

    (40) sincos BAg += (42)

    x

    y r

    rz

    2

  • 124

    z (42)

    sinAg = 0=

    = ddg ( 41)

    ( ) 0cos =A

    = 0cos =A

    0= (trivial solution) 0cos = 2n= ,...3,2,1=n

    ==

    ,...5,3,1 2sin

    nn

    nDg

    =

    =,...5,3,1

    2

    2sin

    n

    n

    nznrDu

    2

    sin21

    1rDuz = (43)

    ruz

    rz =

    2

    sin2,...5,3,1

    12 nrnD

    n

    n

    nrz =

    =

    2

    sin2

    21

    1 = rDrz (44)

    = zz ur

    =

    =,...5,3,1

    2

    2cos

    2n

    n

    nznnrD

    r

    2

    cos22

    cos2

    21

    121

    1 =

    = rDrDrz

    (45)

  • 3 -

    - (medium strength steel) (stainless steel) r-1/2 K (LEFM) SSY 2 - (elastic-plastic fracture mechanics, EPFM) 1.2 EPFM LEFM 2 CTOD - J- J- J-

    3.1 2.11 2 CTOD ( ) SSY K Burdekin Stone [1] (large scale yielding, LSY) c Burdekin Stone c - el (rigidly plastic) pl

    plel += (1)

  • 126

    el (114) 2 pl (crack mount opening displacement, CMOD) plm pl plm (uncrack ligament) W-a (rigid body rotation) 1 2 2 3 (3-point bending specimen) C(T) (compact tension specimen) 1() P P m 1() m - plm elm elm 1() plm m elm O [ 1()] plm pl ()

    ( ) ( ) aaWraWr plpl

    m

    pl

    pl

    +=

    ( )( ) aaWraWr

    pl

    plmpl

    pl += (2)

    rpl (plastic rotational factor) 0.432 a/W = 0.8 0.451 a/W = 0.3 [2] (1) ( )( ) aaWr

    aWrEm

    K

    pl

    plmpl

    Y

    I

    ++=

    2

    (3)

    C(T) 2 pl plm

    ( )( ) ZaaWraWr

    pl

    plmpl

    pl ++= (4)

  • 127

    plm

    P

    m

    pl

    m

    W

    pla

    ( )aWrpl O

    P

    S

    Wb

    m

    elm

    m

    1

    m

    1

    () () 1 plm pl 3

    P

    P

    a

    W

    plpl

    m O

    Z

    ( )aWrpl

    2 plm pl C(T)

    [2]

    +

    +

    = 2174.011

    2

    aWW

    aWW

    aWWrpl (5)

    Z

  • 128

    P ( LL ) JIc 4 plLL LL Z = 0 (4) ( 3) 45 [3] 3.2 J- 3.2.1 Rice[4] J- B ( 4)

    = ds

    xuTUdyJ ii (6)

    U ( = ijij dU )

    iT (surface force)

    J- - (loading) (6) [3]

    dad

    BJ = 1 (7)

    3

  • 129

    ds

    Tva

    x

    y

    A

    4 J-

    (7) G [ (18) 2] 5 J- (7) - a a+da U= (7)

    dadU

    BJ 1= (8)

    5 U = LLPdU (9) (9) (8) = LLdaPBJ LL

    1 (10)

    WU = LLPW = 6 = U

    U (complementary strain energy)

    (7) a

    UB

    J =

    *1 (11)

    6 = dPU LL (12) (11) dP

    aBJ

    P

    LL = 1 (13)

  • 130

    LLP a daa +

    P

    LL

    5 ( 5) J-

    (8) (11)

    GJ (14)

    P

    LL

    U

    *U

    6 U *U

  • 131

    3.2.2 J- J- [ (6)] 1) J- 2) J- J- (path-independent integral)

    7 (direction cosines) ds

    dsdynx = ds

    dxny = jiji nT =

    (6) = dsxunUnJ ijij1

    ( ) +=+ dAyfxfdsnfnf Ayx 2121 (15)

    dAxu

    yxu

    xxUJ

    A = 1211

    x = x1 , y = x2 u = u1

    dAxu

    xxUJ

    A

    iij

    j

    = (16)

    x

    y

    =

    y

    x

    nn

    nvdsdy

    dx

    7 xy

  • 132

    (16) x

    UxU ij

    ij

    =

    x

    ijij

    =

    +

    =

    i

    j

    j

    iij x

    uxx

    ux2

    1

    =

    xu

    xi

    jij (17)

    (16) j

    ijii

    jij

    iij

    j xxu

    xu

    xxu

    x

    +

    =

    0=

    j

    ij

    x

    =

    xu

    xxu

    xi

    ijj

    i

    jij (17)

    (17) (17) (16) J-

    = = 0dsxuTUdyJ ii (18)

    ( 8) 1 3 2 4 1 3 0

    4321=+++ JJJJ (19)

    2 4 ( )0=iT dy = 0 J2 = J4 = 0 (19)

    21 = JJ

    J- 1 2 J-

    12 34

    8 xy

  • 133

    3.2.3 J- Hutchinson [6] Rice Rosengren [7]

    n

    YYY

    +=

    (20)

    Y Y (yield strain) EYY = n

    (20)

    Y

    ijn

    Y

    eYijkkijij

    sE

    sE

    1

    23

    3211

    +++= (21)

    ijs (deviatoric stress components) ijije ss2

    3= (effective stress) (21)

    ( ) ,~1

    1

    nrI

    Jij

    n

    nYYYij

    +

    = (22)

    ( ) ,~1

    nrI

    Jij

    nn

    nYYYij

    +

    = (23)

    ( ) ,~111

    nurI

    Ju innn

    nYYYi

    ++

    = (24)

    nI n ij~ , ij~ iu~ n

  • 134

    [6]

    32 001262.00404.04744.0568.6 nnnIn += (25)

    [6]

    342 1045816.00175.02827.0546.4 nnnIn += (25)

    (22) (24) J- - ( K) ( )0=r n = 1 (22) (24) ( r-1/2) J- HRR (HRR singular zone) (Hutchinson, Rice Rosengren ) 3.3 J- CTOD K G J- SSY 9 Y ( A C) ( B) 0=dy (6) y

    Yyi TT == J-

    = dxxvJ Y (26)

    dvJa

    aY

    +=

    2 ( ) ( )[ ]avavY += 2

    YJ = (27)

  • 135

    CLCL

    a

    A

    B

    C

    x

    y

    X

    Y

    Y

    9 J-

    Rice [7] J n (22) 5 YJ 7.1= YmJ =

    Shih [3] J HRR 3 10 A x y u v = rr =

    x

    y

    v

    *r

    u

    A

    A'

    10

  • 136

    ( ) ,2

    = rv (28)

    ( ) ( ) ,, *** rvrur += (29)

    (24) (29) uu 1 vu 2

    ( ) ( ) ( )[ ]nY

    nn

    nY IJnvnur

    11* ,~,~

    ++= (30)

    (30) (24) y v

    ( ) ( ) ( )[ ] ( )nuI

    JnvnuI

    Jv in

    nY

    nn

    nY

    nn

    nYYY ,

    ~,~,~1

    1111

    +++

    +

    =

    ( ) ( ) ( )[ ] ( )nuI

    Jnvnuv inY

    nnY ,~,~,~

    11 += (31) (28) ( )( ) ( ) ( )[ ]

    Yn

    nnY JI

    nvnunv

    11

    ,~,~,~2 += (32)

    Ynd

    J 1= (33) dn ( )( ) ( ) ( )( )[ ]

    n

    nnYn I

    nvnunvd11

    ,~,~,~2 += (34)

    11 dn n1 1= dn n EY ( )=n ( 16()) dn 1 (27) Shih HRR 1) 2) ( 2

  • 137

    0.1 0.2 0.3 0.4 0.5

    0.2

    0.4

    0.6

    0.8

    1.0

    nd

    n1

    0.0080.0040.0020.001

    0.1 0.2 0.3 0.4 0.5

    0.2

    0.4

    0.6

    0.8

    1.0nd

    n1

    0.0080.0040.0020.001

    EY EY

    () ()

    11 n EY dn [ (34)]

    3.4 J- J- 2 1) J- [ (6)] 2) [ (9)] J- (reference stress method) K (limit load)

    3.4.1 J- [11]

    1 [4] E1 a+b H a v () J- b x = b

  • 138

    x

    y

    v

    a b

    H

    E1 H

    E2 0654321

    =+++++ JJJJJJ 1 5 : 0=ij 0=

    xui 0

    1=J 05 =J

    2 4 : 0=dy 0=

    xui 0

    2=J 04 =J

    3 : 0=

    xui ( ) ( )HbxUdybxUJ ====

    3

    3

    6 7 : 0=dy 0=iT 06 =J

    ( )HbxUJJ === 3

    ( ) ( ) ( )bxbxbxU yyyy ==== 2

    1 221

    yyE=

    x

    y

    1 2

    3

    45 67

    E2 J-

  • 139

    211 = bx =

    y Hv

    yy =

    HEvJ

    2

    21 =

    J- (isoparametric element) (interpolation function) (mapping function) x-y 12 8 x-y Ni ( ) ,ii NN = (35) i 12 ( )( )( )1 1 1 1 14N = + + (36) ( )( )22 1 1 12N = (36) ( )( )( )3 1 1 1 14N = + (36)

    u

    12

    v

    3

    4

    56

    7

    8

    1 2 3

    4

    567

    8

    1=1=

    1=

    1=

    x

    y

    () x-y () ()

    12 (map) x-y

  • 140

    ( )( )24 1 1 12N = + (36) ( )( )( )5 1 1 1 14N = + + + (36) ( )( )26 1 1 12N = + (36) ( )( )( )7 1 1 1 14N = + + (36) ( )( )28 1 1 12N = (36) (x,y)

    ==

    8

    1iii xNx

    ==

    8

    1iii yNy (37)

    (chain rule) (37) f (Jacobian matrix)

    [ ]

    =

    =

    ==

    ==8

    1

    8

    1

    8

    1

    8

    1

    2221

    1211

    ii

    i

    ii

    i

    ii

    i

    ii

    i

    yNxN

    yNxN

    yx

    yx

    JJJJ

    J

    (38)

    [ ]

    =1121

    12221 1JJJJ

    JJ (39)

    [ ] 1J f

    [ ]

    =

    yfxf

    Jf

    f

    (40)

    [ ]

    =

    f

    f

    J

    yfxf

    1 (40)

    f u(x,y) v(x,y)

  • 141

    [ ]

    =

    u

    u

    J

    yuxu

    1 (41)

    [ ] 1vv

    x Jv vy

    =

    (41)

    x-y ( )

    ==

    r

    iiiuNu

    1

    , (42)

    ( ) =

    =r

    iiivNv

    1

    , (42)

    =

    8

    8

    2

    2

    1

    1

    821

    821

    821

    821

    000

    000

    000

    000

    vu

    vuvu

    NNN

    NNN

    NNN

    NNN

    v

    v

    u

    u

    M

    K

    K

    K

    K

    (43)

    J- U

    +

    +

    +=

    yv

    xv

    yu

    xuU yyxyxx 2

    1 (44)

    xuT ii

    xvT

    xuT

    xuT yxii

    +=

    (45)

    { }T ij

    { }

    =

    y

    x

    yyxy

    xyxx

    y

    x

    nn

    TT

    T (46)

  • 142

    yxyxxxx nnT += (47) yyyxxyy nnT += (47)

    nv 13

    dsdynx = (48)

    dsdxny = (48)

    22 dydxds += (49)

    (numerical integration) J- (6) (Gauss quadrature) ( ) ,f ( -1 1 ) -1 1 ) f (Gauss point) (Gauss points weight)

    p [ 14()]

    ( ) ( )=

    NG

    ipiip fwdf

    1

    1

    1

    ,, (50)

    NG p iw i p

    x

    y

    ds

    dx

    dy

    =

    y

    x

    nn

    nv

    13 (unit normal vector)

  • 143

    x

    y

    12

    3

    4

    56

    7

    8

    +

    ++

    +

    GP1

    GP2

    GP3

    GP4

    3

    1=p

    12

    3

    4

    56

    7

    8

    +

    ++

    +

    GP1

    GP2

    GP3

    GP43

    1=

    3

    1=p

    31=

    () ()

    14 2 ) ) p [ 14()]

    ( ) ( )=

    NG

    iipip fwdf

    1

    1

    1

    ,, (50)

    NG p iw i p J- J-

    =

    =NE

    e

    eJJ1

    (51)

    NE eJ J- [( 14()]

    ds

    xuTyUJ ii

    e

    =1

    1

    (52)

    (44), (47), (49) (50) (52)

  • 144

    ( ) ( )

    =

    =

    +

    ++

    +

    +

    +

    +=

    NG

    iyyyxxyyxyxxxi

    yyxyxx

    NG

    ii

    e

    yxxvnn

    xunnw

    yyv

    xv

    yu

    xuwJ

    1

    22

    1 21

    (52)

    2

    12211

    12

    22 JJ

    J

    ddy

    ddx

    ddy

    dsd

    ddynx +

    =

    +

    ==

    2

    122

    11

    11

    JJ

    Jny +=

    [ 14()]

    ds

    xuTyUJ ii

    e

    =1

    1

    (53) (44), (47), (49) (50) (53)

    ( ) ( )

    =

    =

    +

    ++

    +

    +

    +

    +=

    NG

    iyyyxxyyxyxxxi

    yyxyxx

    NG

    ii

    e

    yxxvnn

    xunnw

    yyv

    xv

    yu

    xuwJ

    1

    22

    1 21

    (53)

    222

    221

    22

    JJJnx +=

    , 222

    221

    21

    JJJny +

    =

    2 [25] 2W t 2a - 1/4 7, 13, 12 2 x, y E1-E4 E5 E6 J- 53 ( 7, 8 9)

  • 145

    2

    12 13

    7

    3 4 5 13 14 1526 27

    41 424350

    554952

    54

    48

    53

    3433

    32

    2221

    xy

    a = 4W = 10

    E1 1/4 E1 7

    13 14 15 27 43 42 41 26 x 5.50 6.10 6.70 6.70 6.70 6.10 5.50 5.50 y 0.00 0.00 0.00 0.70 1.40 1.15 0.90 0.45

    u -0.0321941 -0.0328437 -0.0339877 -0.03307040 -0.0307576 -0.0295602 -0.0286617 -0.03104010 v 0.0000000 0.0000000 0.0000000 0.00929602 0.0189894 0.0163396 0.0138731 0.00682375

    E2 13 41 42 43 55 54 52 49 50

    x 5.50 6.10 6.70 5.35 4.00 4.00 4.00 4.75 y 0.90 1.15 1.40 2.20 3.00 2.30 1.60 1.25

    u -0.0286617 -0.0295602 -0.0307576 -0.0193732 -0.00890561 -0.0106854 -0.0137014 -0.0216570 v 0.0138731 0.0163396 0.0189894 0.0360462 0.06031980 0.0514632 0.0416548 0.0244707

    E3 12 49 52 54 53 32 33 34 48

    x 4.00 4.00 4.00 2.65 1.30 1.900 2.50 3.250 y 1.60 2.30 3.00 2.50 2.00 1.575 1.15 1.375

    u -0.0137014 -0.0106854 -0.00890561 -0.00439876 -0.00312630 -0.00619434 -0.0109292 -0.0111176 v 0.0416548 0.0514632 0.06031980 0.07330100 0.08593660 0.07904330 0.0692646 0.0552660

  • 146

    E4 2 5 22 34 33 32 21 3 4

    x 2.50 2.50 2.50 1.900 1.30 1.30 1.30 1.90 y 0.00 0.575 1.15 1.575 2.00 1.00 0.00 0.00

    u -0.0275023 -0.0179369 -0.0109292 -0.00619434 -0.00312630 -0.00736483 -0.0143537 -0.0209016 v 0.0667081 0.0682252 0.0692646 0.07904330 0.08593660 0.08396450 0.0814629 0.0755574

    E5 7 13

    7 13 xx yy xy xx yy xy

    1 0.37199E+2 0.15790E+3 0.51486E+1 0.90793E+0 0.16895E+3 0.18441E+2 2 0.28437E+2 0.15924E+3 0.93048E+1 -0.57147E+1 0.18323E+3 -0.58063E+1 3 0.13471E+2 0.15872E+3 0.13299E+2 -0.32772E+2 0.14831E+3 -0.42625E+2 4 0.27844E+2 0.14624E+3 0.34419E+1 -0.22689E+1 0.15892E+3 0.16829E+2 5 0.21711E+2 0.14860E+3 0.75206E+1 -0.69162E+1 0.16695E+3 -0.56363E+1 6 0.10260E+2 0.14936E+3 0.11409E+2 -0.26368E+2 0.13752E+3 -0.37561E+2 7 0.19479E+2 0.13825E+3 0.25777E+1 -0.51520E+1 0.15068E+3 0.15013E+2 8 0.15372E+2 0.14137E+3 0.66520E+1 -0.95707E+1 0.15356E+3 -0.69286E+1 9 0.65775E+1 0.14309E+3 0.10516E+2 -0.25042E+2 0.12627E+3 -0.36223E+2

    E6 12 2 12 2

    xx yy xy xx yy xy 1 -0.20803E+2 0.12518E+3 -0.61342E+2 -0.24893E+2 0.86811E+1 -0.25268E+2 2 -0.14749E+2 0.177971E+2 -0.52408E+2 -0.50804E+2 0.69207E+1 -0.11597E+2 3 -0.17390E+2 0.17148E+2 -0.36484E+2 -0.94998E+2 -0.32461E+0 0.90438E+0 4 -0.19258E+2 0.11564E+3 -0.53432E+2 -0.25198E+2 0.96199E+1 -0.22749E+2 5 -0.13851E+2 0.72075E+2 -0.44941E+2 -0.53174E+2 0.61809E+1 -0.11517E+2 6 -0.15274E+2 0.19199E+2 -0.30989E+2 -0.95832E+2 -0.16628E+1 -0.12293E+1 7 -0.16007E+2 0.10598E+3 -0.47863E+2 -0.21566E+2 0.11567E+2 -0.18048E+2 8 -0.11288E+2 0.63011E+2 -0.39582E+2 -0.52426E+2 0.65699E+1 -0.83908E+1 9 -0.12265E+2 0.13157E+2 -0.26756E+2 -0.95613E+2 -0.21253E+1 0.46707E+0

  • 147

    53 7, 8 9 E2 E7

    E7

    1 2 3 4 5 6 7 8 7 13 14 15 27 43 42 41 26 13 41 42 43 55 54 52 49 50 12 49 52 54 53 32 33 34 48 2 34 33 32 21 3 4 5 22

    3 7, 8, 9 ( ) ( )0,53,53,53 ( )53,53 5/9, 8/9 5/9 53() 7

    +

    +

    +

    53,

    53

    53,

    53

    53,

    53

    53,

    53

    53,

    53

    21

    95

    2,27,

    7,7,

    Jyv

    xv

    yu

    xu

    GPyy

    GPxyGPxx

    2

    12 13

    7

    3 4 5 13 14 15

    262741

    4243

    50

    55

    49

    52

    54

    48

    53

    34

    33

    32

    2221

    +++

    +

    ++

    ++

    +

    +

    ++ 7

    8

    9

    7

    8

    978

    9

    7

    8

    9

    E2 ()

  • 148

    53() 7

    +

    +

    +

    +

    53,

    53

    53,

    53

    53,

    53

    53,

    53

    53,

    53

    53,

    53

    53,

    53

    53,

    53

    95

    21,2

    22,27,7,

    7,7,

    JJxvnn

    xunn

    yGPyyxGPxy

    yGPxyxGPxx

    8 9 8/9 5/9 ( )0,53 ( )53,53 8 9

    7 1.280 -0.057 1.337

    13 1.772 -2.017 3.789 12 -0.449 -2.272 1.822 2 -0.416 -0.893 0.478

    J- 2(1.337+3.789+1.822+0.478) = 14.852

    3.4.2 J- 3.4.2.1 Begley Landes [11] J- ( 1)

    1) 2) [ 15()] LL P LL

    15() 3) ( U) LL

    15() LL1 U a1 a4 LL 4) U LL [ 15()]

  • 149

    5) U-a ( aU ) (8) J- LL [ 15()]

    LLP

    U,

    a,1a 2a 3a 4a

    1LL2LL3LL4LL

    JdadU

    B 1

    1a

    2a

    3a

    4a

    LL,

    dUda

    ()

    1a

    2a

    3a

    4a

    UU

    P,

    LL,1LL 2LL 3LL 4LL

    ()

    () ()

    1LL 2LL 3LL 4LL

    a

    15 J-

  • 150

    3 [11] E1 BU a 3 Ni-Cr-Mo-V 200 1 J- LL 0.1 , 0.2 0.3 0.4

    0

    50

    100150

    200

    250

    300

    0 0.1 0.2 0.3 0.4, a ()

    ,

    U/B

    (-

    /)

    E1 BU (-/)

    LL () a () 0.025 0.020 0.015 0.010

    0.120 278 211 129 60 0.170 221 163 104 50 0.220 168 123 80 40 0.260 128 95 67 30 0.325 70 51 39 18 0.352 42 30 21 12

    E1

    23.42530.130637.632 2025.0

    +== aaBU LL 89.33020.109333.693 2

    020.0+== aaBU LL

    38.18228.45797.18 2015.0

    +== aaBU LL 537.8520.21284.9 2

    010.0+== aaBU LL

    (8) 30.130674.1264025.0

    +== aJ -/2 20.109366.1386

    020.0+== aJ -/2

    28.45794.37015.0

    +== aJ -/2 20.21268.19

    010.0+== aJ -/2

  • 151

    J- E2 E2 J (-/)

    , a () LL () 0.1 0.2 0.3 0.4

    0.025 1179.83 1053.35 926.88 800.40 0.020 954.53 815.87 677.20 538.54 0.015 453.49 449.69 445.90 442.10 0.010 210.23 208.26 206.30 204.33

    .

    3.4.2.2 J- Rice[3], Zahoor [12,13] J- (10) (13) LL 2 elLL p